氟碳低表面能防污涂料研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
船舶底部海洋污损生物附着的问题,一直以来困扰着人们,在船舶表面涂装低表面能防污涂料是解决污损问题的一个重要途径。低表面能防污涂料基于涂料表面极低的表面能,海洋生物难以在上面附着,即使附着也不牢固,在水流或其他外力作用下很容易脱落,而且不存在有毒性物质的释放,能起到长期防污的作用。氟碳涂料是低表面能防污涂料的一种,与传统涂料相比较有其优异的特性,如超长耐久性、耐腐蚀、耐化学药品、防污性、阻燃性、适应性、良好的涂层粘结性、附着力强、涂层硬度高、施工性能良好、装饰性及防静电、抗核辐射等。此外,随着纳米技术的引入,使得涂料性能的改善有了更广阔的发展空间。因此进一步优化氟碳低表面能防污涂料的配方,并研究分析纳米粉体对氟碳低表面防污涂料的影响,有助于进一步改善涂料的性能。
     本文通过对涂层力学性能的测试分析,采用动态海水模拟试验方法对涂层的动态性能进行检测,同时利用电化学阻抗谱方法检测涂层的EIS曲线的变化规律,对原有成熟氟碳低表面能涂料配方进行再优化,研究各添加剂对涂料性能的影响。另外,利用不同含量的纳米氧化锌来替代涂料配方中的普通氧化锌制备涂料,通过分析所制备涂层的力学性能、动态性能、电化学阻抗谱(EIS),来进一步研究纳米粉体对涂料性能的影响。
     研究结果表明:通过对钢板及铝合金底材的涂层性能分析,最终优化出了两种氟碳低表面能防污涂料的配比方案。通过优化配比方案与原有成熟方案制备涂层的性能对比可知,钢板涂层的优化配比方案优势体现在磨蚀率与表面粗糙度相对较低;铝板涂层的优化配比方案优势体现在表面接触角略高。随着涂料配方中纳米粉体含量的逐渐增大,涂层的表面形貌产生了明显的凸起褶皱现象。通过动态试验,对不同纳米粉体含量涂层的电化学阻抗谱分析得出:随着涂料中纳米粉体含量的不断提高,涂层的防护性能有所下降;与不含纳米粉体的涂层相比较,阻抗值略高,耐蚀性能有所提高。
Biofouling at the bottom of the Vessels has been plagued people for a long time. Painting low surface energy antifouling coatings is an important way to prevent the biofouling. Based on low surface energy it is difficult for marine fouling organisms to attach. Fluorocarbon coating is a kind of low surface energy antifouling paint. Compared with traditional coatings it has excellent properties, such as long durability, corrosion resistance, chemical resistance, hardness, anti-static and anti-nuclear radiation. In addition, with the introduction of nanotechnology, it will help to improve the coating performances with the further optimization of fluorocarbon low surface energy antifouling coating formulation and study on the influence of nano-powders.
     In this study, with the dynamic simulation of sea water corrosion tester, used to simulate the real service condition in the seawater, and combined testing the mechanical properties of coatings, we studied the coating performance changes over time, analyzed the curve of EIS and researched the influencing factors of antifouling agents Besides, we use different amounts of nano-zinc oxide to replace the paint formulations prepared in the ordinary zinc oxide coating.Through the analysis of various coating performance, wo can further study the properties of nano-powders on the impact of coatings.
     The research result shows that, through the analysis of coating performance, we get two paint formulations finally. By contrast, the advantage of steel optimization plant is reflected in the relatively low erosion rate and surface roughness; and the aluminum's is reflected in the surface contact angle slightly. With the nano coating formulations content increased, the sample surface appears a significant uplift phenomenon. Satisfied by the dynamic test, we know that with the improvement of nano content the coating's protective property decrease, nano-coating has a slightly higher impedance value compared with those without nano-powders, but improves corrosion resistance by analyzing the EIS curve.
引文
[1]冯士笽,李凤歧,李少菁.海洋科学导论.北京:高等教育出版社,1999,6.
    [2]涂湘缃.实用防腐蚀工程施工手册.北京:化学工业出版社,2000,4.
    [3]ZoBell C E & Allen E C. The significance of marine bacteria in the fouling of submerged surfaces. Jour Bact,1953 (29):239-251.
    [4]张洪荣,原培胜.舰船防污损技术的发展.舰船防化,2005(2):7-12.
    [5]Robert F Brady. Journal of Coatings Technology,2000,72 (.900):45-56.
    [6]Robert F Brady. Journal of Protective Coatings and Linings,2000,6:42-46.
    [7]Dive H Hare. Journal of Protective Coatings and linings,2000,6:50-65.
    [8]罗晓亮,船舶防污涂层动态性能研究:(硕士学位论文).大连:大连海事大学,2007,3.
    [9]Coliger CP. Naval Engineers Journal,1992,96 (25):7.
    [10]黄宗国,蔡如星.海洋污损生物及其防除(上册),第一版.北京:海洋出版社,1984,1:1-32.
    [11]Clare. A Natural ways to banish barnacles. New Scientist.
    [12]Home, R A. The structure of water and the chemistry of hydrosphere.Marine Chemistry,1969.
    [13]Townsin R L, etal. Fuel Economy due to Improvement in Ship Hull Surface Condition. In shipbuilding progress,1986,33 (383):127-130.
    [14]李长彦,张桂芳,付洪田.电解海水防污技术的发展及应用.材料开发与应用,1996,11(2):38-43.
    [15]侯纯扬,武杰,等.海水直流冷却水系统金属腐蚀污损生物附着及其对策.海洋技术,2002,21(4):41-45.
    [16]逯艳英,吴建华,等.海洋生物污损的防治.腐蚀与防护,2001,22(12):530-534.
    [17]胡涛.无有机锡新型舰船防污涂料体系的研究(硕士学位论文).大连:大连交通大学,2004.
    [18]张明明,赵文,于世超.我国海洋污损生物的研究概况.水产科学,2008,27(10):546.
    [19]Maureen E Callow, James A Callow, Anthony S FRare, Some new insights into marine biofouling, Paints & coatings, World Super Yacht.
    [20]史航,石建高,王鲁民,等.海葵的附着机理及其在网衣上的防除.江苏农业科技,2006(5):181-184.
    [21]王贤明,王华进,等.无毒低表面能防污涂料.涂料工业,2004,34(1):40-43.
    [22]宇佐美,正博,等.用导电涂膜防治海洋生物附着的技术.涂料技术,1994(1):44-48.
    [23]田军,薛群基,有机硅涂层表面能对海生物附着的影响.海洋学报,1998,20(5):61-64.
    [24]Chen JD, Feng DQ, Yang ZW, etal. Antifouling metabolites from the mangrove plant Ceriops tagal. Molecules,2008,13:21-29.
    [25]Bers AV, D Souza F, Klijinstra JW, etal. Chemical defence inmussels antifouling effect of crude extracts of the periostracum of the blue mussel. Mytilus edulis Biofouling,2006,22: 251-259.
    [26]Guenther J, Walker Smith G, Waren A, etal. Fouling resistant surfaces of tropical sea stars. Biofouling,2007,23:413-118.
    [27]从鲸鱼皮肤的秘密到新型换波舰船用油漆.国际舰船,2003(7):3.
    [28]MESEGUERYEBRAD, Kills, DAM-JOHANSENK.Antifouling technology-past, present and future steps towards efficient and environmentally friendly antifouling coatings. Progress in Organic Coatings,2004,50:75-104.
    [29]周陈亮.舰船防污涂料的历史、现状及未来.中国涂料,1998(6):9-12.
    [30]KATRAN ITSASA, CASTR ITSI CATHARI OS J, PERSOONEG. The effects of a copper-based antifouling paint on mortality and enzmatic activity of a non-targetmarine organism. Marine Pollution Bulletin,2003,46:1491-1494.
    [31]张奇志,陈荣发.无毒船用防污涂料将进入产业化开发.环境导报,2002(2):33.
    [32]陈光宇,沈培康.低表面能驱避型防污涂料及其使用方法:中国专利,1296044A,2001.
    [33]王钧宇.仿生无毒舰船防污涂料及其制法:中国专利,1392208,2003.
    [34]王华进,刘登良,王贤明.无毒硅酸盐防污剂及其制备方法:中国专利,1218818,2001.
    [35]王华进,王贤明,管朝祥,等.硅酸盐复合防污涂料:中国专利,1248599,2003.
    [36]张占平,齐育红,等.船舶防污涂料与防污剂的研究进展.大连水产学院学报,2006,21(2):178.
    [37]何腾云,罗正鸿,等.海洋防污涂料的研究进展.涂料工业,2007,37(5):60-61.
    [38]洪峰,赵中华,桂泰江.仿生防污涂料的发展概况.现代涂料与涂装,2002(5):7-11.
    [39]胡献安,李靖靖.表面活性剂对乳液型防污涂料性能的影响.化学世界,1996,37(12):639-642.
    [40]王华进,王贤明,管朝祥,等.海洋防污涂料的发展.涂料工业,2000,30(3):35-38.
    [41]朱赛芬,徐国耀.常温固化氟涂料的制备、性能及发展.上海化工,2001,23:15-16.
    [42]田军,周兆福,徐锦芬.无毒海洋防污涂料.中国专利,1097447A,1995-01-18.
    [43]朱顺根.含氟表面活性剂.化工生产与技术,1997(3):1-9.
    [44]朱顺根.含氟表面活性剂.化工生产与技术,1997(3):1-9.
    [45]朱顺根.含氟表面活性剂.化工生产与技术,1997(3):1-9.
    [46]D.L.Schmidt,等.自组合睡醒氟聚合物船舶耐污性涂料.有机氟工业,2001(1):44-48.
    [47]濑户口,弘幸原政,等.中国专利,4910252,1999.
    [48]Griffith, Yonehara.美国专利,4910252,1990.
    [49]Shimokawa W, Fukazawa Y. Fluorine-Containing a Crylic Polymer Aqueous Emulsions.日本专利,0517538,1993-01-26.
    [50]Suzuki Y. Cil and Water-repellent fluoropolymer Dispersions with Good Mechanical Stability.日本专利,04164990,1992-06-10.
    [51]Soren Hiil. Seawater-soluble pigments and their potential use in self-polishing antifouling paints:simulation-based screening tool. Progress in Organic Coatings,2002 (45):423-434.
    [52]金晓鸿,叶美琪,胡雪娇,等.船舶防锈漆体系加速实验方法研究(一).涂料技术,1994(1):37-40.
    [53]Iva rentin, Vittorio Romairone, Giuseppe Marcenaro, Giorgio De Carolis. Quick test methods for marine antifouling paints. Progress in Organic Coatings,2001,42:15-19.
    [54]ASTM. Standard test method for subjecting marine antifouling coating to biofouling and fluid shear forces in natural seawater. Designation:4939-89 (Reapproved 1996).
    [55]王俊.无锡防污涂料技术.中国涂料,2005,20(5):16-19.
    [56]徐初琪,金晓鸿,叶章基,等.防污漆涂层磨蚀率方法研究:92-94.
    [57]B T Watermann, B Dadhne, S Sievers etal. Bioassays and selected chemical analysis of biocide-free antifouling coatings. Chemosphere,2005, (60):1530-1541.
    [58]刘红,张占平,等.无毒防污涂料表面底栖硅藻附着评价的实验方法.海洋环境科学,2005,35(3):89-92.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700