中温固体氧化物燃料电池中新型钙态矿阴极材料的制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
固体氧化物燃料电池的阴极性能好坏直接影响到电池的性能,所以开发中低温高性能的阴极材料相当重要。本文研究了双钙态矿材料NdBaCoCuO5+δ(NBCC),GdBaCoCuO5+δ(GBCC)和高透氧性能的BaCo0.7Fe0.2Nb0.1O3-δ(BCFN)与Ce0.85Sm0.15O2-δ(SDC)复合后的性能,研究它们作为中温固体氧化物燃料电池阴极的性能。
     采用EDTA-柠檬酸法合成NBCC阴极材料,用XRD对阴极材料的结构进行研究,发现经过950oC烧结后材料已经形成单相双钙态矿结构。NBCC阴极材料在30-850oC范围内的热膨胀系数为14.68×10-6K-1,与中温电解质的热膨胀系数很接近,在中温固体氧化物燃料电池的工作温度范围内NBCC材料的电导率为126.8-144.6Scm-1,在800oC时NBCC在La0.9Sr0.1Ga0.83Mg0.17O2.85(LSGM)电解质上的极化电阻仅为0.027?cm2,以NBCC为阴极,以LSGM为电解质的单电池在750oC,800oC时最大输出功率密度分别为431.6mW/cm2和594.9mW/cm2。
     BCFN具有很好的透氧性,作为阴极时具有很好的电化学性能,但是该材料的热膨胀系数与中温电解质不太匹配,影响电池的热循环性,为了改善其性能,我们在BCFN中掺入电解质SDC,复合电解质后,阴极材料的热膨胀系数明显降低,而且降低了阴极的极化电阻,当加入30wt%SDC时,复合阴极的极化电阻最小,在800oC时含有30wt%SDC的复合阴极的极化电阻仅为0.0104?cm2,比纯BCFN阴极的极化电阻0.036?cm2小很多,以BCFN-30SDC为阴极的单电池在800oC时的最大输出功率密度为697mWcm-2比以BCFN为阴极的电池输出功率高。所以BCFN与SDC复合后不但能改善阴极与电解质的热匹配性,还能改善阴极的电化学性能。
     我们在GdBaCo2O5+δ(GBCO)中掺入Cu,使其热膨胀系数减小,其热膨胀系数由GBCO的20.1×10-6K-1降到GBCC的14.63×10-6K-1,阴极与电解质的热匹配性得到改善。Cu掺入后晶胞自由体积增大了提高了氧离子的扩散迁移能力,提高了阴极材料的电化学性能。在800oC时GBCC/LSGM的界面极化电阻为0.042?cm2。GBCC阴极的活化能比GBCO的活化能小。以LSGM为电解质的单电池GBCC|LSGM/SDC|Ni0.9Cu0.1-SDC的最大功率密度在800oC为572.7mW/cm2。
The promise of direct and efficient conversion of chemical to electrical energy makes fuel cell development an area of great technological interest. The advantages over traditional power generation systems are numerous. Most prominent is the increased efficiency associated with directly converting chemical energy to electrical energy. Fuel cells are not subject to the Carnot-cycle limitations, and unlike high-efficiency turbines, exhibit their highest efficiency at low loads. Fuel cells do not produce significant quantities of NOx, SOx, or particulate pollutants.so Fuel cells be friendly to environment .Compared to normal batteries, fuel cells can have much higher energy densities and can be recharged more quickly and easily. Finally, fuel cells can be applied in applications that require both low and high power outputs, and they can be modular and portable.
     Solid oxide fuel cell (SOFC) is the fourth generation of fuel cells.compared to other fuel cells ,SOFC have many advantages: first, Conponents of SOFC are all solid state batteries, This avoid electrolyte corrosion and electrolyte loss and other problems that are brought when uses liquid electrolyte;Second,the working of SOFC at high temperatures,so the electrode response has been very rapid, without using precious metal as electrodes, so the battery cost greatly reduced; while the high quality exhaust heat of SOFC can be fully utilized, which can make utilization of energy from the simple 50% to 80%; More there is a wide range of SOFC fuel application, form the H2, CO and other fuels, to natural gas, liquefied gas and other hydrocarbons.These advantages make SOFC as a future star of green energy that have received a great of the world's attention.
     With the practical application of SOFC in further research, reducing the cost of the production and use is key,Effective way to reduce these costs is to make operating temperature of SOFC down to low temperature, but the lowering operating temperature will cause the cathode polarization resistance and electrolyte ohmic resistance increased significantly, resulting in significantly reducing performance of fuel cell. as the electrolyte thin film technology and high ionic conductivity of the electrolyte development,the losses of Ohmic resistance of electrolyte largely eased. so as to overcome the problems that caused by lower operating temperature ,wo ought to enhance the catalytic activity and lower cathode overpotential cathode. Cathode materials have a direct impact on the output performance of the fuel cell, so the development of high-performancecathode material of intermediate-temperature solid oxide fuel cell (IT-SOFC) is very important .the cathode materialof SOFC has not only have high catalytic activity for oxygen reduction, but also have good chemical thermal compatibility with the adjacent materials,and long-term stability. In this paper, electronic - ionic mixed conducting cathode materials and composite cathode materials were studied,researching the structure,thermal resistance and electrochemical properties,etc.of material , validating them as IT-SOFC cathode material is feasible.
     Numerous studies show LnBaCo2O5+δthat is the electronic and ionic mixed conductors have fast oxygen ion diffusion and surface exchange kineticsat at low temperature, so it is research's focus as IT-SOFC cathode materials,However,the short of LnBaCo2O5+δis thermal expansion coefficient much larger than the electrolyte, it will affect heat cycle of SOFC, so we use a larger ionic radius of Cu substitution for Co in NdBaCo2O5+δ.the NdBaCoCuO5+δcathode materials was synthesis via EDTA-citric acid method ,XRD analysis results show that the NdBaCoCuO5+δand NdBaCo2O5+δwith the same double perovskite with an orthorhombic structure.the conductivity of NBCC smaller than the conductivity of NBCO,the reason is the replacement of the smaller Co by the larger ionic radius Cu ,which leading to decline in the tolerance factor,in the crystal symmetry ,then a small polaron binding energy increase, the conductivity activation energy of small polarons increases, causing the conductivity decline. Partial substitution of Cu for Co will partially inhibit the Co3+ spin state changes from low to high spin state,so reducing the thermal expansion coefficient of the cathode material, an increase thermal matching of cathode materials and electrolyte .the polarization resistance of NBCC is only 0.027?cm2 at 800oC ,the NBCC showed a good microstructure. Using NBCC as the cathode, Ni0.9Cu0.1-SDC as anode, LSGM as electrolyte of the electrolyte supported single cell,the maximum output power density of the single cell wee 431.6mW/cm2 and 594.9mW/cm2 at 750oC, 800oC .
     Recently,BaCo0.7Fe0.2Nb0.1O3-δ(BCFN) perovskite oxide showed considerable oxygen permeability and good structural stability, is a good IT-SOFC cathode materials. However BCFN has high thermal expansion coefficient, so we added SDC electrolyte to BCFN cathode to improve the thermal matching. In this paper, BCFN cathode material was synthesized by solid-phase mothod, and then mixed BCFN with SDC by different mass ratio . The results show thatthere is no adverse reaction between BCFN and SDC,this indicated that there are very well chemical compatibility between them .Adding SDC to BCFN reduces the thermal expansion coefficient of the cathode material,improves the thermal compatibility between cathode and electrolyte , and improves the microstructure of the material, extends the length of three-phase interface and improves the electrochemical properties of the material. when the composite containing 30wt % SDC showed the best performance,the interface polarization resistance is 0.0104?cm2, which is much smaller than the interface polarization resistance of pure BCFN cathode (0.036?cm2) . Using Ni0.9Cu0.1-SDC as anode, BCFN-SDC as the cathode, LSGM as electrolyte of the electrolyte supported single cell,maximum power density were 557mWcm-2, 613mWcm-2, 644mWcm-2, 697mWcm-2, 680mWcm- 2 at 800oC. which indicates that BCFN-SDC is a promising IT-SOFC cathode materials.
     Due to GdBaCo2O5+δ(GBCO) rapid oxygen ion diffusion and good surface exchange kinetics at intermediate-temperature ,GBCO was widely studied as IT-SOFC cathode materials , and the results are good, but GBCO has high thermal expansion coefficient, in this paper,the Cu substitution for Co in GdBaCo2O5+δoxide is attempted with the purpose to modify the properties.its structure,thermal expansion coefficient and electrochemical properties were studied. after calcination at 1000oC for 5 hours ,GBCC exhibits a pure orthogonal structure of the double perovskite .After the Cu doping in B-sites,the thermal expansion coefficient decreased obviously,due to Cu substitution partially suppresses the transition of spin state Co3+ ,at 30oC ~ 850oC the thermal expansion coefficient of GBCC is 14.63×10-6K-1,which is much smaller than thethermal expansion coefficient of GBCO(20.1×10-6K-1) ,the TEC of GBCC is very close to the electrolyte.The interface polarization resistance of GBCC / LSGM is 0.042?cm2 at 800oC, so GBCC showed good catalytic cathode. With LSGM electrolyte of the electrolyte supported single cell GBCC | LSGM / SDC | Ni0.9Cu0.1-SDC ,the maximum power density of the cell reach 451.5mW/cm2,572.7mW/cm2 at750oC,800oC,which is comparably higher than the GBCO.
     In This paper ,the basic starting point is to reduce the thermal expansion coefficient and improve the performance of cathode materials, using doping and composite materials to reduce the thermal expansion coefficient of the cathode and improve the cathode performance, get a good result.
引文
[1]衣宝廉.燃料电池----原理·技术·应用[M].北京:化学工业出版社,2003.
    [2]李瑛,王林山.燃料电池[M].北京:冶金工业出版社,2000.
    [3]毛宗强.燃料电池[M].北京:化学工业出版社,2005.
    [4]韩敏芳,彭苏萍.固体氧化物燃料电池材料及制备[M].北京:科学出版社,2004.
    [5]衣宝廉.燃料电池----高效,环境友好的发电方式[M].北京:科学出版社,2000.
    [6]吴辉煌.电化学[M].北京:化学工业出版社,2004.
    [7] Y.J.Leng,S.H.Chan,et al.Performance Evaluation of Anode-Supported Solid Oxide Fuel Cells with Thin Film YSZ Electrolyte[J].International Journal of Hydrogen Energy,2004,29:1025-1033.
    [8] DE SOUZA A,VISCO S J,et al.Reduced-Temperature Solid oxide Fuel Cell Based on YSZ Thin-Film Electrolyte[J].J.Electrochem.soc.,1997,144:35-37.
    [9] J.K.Hong,I.H.oh,et al.Electrochemical Oxidation of Methanol over a Silve Electrode Deposited on Yttria-Stabilized Zirconia Electrolyte[J].Journal of catalysis,1996,163:95-105.
    [10] G.S. Lewis, A. Atkinson, B.C.H. Steele, et al. Effect of Co addition on the lattice parameter, electrical conductivity and sintering of gadolinia-doped ceria[J]. Solid State Ionics, 2002,567:152-153.
    [11] R. Gerhardt, A. S. Nowick. Grain-boundary Effect in Ceria Doped with Trivalent Cations:Ⅰ, Electrical Measurements[J] J. Am. Ceram. Soc., 1986,69:640-646.
    [12] Sameshima S ,Ichikawa T,et al.Thermal and Mechanical Properties of Rare Earth-doped Ceria Ceramics [J].Materials Chemistry and Physics,1999, 61:31-35.
    [13]徐丹.中温固体氧化物燃料电池CeO2基复合电解质材料的制备和性能研究[D].吉林长春:吉林大学物理学院,2008.
    [14] Tastsumi Ishihara,Hideaki Matsuda,et al.Doped LaGaO3 perovskite type oxide as a new oxide ionic conductor[J].J.Am.Chem.Soc.,1994,116: 3801-3803.
    [15] F. Man, J. B. Goodenough, K. Q. Huang. Fuel Cells with DopedLanthanumGallate Electrolyte[J]. J. Power Sources. 1996, 63:47-51 .
    [16] T. Ishihara, T. Shibayma, M. Honda ,et al. Intermediate Temperature Solid Oxide Fuel Cells Using LaGaO3 Electrolyte[J]. J.Electrochem. Soc., 2000,147(4):1332~1337.
    [17] K. Q. Huang, R. Tichy, J. B. Goodenough. Superior Perovskite Oxide-Ion Conductor:Strontium- and Magnesium-Doped LaGaO3:Ⅱ, AC Impedance Spectroscopy[J]. J. Am. Ceram. Soc.,1998,81:2576-2580.
    [18] K. Q. Huang, R. Tichy, J. B. Goodenough. Superior Perovskite Oxide- IonConductor : Strontium- and Magnesium-Doped LaGaO3 :Ⅰ, Phase Relationships and Electrical Properties[J]. J. Am. Ceram. Soc., 1998, 81:2565-2575.
    [19] K. Sasaki, M. Muranaka, A. Suzuki, T. Terai.Synthesis and characterization of LSGM thin film electrolyte by RF magnetron sputtering for LT-SOFCS[J].Solid State Ionics ,2008,179:1268-1272.
    [20] Keqin Huang, and John B. Goodenough.A solid oxide fuel cell based on Sr- and Mg-doped LaGaO3 electrolyte: the role of a rare-earth oxide buffer[J].Journal of Alloys and Compounds,2000,303:454-464.
    [21] Zhang X G,Ohara S,et al.Interface reactions in the NiO-SDC-LSGM system[J].Solid State Inics,2000,133:153-160.
    [22] Dees D W,Claar T D,Zhang X,et al.Conductivity of porous Ni/ZrO2-Y2O3 cermets[J].J Electrochem Soc.,1987,134:2141-2146.
    [23] Nakagawa N,Sagara H,Kato k.Catalytic activity of Ni-YSZ-CeO2 anode for the steam reforming of methane in a direct internal-reforming solid oxide fuel cell[J].Journal of Power Sources,2001,92:88-94.
    [24] Park S,Vohs J M,Gorte R J.Direct oxidation of hydrocarbons in a solid-oxide fuel cell[J].Nature,2000,404:265-267.
    [25] Kim H,Lu C,et al.Cu-Ni cermet anodes for direct oxidation of methane in solid oxide fuel cells[J].J Electrochem Soc.,2002,149:247-250.
    [26]李艳华.Ce1-xSmxO2-δ电解质及NiO/SDC复合阳极的制备及性能研究[D].吉林长春:吉林大学物理学院,2004.
    [27]朱成军.新型钴基钙态矿阴极材料及在中温固体氧化物燃料电池中的应用[D].吉林长春:吉林大学物理学院,2009.
    [28]李淑彦.稀土掺杂BaSrCoFeO3阴极材料高温物性及电化学性能[D].黑龙江哈尔滨:哈尔滨工业大学物理系,2008.
    [29]高建峰.中温固体氧化物燃料电池阴极材料及电机过程研究[D].安徽合肥:中国科技大学材料科学与工程学院,2003.
    [30] Anne C. Co and Viola I. Birss.Mechanistic Analysis of the Oxygen Reduction Reaction at (La,Sr)MnO3 Cathodes in Solid Oxide Fuel Cells[J].J. Phys. Chem. B ,2006, 110:11299-11309.
    [31] Adler S B,Lane J A,Steele B.C.H.Electrode Kinetics of Porous Mixed-Conducting Oxygen Electrode[J].J.Electrochem.soc.,1996,143:3554- 3564.
    [32] Stuart B. Adler.Factors Governing Oxygen Reduction in Solid Oxide Fuel Cell Cathodes?[J].Chem. Rev. ,2004, 104: 4791-4843.
    [33] Gao J.F.,Liu X.Q.,Peng D.K.,et al.Electrochemical behavior of Ln0.6Sr0.4Co0.2Fe0.8O3-δ( Ln=Ce,Gd,Sm,Dy ) materials used as cathode of IT-SOFC[J].Catal Taday,2003,82:207-211.
    [34] Hayashi H.,Inaba H.,et al.Structural consideration on the ionic conductivity of perovskite-type oxides[J].Solid State Ionics,1999,122:1-15.
    [35] Endo A.,Ihara M.,et al.Development of solid oxide fuel cells that operated at 500oC[J].J.Electrochem.Soc.,1999,146:1273-1278.
    [36] Petrov A.N.,Kononchuk O.F.,et al.Crystal structure,electrical and magnetic properties of La1-xSrxCoO3-y[J].Solid State Ionics,1995,80:189-199.
    [37] Ohbayashi H.,Kudo T.,Gejo T.,Grystallographic,Electric and Thermochemical Properties of the Perovskite-Type Ln1-xSrxCoO3 (Ln:Lanthanoid Element) [J].Jpn.J.Appl.Phys.,1974,13:1-7.
    [38] Rossignol C.,Ralph J. M.,et al.Ln1-xSrxCoO3(Ln=Gd,Pr) as a cathode for intermermediate-temperature solid oxide fuel cells[J].Solid State Ionics,2004, 175:59-61.
    [39] H.Y.Tu,Y.Takeda,et al.Ln1-xSrxCoO3(Ln=Sm,Dy) for the Electrode of Solid fuel cells[J].Solid State Ionics,1997,100:283-288.
    [40] Teraoka Y,Zhang H.M,Okamoto K,et al,Mixed ionic-electronic conductivity Of Lal-XSrxCol-yFeyO3-δPerovskite-tytpe oxides[J].Mater.Res.Bull , 1988 ,23:51-58.
    [41] K.T.Lee,A.Manthiram,Effect of cation doping on the physical properties and electrochemical performance of Nd0.6Sr0.4Co0.8M0.2O3-δ(M=Ti,Cr,Mn,Fe,Co,and Cu) cathode[J].Solid State Ionics,2007,178:995-1000.
    [42]V.Dusastre,J.A.Kilner.Optimisation of Composite Cathodes for Intermediate Temperature SOFC Applications [J].Solid State Ionics, 1999,126:163-174.
    [43] Zongping Shao & Sossina M. Haile.A high-performance cathode for the next generation of solid-oxide fuel cells [J]. Nature. 2004, 431: 170-173.
    [44]Zongping Shao, Sossina M. Haile, Jeongmin Ahn,et al.A thermally self-sustained microsolid-oxide fuel-cell stack with high power density[J].Nature, 2005,435:795-798.
    [45] Zongping Shao, Guoxing Xiong,et al.Ba effect in doped Sr(Co0.8Fe0.2)O3-xon the phase structure and oxygen permeation properties of the dense ceramic Membranes[J].Separation and Purification Technology,2001,25:419–429.
    [46] Aiyu Yan, Min Yang,et al.Investigation of Ba1?xSrxCo0.8Fe0.2O3?δas cathodes for low-temperature solid oxide fuel cells both in the absence and presence of CO2 [J].Journal of Power Sources,2008,66:64-71.
    [47] Hailei Zhao,Wei Shen,et al.Preparation and properties of BaxSr1?xCoyFe1?yO3?δcathode material for intermediate temperature solid oxide fuel cells[J].Journal of Power Sources ,2008,182: 503–509.
    [48]马文广.中温固体氧化物燃料电池新型阴极材料的制备及性能研究[D].吉林长春:吉林大学物理学院,2008.
    [49] Chengjun Zhu, Xiaomei Liu,et al.Electrochemical performance of Pr0.7Sr0.3Co0.9 Cu0.1O3-Ce0.8Sm0.2O1.9 composite cathodes in intermediate- Temperature solid oxide fuel cells[J].Journal of Power Sources ,2008,185: 212–216.
    [50] LI S Y,LüZ,WEi B.et al.Performance of Ba0.5Sr0.5Co0.8Fe0.2O3-δ-Sm0.2Ce0.8O1.9Composite Cathode Materials for IT-SOFC [J].J.Alloys Compd.,2008, 448:116-121.
    [51] L.A.Chick,L,R.Pederson,et al.Glycine-nitrate combustion synthesis of oxide ceramic powders [J].Materials Letters,1990,10:6-12.
    [52] Stevenson J W,Armstrong T R,McCready D E,et al.Processing and ElectricalProperties of Alkaline Earth-Doped Lanthanum Gallate[J]. J.Electrochem Soc., 1997,144:3613-3620.
    [53] Yan J W,Dong Y L,Yu C Y,et al.Solid Oxide Fuel CellsⅦ.The Electrochemical Society[J].INC.,2001,358-367.
    [54] Futamata M,A computer-controlled measurement system for electrical conductivity using the van der Pauw method at various temperatures [J].Measur.Sci.Technol.,1992,3:919-921.
    [55] MAIGNAN A,MARTIN C,PELLOQUIN D,et al.Structural and magnetic studiesof ordered oxygen-deficient perovskites LnBaCo2O5+δclosely related the“112”structure [J].Journal of Solid State Chemistry,1999,142:247-260.
    [56] A.A.Tasking,A.N.Lavrov,Y.Ando.Achieving fast oxygen diffusion in Perovskites by cation ordering[J].Appl.Phys.Lett.,2005,86:091910.
    [57] G. Kim, S. Wang, A. J. Jacobson.Oxygen exchange kinetics of epitaxial PrBaCo2O5+δthin films[J].APPLIED PHYSICS LETTERS,2006,88:1-3.
    [58] A. Tarancón, J. Pe?a-Martínez.Stability, chemical compatibility and electrochemical performance of GdBaCo2O5+x layered perovskite as a cathode for intermediate temperature solid oxide fuel cells[J].Solid State Ionics ,2008,179:2372–2378.
    [59] Chengjun Zhu, Xiaomei Liu,et al.Electrochemical performance of PrBaCo2O5+x layered perovskite as an intermediate-temperature solid oxide fuel cell cathode[J].Journal of Power Sources 2008,185:193–196.
    [60] Ling Zhao, Beibei He,et al.Characterization and evaluation of NdBaCo2O5+δcathode for proton-conducting solid oxide fuel cells [J].International journal of hydrogen energy ,2010,35:753-756.
    [61] Haitao Gu, Han Chen,et al.Oxygen reduction mechanism of NdBaCo2O5+dcathode for intermediate-temperature solid oxide fuel cells under cathodicpolarization[J].International journal of hydrogen energy,2009 , 34:2416- 2420.
    [62]周青军.双钙态矿结构固体氧化物燃料电池阴极材料的性能[D].吉林长春:吉林大学物理学院,2009.
    [63] Chengjun Zhu, Xiaomei Liu,et al.Preparation and Performance of Pr0.7Sr0.3Co1-yCuyO3-δas Cathode Material of IT-SOFCs [J].Solid State Ionics,2008, 179:1470-1473.
    [64] J. Pe?a-Martínez1, A. Tarancón,et al.Evaluation of GdBaCo2O5 +d as Cathode Material for Doped Lanthanum Gallate Electrolyte IT-SOFCs[J].FUEL CELLS,2008,5: 351–359.
    [65] Yunfei Cheng,Hailei zhao,et al.Investigation of Ba fully occupied A-site BaCo0.7Fe0.3-xNbxO3-δperovskite stabilized by low concentration of Nb for oxygen permeation membrane[J].Journal of Membrane Science, 2008,322:484-490.
    [66] Chengjun Zhu, Xiaomei Liu.Novel BaCo0.7Fe0.3- yNbyO3-δ(y = 0–0.12) as a cathode for intermediate temperature solid oxide fuel cell [J].Electrochemistry Communications,2009,11:958-961.
    [67]李春宏,仇卫华等.低热固相合成BaCo0.7Fe0.2Nb0.1O3-δ.第14届全国固态离子学学术会议论文摘要集[C]哈尔滨,2008,7月18-23号.A64.
    [68] A. Tarancón , J. Pe?a-Martínez ,et al.Stability, chemical compatibility and electrochemical performance of GdBaCo2O5+x layered perovskite as a cathode for intermediate temperature solid oxide fuel cells[J].Solid State Ionics ,2008,179: 2372–2378. 69] Aimin Chang , Stephen J. Skinner , John A. Kilner.Electrical properties of GdBaCo2O5+x for ITSOFC applications[J].Solid State Ionics ,2006,177: 2009–2011.
    [70] N. Li, Z. Lu, B. Wei, et al.Characterization of GdBaCo2O5+δcathode for IT-SOFCs[J]. J. Alloys Comp. 2008,454: 274-279.
    [71] Hanping Ding, Xingjian Xue.Layered perovskite GdBaCoFeO5+x as cathode forintermediate-temperature solid oxide fuel cells[J].Jour-nal of Hydrogen Energy, 2010, 35: 4316-4319.
    [72] Bo Wei, Zhe Lü, Dechang Jia. et al.Thermal expansion and electrochemical properties of Ni-doped GdBaCo2O5+δdouble-perovskite type oxides[J].International Journalof Hydrogen Energy,2010,35:3775-3782.
    [73] Seung Hwan Jo , P. Muralidharan , Do Kyung Kim.Enhancement of electrochemical performance and thermal compatibility of GdBaCo2/3Fe2/3Cu2/3O5+d cathode on Ce1.9Gd0.1O1.95 electrolyte for IT-SOFCs[J].Electrochemistry Communications ,2009, 11: 2085–2088.
    [74] J. Pe?a-Martínez,A.Tarancon,et al.Evaluation of GdBaCo2O5+δas Cathode Material for Doped Lanthanum Gallate Electrolyte IT-SOFCs [J].Fuel Cells,2008,5:351-359.
    [75] Albert Taranco′n, Stephen J. Skinner,et al.Layered perovskites as promising cathodes for intermediate temperature solid oxide fuel cells [J].J.Mater.Chem.,2007,17:3175-3181.
    [76]A.Tarancon,A.Morata.G.,G.Dezanneau,et al.GdBaCo2O5+x layered perovskite as an intermediate temperature solid oxide fuel cell cathode [J].Journal of Power Sources ,2007,174: 255–263.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700