有机硅改性聚氨酯合成革涂层剂的合成和性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
有机硅由于其独特的结构而具有表面张力低、耐氧化、热稳定和生物相容等一系列优异性能,但存在力学强度低、附着力差等缺点。聚氨酯具有良好的物理和机械性能,但热稳定性较差。通过改性手段将有机硅与聚氨酯两者的优异性能结合起来,既可以克服有机硅机械性能差的缺点,又可以弥补聚氨酯耐候性差的不足,具有很好的发展前景。
     合成革是模仿天然皮革的物理结构和实用性能,并做为其部分代用材料的塑料制品。随着环境保护的发展,目前已替代天然皮革应用于服装、皮包、沙发等方面。涂饰可有效提高合成革的物理-机械性能、增加合成革的花样、色泽,改善合成革的表面性能。
     本论文以异佛尔酮二异氰酸酯(IPDI)、聚氧化丙烯二醇(PPG)、端羟基聚二甲基硅氧烷(DHPDMS、1,4-丁二醇(BDO)以及三羟甲基丙烷(TMP)为主要原料,合成了一系列溶剂型有机硅改性聚氨酯(Si-PU)嵌段聚合物。红外表征表明有机硅链段已经嵌入到聚氨酯大分子链段中。考察了反应条件对反应以及Si-PU溶液性能的影响,结果表明,反应的最佳温度为65℃,以乙酸丁酯和丁酮做混合溶剂,催化剂用量为反应物总质量的0.54%。研究了物料配比对Si-PU溶液以及Si-PU膜的性能的影响。结果表明,有机硅的引入(在Si-PU中的质量百分比小于16%时)没有明显降低膜的机械性能;交联剂含量达到7%时Si-PU膜的耐溶剂性大为提高,机械性能变化不大;当总n(OH)/n(NCO)比值为1.05,预聚n(OH)/n(NCO)比值为0.25时,Si-PU溶液能够保持较小的粘度和和较佳的储存稳定性;有机硅的引入使得Si-PU的热稳定性得到提高。
     将Si-PU溶液应用到合成革上,探讨了有机硅的质量分数对涂层的三防性能和与革面附着力的影响。结果表明,有机硅的含量由0%上升到10%时,涂层表面的水接触角由76.8°升到102.5°,耐油级别由2级升到5级(参照AATCC118-2002),有机硅含量超过10%时接触角和耐油级别均稳定不变,说明有机硅的引入使涂层获得了拒水拒油的表面效果;当DHPDMS的含量在10%-16%时,涂层与革面的附着力可以达到2级。考察了整理工艺对涂层性能的影响,结论是较佳的整理工艺为:稀释剂为乙酸丁酯,稀释倍数为2.0-2.5,整理剂用量为7 g/m2左右,固化温度为150℃,固化时间为2.5h,固化方式为热风烘燥。
Silicone possesses excellent properties such as low surface energy, thermal stability, oxidation resistance and biocompatibility. But the mechanical and adhesive performance is poor. However, polyurethane has superior mechanical properties but not-so-good thermal stability. Silicone modified polyurethane(Si-PU)combines the advantages of both, overcome the disadvantage. It’s a promising polymeric material.
     Synthetic leather is a kind of plastic product, which imitates the physical structure and applied properties of leather and has partially taken place of the leather materials. As the development of environmental protecting, now synthetic leather has been widely used for clothing, portfolio, sofa etc. Coating can effectively improve synthetic leather’s physical and mechanical performances, color and luster of the surface properties.
     Solvent type Silicone Modified Polyurethane (Si-PU) block polymers were synthesized with isophorone diisocyanate (IPDI), Polyoxypropyleneglycol (PPG), hydroxy-terminated poly-dimethylsiloxane(DHPDMS), 14-Butanediol(BDO), trimethylolpropane(TMP). The FT-IR spectroscopy showed that the silicone chain segment was incorporated into PU macromolecule. The influence of reaction conditions on reaction and Si-PU solvent was studied. Results showed that the optimal temperature is 65℃, the solvent is mixed MEK and BA, the quantity of catalyst is about 0.54wt% of all reactants. The influence of the ratio of the materials on the properties of Si-PU solution and film was explored.The results showed that Si-PU film possess similar mechanical properties with PU film when the content of poly-dimethylsiloxane (PDMS) segment is below 16wt%. It had good solvent resistance without obvious loss of mechanical property when the content of TMP is 7wt%. It had relatively small viscosity and better storage stability and similar mechanical property with PU film when the ratio of n(OH)/n(NCO) in all is about 1.05 and the ratio of n(OH)/n(NCO) is about 0.25 in the prepolymerization stage. The thermal stability is improved.
     Si-PU solution was applied on synthetic leather as coating agnet. The influence of the mass fraction of PDMS on the property and adhesion of Si-PU coating was explored. The results showed that the water contact angle of the coating surface was increased from 66o to 102o when the mass fraction of PDMS was increased from 0 to 10wt% without obvious loss of mechanical property. Meanwhile, the oil resistance level is increased from grade 2 to grade 5 (AATCC118-2002). The water and oil resistance of coating can be kept when the content of PDMS is over 10wt%. Adhesion level can be kept on grade 2 when the content of PDMS is 10-16wt%. The study on the influence of finishing process showed that the optimum diluent is BA, dilution ratio is 2.0-2.5, the usage of finishing agent is 7g/m2, cure temperature is 150℃, cure time is 2.5 hours, cure method is hot blast.
引文
[1]Hu Y. S., Tao Y., Hu C. P.. Polyurethaneurea/vinyl polymer hybrid aqueous dispersions based on renewable materials[J].Biomacromolecules,2001,2(1):80-84.
    [2]Marcia C. D., Fernanda M. B.. Waterborne anionic polyurethanes and poly(urethane- urea)s [J]:influence of the chain extender on mechanical and adhesive properties.Polymer Testing,2000,19(8):939-952.
    [3]傅明源,孙酣经.聚氨酯弹性体及其应用[M]第三版.北京:化学工业出版社,2006:3.
    [4]叶青萱.聚氨酯合成常用原料[J].聚氨酯,2007(59):88-94.
    [5]厄特尔G..聚氨酯手册[M].阎家宾等译.中国石化出版社,1992:53.
    [6]李绍雄,刘益军.聚氨酯树脂及其应用[M].北京:化学工业出版社,2002:12-16.
    [7]冯圣玉,张洁.有机硅高分子及其应用[M].北京:化学工业出版社,2004:1.
    [8]黄世强,孙争光,李盛彪.新型有机硅高分子材料[M].北京:化学工业出版社,2004:3.
    [9]Janusz K..Polysiloxaneurethanes: new polymers for potential coating applications [J].Progress in Organic Coating, 1996(27):123-131.
    [10]Speckhard T. A.,Cooper S. L..Ultimate tensile properties of segmented polyurethane elastomers:facters leading to reduced properties for polyurethanes based on nonpolar soft segments [J]. Rubber Chem Tech,1986(59):405.
    [11]日本高分子学会编.朱洪法等译.塑料合金[M].北京:中国轻工业出版社,1992:37.
    [12]Chen L.,Yu X. H.,Yang C. Z..Novel sulfonatePolysiloxane polyurea-urethane ionomer. China[J]. PolymSci,1996,14(4):295.
    [13]顾东民,杨昌正,夏小仙,等.聚硅氧烷聚脲嵌段共聚物及双离子型聚硅氨酯离聚体的合成及其形态研究[J].南京大学学报(自然科学版),1991,27(1):85.
    [14]王文忠,张晨,陈剑华.有机硅钙性聚氨酯的研究进展[J].有机硅材料,2001,15(5):33-37.
    [15]刘玉龙,郑庆慧,张留成,等.有机硅-聚氨酯嵌段共聚物的研究[J].高分子材料科学与工程,1990(6):30.
    [16]陈雷,朱育平,余学海,等.聚硅氧烷-聚脲嵌段共聚物形态结结构的研究[J].高分子材料科学与工程,1992 (1):45-50.
    [17]Yu X. H.,Nagarajan M. R.,Gibson P. E.,et al. Poly(chloropropylmethyl-dimethylsiloxane) -polyurethane elastomers: synthesis and properties of segmented copolymers and relatedzwitterionomers [J].J.Polym.Sci.Part B: PolymPhys,1986(24):2681-2702.
    [18]杨颖霞,李永德.有机硅在聚氨酯中的应用[J].聚氨酯工业,2002,17(3):31-33.
    [19]田军,薛群基.端羟基聚二甲基硅氧烷/蓖麻油改性聚氨酯嵌段共聚物的研究[J].高分子材料科学与工程,1998(6):38-40.
    [20]吴小峰,朱传方,张丽,等.二羟基硅油改性水性聚氨酯树脂的合成及性能[J].应用化学. 2007,24(9):1024-1026.
    [21]宋海香,罗运军,罗巨涛,等.氨基硅油微乳液改性水性聚氨酯的合成和性能[J].上海交通大学学报.2006,25(3):319-323.
    [22]姚明,李伯耿,朱春凤.烷羟基硅油改性水性聚氨酯的制备[J].科技通报,2007,23(4): 574-577.
    [23]冯林林,张兴元,戴家兵,等.有机硅改性聚氨酯的合成及其表面性能[J].高分子材料科学与工程,2007,23(3):47-50.
    [24]陈雷,余学海.聚氰丙基甲基硅氧烷-聚脲嵌段共聚物的结构与性能[J].功能高分子学报, 1991,4(1):19.
    [25]刘俊峰,胡友慧.聚氨酯改性有机硅体系性能的研究[J].高分子材料科学与工程,2000, 16(2):106.
    [26]黄勤,张剑秋,封玉凤.高含量有机硅改性水性聚氨酯乳液的制备及性能研究[J].涂料工业,2006,36(9):26-29.
    [27]易运红,张力,吕广镛,等.有机硅改性水性阳离子聚氨酯的合成与性能研究[J].中国涂料2006,21( 8): 29-32.
    [28]秦玉军,全一武,张俊生,等.氨基硅油改性丁羟聚氨酯的合成与性能[J].南京大学学报(自然科学),2002,8(2):205-210.
    [29]陈精华,刘伟区,宣宜宁,等.有机硅改性聚氨酯弹性体材料的研究[J].聚氨酯工业,2004, 19(1):12-14.
    [30]陈精华,刘伟区,宣宜宁,等.氨乙基氨丙基聚二甲基硅氧烷改性水性聚氨酯的研究[J]功能高分子学报,2004,17(1):92-96.
    [31]周成,张兴元,戴家兵,等.硅氧烷改性水性聚氨酯的制备及性能[J].化学物理学报,2005, 18(3):448-452.
    [32]侯孟华,刘伟区,陈精华.有机硅改性水性聚氨酯乳液的研制[J].聚氨酯工业,2005,20(1): 30-33.
    [33]万士明,余学海,朱永.聚脲/聚硅氧烷嵌段共聚物的合成及性能[J].高分子材料科学与工程,1988(5):23-30.
    [34]Mikio K., Masaaki K., Yoshio I.. Synthesis and properties of new multiblock copolymers based on poly(dimethylsiloxane) and N-phenylated polyureas[J]. Macro-molecules, 1990(23):1244-1248.
    [35]Yilgor I., Riffle J.S., Wilkes G., et al.Siloxane-urea segmented copolymers:2.Investigation of mechanical behavior[J].Polymer Bulletin,1982(8):542-550.
    [36]Yu X. H., Nagarajan M. R., Grasel T. G., et al. Poly-dimethylsiloxane-polyurethane elastomers:Synthesis and properties of segmented copolymers and related zwitterionomer[J].J. Polym.Sci.Polym.Phys.,1985,23(2):319-2338.
    [37]Fan Q. L.,Fang J. L.,Chen Q. M.,et al. Synthesis and properties of polyurethane modified with aminoethy-laminopropyl poly(dimethylsiloxane)[J]. Polym.Sci.,1999,74:2552-2558.
    [38]沈一丁,张彩霞.阳离子有机硅聚氨酯自交联乳液的制备和应用[J].中国皮革,2000,29(17): 13-17.
    [39]潘明旺,王家喜,张留成,等.端活性有机硅的合成及其嵌段水溶性聚氨酯的研究[J].河北工业大学学报,1999,28(5):26-30.
    [40]李莉,程先德,徐克勤.有机硅对聚氨酯性能的影响[J].皮革化工,1997(2):11-14.
    [41]卿宁,张晓镭,俞从正.有机硅共聚改性水性聚氨酯PU-SI的制备及性能研究[J].中国皮革, 2001,30(17):10-14.
    [42]田军,薛群基.聚氨酯改性有机硅含氟涂层表面能的研究[J].高分子材料与工程,1999,15 (4):164.
    [43]余海斌,张邦华,宋谋道,等.聚二甲基硅氧烷聚氨酯共混体系的增溶作用[J].高分子材料科学与工程,1996,12(1):54-58.
    [44]余海斌,张邦华,宋谋道,等.刚性无机粒子对PDMS/PU共混体系增强改性的研究[J].南开大学学报(自然科学版),1996,29(2):66-71.
    [45]王文荣,刘伟区,苏倩倩.蒙脱土与有机硅共改性聚氨酯型密封胶的研究[J].聚氨酯工业, 2007,22(5):13-17.
    [46]叶敏.医用聚氨酯[J].化工新材料,1992(8):4-7.
    [47]刘益军,王保志.聚氨酯弹性体在医疗制品上的应用[J].化工新型材料,1999,27(9):7-10.
    [48]王武生,曾俊,阮德礼,等.纳米级水基聚氨酯微凝胶环氧硅氧烷交联成膜机理[J].高分子材料科学与工程,2001,17(3):102.
    [49] Zhao P.,Sun Y. H.,Ma H..Silicon modofied polyurethane coating[P].CN123127.1999.
    [50]张晨.双组分室温固化耐热聚氨酯浇注胶的研究[D].济南:山东大学新材料研究所, 2001.38.
    [51]李彦涛,杨淑兰,刘京华,等.有机硅改性聚氨酯海绵垫衬的研制[J].河北省科学院学报, 2000,17(2):51.
    [52]王炜,王伟锋,陈水林,等.聚醚-聚硅氧烷嵌段共混聚氨酯弹性体的研究[J].中国胶粘剂, 2003,12(2):8-11.
    [53]马仁杰,王自新,魏克超,等.有机硅改性密封剂研究进展[J].化学推进剂与高分子材料, 2005,3(1):22-27.
    [54]夏磊,陈立班,杨淑英.硅改性密封剂的进展[J].广州化学,2000,25(2):59-64.
    [55]张骥红,陈锋.聚氨酯改性材料合成方法及应用[J].化学推进剂与高分子材料,2003,1(6): 19-22.
    [56]何向东,贾叙东,丁霞,等.主链型液晶聚硅氧烷聚氨酯的合成及性质[J].高分子学报,1996 (3):304.
    [57]Tada H.,Miyata K.,SaitoY..Dimethyl siloxane-coated Microparticles with good dispersion stability in nonaqueous solvens[P].日本,特开平02218723.1989.
    [58]久保元伸.含氟防水防油剂[J].印染,1995(12):37.
    [59]陆妙婷.织物拒水拒油整理综述[J].上海丝绸,2001(3):16-17.
    [60]郭正伟,田存桂.超细纤维织物防水防油整理工艺探讨[J].印染,2000(5):34-35.
    [61]杜文琴.荷叶效应在拒水自洁织物上的应用[J]印染,2001(9):36-37.
    [62]李群.纳米氧化锌的制备与纳米功能纺织品的开发[A].2003“中大洁润丝杯”全国中青年染整工作者论坛论文集[C].2003.
    [63]安德森R. J.,本戴尔D. J.,古兰德沃特P. W..有机波谱分析[M].唐川江译.北京:中国纺织出版社,2007.73.
    [64]琼斯R.,安藤亘,乔努斯基J..含硅聚合物-合成与应用[M].高春蓉等译.北京:化学工业出版社,2008:15.
    [65]Watermann B. T., Daehne B., Sievers S.,et al. Bioassays and selected chemical analysis of biocide-free antifouling coatings[J].Chemosphere,2005(60):1530-1541.
    [66]Luo J.,Wang X. H., Li J..Conductive hybrid film from polyaniline and polyurethane-silica[J].Polymer,2007(48):4368-4374.
    [67]迈尔斯D..表面、界面和胶体-原理及应用[M].第二版.吴大诚等译.北京:化学工业出版社,2005:9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700