用户名: 密码: 验证码:
含分层损伤层合板屈曲和分层行为的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
分层损伤是复合材料层合板结构主要的损伤形式,含分层损伤层合板在外载荷的作用下可能引发屈曲和分层扩展,导致层合结构在远低于设计值时发生结构破坏,这限制了复合材料结构在飞机主承力结构上的应用。对含分层损伤复合材料层合板结构的屈曲和分层扩展行为问题进行系统的研究具有十分重要的工程意义。
     首先通过复合材料层合板制备工艺的优化、分层缺陷定位板和封闭模具的设计制备出了符合要求的含分层损伤复合材料层合板。
     其次,通过试验和有限元模拟的手段对含分层损伤层合板的屈曲行为进行了研究,发现:在对复合材料层合结构的屈曲和分层特性进行研究时,采用层间特性较好的复合材料体单元,并利用无厚度的界面单元来模拟界面相的存在,可以使模拟结果和试验值有较好的吻合度。分层损伤尺寸越大,层合板的临界屈曲载荷越小。还得到了含分层损伤层合板屈曲模式:随着载荷的增加,层合板首先发生子板的变形,也即局部屈曲开始;当载荷达到整体屈曲的临界载荷时,主板位移显著增加,此时层合板开始发生整体屈曲,最终导致层合板的屈曲破坏。含不同形状分层层合板的屈曲模式是相同的;不同形状但面积相同分层层合板的屈曲临界载荷值仅存在5%左右的差别。
     通过对含分层损伤层合板分层扩展行为的研究发现:分层损伤尺寸越大,层合板的分层扩展临界载荷越小。但分层扩展方向不受分层尺寸的影响;分层扩展形状都是按照和初始分层相似的形状进行扩展。分层损伤形状对复合材料层合板分层扩展方向没有影响;不同形状但面积相同分层层合板的屈曲临界载荷值仅存在4%左右的差别,说明分层扩展临界载荷值对分层形状并不敏感。
     探讨了分层扩展与屈曲模式之间的关系:在压缩载荷下,含分层损伤层合板首先达到局部屈曲载荷发生局部屈曲,此时分层还没有发生扩展。分层扩展发生在层合板整体屈曲之前,分层扩展临界载荷略小于整体屈曲载荷,扩展方向为垂直载荷方向。当分层前缘扩展至层合板边缘时,分层扩展速度突然加快,迅速地发生贯穿,此时层合板发生失稳扩展,载荷开始下降,分层沿载荷方向以很快的速度扩展并最终导致层合板的屈曲破坏。
     通过上述研究为复合材料层合结构设计提供一定的理论依据,为复合材料在航天航空领域的应用提供了基础支持。
It is well known that composite laminates with delamination damage is common and can cause buckling and delaminnation growth under the load,then the compressive strength of laminates will drastically reduce.This limits the application of composite laminated structures in aeronautic critical structures.So the buckling behavior and delamination growth of composite laminates containing with delamination damage must be studied.
     At first, through the optimization of the composite laminates process, design the delamination orientation plate and close mold,the laminates containing delamination have been successfully prepared. Then the buckling behavior and delamination growth of composite laminates containing different type of delamination under axial compressive load has been investigated by experiment and numerical analysis,the relationship between buckling mode and delamination growth is discussed.
     Then the buckling behavior and delamination growth of composite laminates containing different type of delamination under axial compressive load has been investigated by experiment and numerical analysis. The result shows: Using the volume cell which has good interfacial ability and interfacial cell with non-thickness simulates the buckling behavior shows good agreement with the experiment. The buckling critical load of the specimen decline as the increasing of the delaminated area. The buckling mode of composite laminates with delamination is:at first the thinner laminate starts to buckle indicates the local buckling begin. When the thinner laminate reachs the maximum out-of-plane displacement, the thicker starts to buckle, it means the global bucking of the laminates begin. The delamination shape does not affect the buckling mode. There is only 5% in the buckling critical load of laminates with different shape but the same area delamination.
     The delamination growth of composite laminates containing different type of delamination under axial compressive load has been study: The delamination critical load of the specimen decline as the increasing of the delaminated area. The delaminated area and shape will not affect the delaminated direction and delaminated rate. The delaminated shape is similar with the initial delaminated shape. There is only 4% in the delamination critical load of laminates with different shape but the same area delamination
     There is important relationship between delamination growth and buckling mode: when the local buckling of the laminates begins, the delamination does not spread; the delamination growth begins before the global buckling behavior. The delamination spreads along perpendicular direction of load. When the delamination spreads to the edge of the laminates, the velocity of delamination growth speed up and the direction of delamination spread turn to the load direction, the laminates soon broken.
     The investigations in this paper will have important improvements for composites to be more widely used in aeronautic fields.
引文
1.黄伯云,肖鹏,陈康华.复合材料研究新进展.金属世界. 2007,2:46~48
    2.杜善义.先进复合材料与航空航天.复合材料学报. 2007,24(1):1~12
    3.钱伯章.碳纤维应用的最新进展.国外塑料. 2009,27(10):58~62
    4.任浩雷.低速冲击损伤复合材料层压板在压缩载荷下破坏过程和剩余强度模拟.西北工业大学硕士学位论文. 2001:1
    5.樊玉. Ti/CF/PPEK复合层合板的制备与性能研究.哈尔滨工业大学硕士学位论文. 2008:1
    6.储建恒.含分层损伤复合材料结构逐渐损伤分析研究.南京航天航空大学硕士论文. 2007:1
    7.许良梁.复合材料层合板剪切屈曲及后屈曲行为研究.西北工业大学硕士学位论文. 2006:1~2
    8.李顺林,王兴业.复合材料结构设计基础.武汉理工大学出版社, 1993:146
    9. R. Aniello, P. Elisa. Modeling Damage Propagation in Composite Plates with Embedded Delamination under Compressive Load. Journal of Composite Materials. 2008,42:1309~1334
    10.齐红宇.复合材料及发动机机匣的屈曲与疲劳研究.南京航天航空大学硕士论文. 2001:2~3
    11.郭兆璞,陈浩然.含分层损伤复合材料层合板的屈曲特性研究.玻璃钢/复合材料. 1999,2:3~5
    12. Y. J. Lee, C. H. Lee, W. S. Fu. Study on the Compressive Strength of Laminated Composite with Through-the-width Delamination. Composite Structures. 1998 (41):229~241
    13. S. F. Hwang, G. H. Liu. Buckling Behavior of Composite Laminates with Multiple Delaminations under Uniaxial Compression. Composite Structures. 2001(53): 235~243
    14. J. R. Reeder, K. Song, B. P. Chunchu. Postbuckling and Growth of Delaminations in Composite Plates Subjected to Axial Compression. 43rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Con. 2002:1~10
    15.许良梁,矫桂琼,卢智先.含分层复合材料层合板剪切屈曲的实验研究.机械强度. 2007,29(4):574~578
    16.卢智先,矫桂琼,王平安.含分层损伤的复合材料层合板压缩力学行为的实验研究.第十四届全国复合材料学术会议. 2006:1187~1190
    17. Z. Aslana, M. Sahin. Buckling Behavior and Compressive Failure of Composite Laminates Containing Multiple Large Delaminations. Composite Structures. 2008:1~9
    18. Y. Pekbey, O. Sayman. A Numerical and Experimental Investigation of Critical Buckling Load of Rectangular Laminated Composite Plates with Strip Delamination. Journal of Reinforced Plastics and Composites. 2006,25:685~697
    19. H. Suemasu, T. Irie, T. Ishikawa. Buckling and Post-buckling Behavior if Composite Plates Containing Multiple Delaminations. Journal of Composite Materials. 2009, (43): 191~202
    20.张凤鹏.纤维增强层合复合材料分层损伤行为的研究.东北大学博士论文. 2000: 6
    21. H. Shunfa, L. Guihuann. Buckling Behavior of Composite Laminates with Multiple Delamination under Uniaxial Compression. Computers & Structures. 2001, 53: 235~243
    22. G. Alfano, M. A. Crisfield. Finite Element Interface Models for the Delamination Analysis of Laminated Composites-Mechanical and Computational Issues. International Journal for Numerical Methods in Engineering. 2001, 50: 1701~1736
    23. J. D. Whitcomb. Three Dimensional Analysis of a Postbuckled Embeded Delamination. JCM. 1989, 23(9): 862~889
    24. J. D. Whitcomb. Analysis of a Laminate with a Postbuckled Embeded Delamination Including Contact Effects. JCM. 1992, 26 (10): 1523~1535
    25. J. Klug, X. X. Wu, C. T. Sun. Effcient Modeling of Postbuckling Delamination Growth in Composite Laminates Using Plate Elements. IAAJ. 1996,34(1):178~184
    26. H. J. Kim. Postbuckling Analysis of Composite Lainates with a Delamination. Comp& Struc. 1997, 62(6): 975~983
    27.李道奎,周建平,雷勇军.含内埋圆形或椭圆形脱层复合材料层合板的屈曲分析.固体力学学报. 2003,24(4):410~418
    28.孙先念,陈浩然,陈绍杰.含分层损伤复合材料层合板前后屈曲行为研究.航空学报. 1999,20(3):224~229
    29. S. Maison, D. G. Degeorges. Behavior of a Local Delamination under Compressive Load. Proc of the 17eme Congres, I.C.A.S.,Stockholm, 1990:501~507
    30. G. J. Short, F. J. Gui1d, M. J. Pavier. Delaminations in Flat and Curved Composite Laminates Subject to Compressive Load. Composite Structures. 2002,58: 249~258
    31. A. Tafreshi, T. Oswald. Global Buckling Behaviour and Local Damage Propagation in Composite Plates with Embedded Delaminations. International Journal of Pressure Vessels and Piping. 2003 (80): 9~20
    32.李四平,李大望,黄玉盈,胡元太. 3D复合材料中纤维搭桥对脱层扩展稳定性分析.复合材料学报. 1998, 15(4):145~150
    33. R. Girard. Propagation dun Delaminage dans un Panneau Composite Soumis a un Chargement de Compression. Proc of the 73th meeting of the A.G.A.R.D., San Diego, CA, USA, 1991:289~311
    34. B. Cochelin, M. Potier Ferry. Un Modele de Flambage pour les Plaques Stratifiees Delaminees. Comptes rendus des JNC-7. 1990:705~714
    35. J. C. Thesken, F. Brandt, S. Nilsson. Investigation of Delamination Growth Rates and Critically Along Heterogeneous Interfaces. International Council of Aeronautical Sciences ICAS-94, 1994:995~1014
    36. F. Lachaud, B. Lorrain, L. Michel, R. Barriol. Experimental and Numerical Study of Delamination Caused by Local Buckling of Termoplastic and Thermoset Composites. Comput Sci Technol. 1998,58:727~733
    37. D. Lang, J. E Brunel, D. A. Trallero. Criterion of Mixed Mode Delamination Propagation in Composites Materials. EUROMECH 269, Actes St. Etienne, France, 1990:350~361
    38. P. Davies. Developpement de Normes Dessais de Delaminage. Annale des Composites. Delaminage: Bilan Etperspectives. JAMAC/CSMA,1995:27~36
    39. S. M. Lee. An Edge Crack Torsion Method for Mode III Delamination Fracture Testing. Compos Technol Res. 1993,15(3):193~201
    40. R. Effendi, D. Guedra Degeorges. Etude Experimentale de Ladegradation des Composites Unidirectionnels Fibres de Carbone-matrice Organique etSimulation Numerique Associee-actes des JNC 8, Palaiseau, 1992:29~40
    41. D. G. Degeorges, S. Maison, D. Trallero, J. L. Petiniot. Buckling and Post Buckling Behavior of a Delamination in a Carbon-epoxy Laminated Structure: Experiments and Modelling. A.G.A.R.D Conference Proceeding 530: Debonding/Delamination of Composites. Greece, 1992,7(1):7~11
    42. S. Rinderknecht, B.Kroplin. A Finite Element Model for the Delamination in Composite Plates. Mechanics of Composite Material Structures. 1995,2(1): 19~47
    43. S. Rinderknecht, B. A. Kroplin. Computational Method for the Analysis of Delamination Growth in Composite Plates. Computers&Structures. 1997, 64(2): 359~374
    44. M. F. S. F. de Moura, J. P. M. Goncalves, A. T. Marques. Prediction of Compressive Strength of Carbon&Epoxy Laminates containing Delamination Using a Mixed-Mode Damage Model. Composite Structures. 2000, 50: 151~157
    45.崔维成.复合材料结构破坏过程的计算机模拟.复合材料学报. 1996,13:102~111
    46.李泽成.,含分层损伤先进复合材料格栅加筋结构的屈曲和后屈曲性态研究.大连理工大学硕士学位论文. 2006:34
    47.孙先念,陈浩然,苏长健.含分层损伤复合材料层合板分层扩展研究.力学学报. 2000,32(2):223~232
    48. S. W. Case. A Strength and Life Prediction Code for Laminated Composite Materials. Reifsnider KL Mrlife Theory Manual Technical Report. 1999: 1135~1208
    49. K. F. Nilsson, L. E. Asp, J.E.Alpman. Delamination Buckling and Growth for Delaminations at Different Depths in a Slender Composite Panel. International Journal of Solids and Structures. 2001 (38): 3039~3071
    50.王汝敏,郑水蓉,郑亚萍.聚合物基复合材料及工艺.科学出版社. 2004,6:38
    51.王明先.国产碳纤维组织结构及其复合材料力学性能研究.哈尔滨工业大学硕士论文. 2006:3
    52.陈桂娟.复合材料层合结构屈曲和后屈曲研究.西北工业大学硕士学位论文. 2005:15~20
    53.杜平安,甘娥忠,于亚婷.有限元法-原理、建模及应用.国防工业出版社. 2004:6
    54.石亦平. ABAQUS有限元分析实例详解.机械工业出版社. 2006:1~5
    55.彭明玉.飞机复合材料损伤机理及适航评定技术研究.南京航天航空大学硕士学位论文. 2008:26
    56.刘怀喜,张恒,马润香.复合材料无损检测方法.无损检测. 2003,25(12):631~632
    61陈先有,曹金华,黄俊波.航空用复合材料结构件无损检测技术.国防技术基础. 2007,8:13

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700