节能环保型阻燃多功能隧道沥青路面的研究与开发
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国交通基础设施建设事业高速发展,一大批大型公路隧道工程相继开工建设。隧道内部空间狭窄、封闭,噪声污染严重,且车辆集中,交通流量大,隧道进入口车辆减速、加速频繁,极易发生交通事故,一旦车辆发生事故引起火灾,汽油等可燃液体流淌扩散导致火势蔓延,将对人员生命和其他车辆构成巨大威胁。沥青路面美观、行车舒适、维修方便已经成为道路铺装的主流材料,目前沥青路面施工主要采用热拌式,在隧道内部温度远高于开放施工温度,且烟气弥漫,使隧道施工环境极为恶劣。因此,亟待开发一种节能环保型阻燃、降噪、抗滑多功能隧道路面材料,为隧道建设工程的路面铺装提供相关技术支持。
     本文依托国家863项目“抗滑、阻燃、降噪多功能隧道路面结构设计与铺装技术”和湖北省交通厅科技项目“高耐久多功能沥青路面系统优化设计及其工程应用”,针对隧道路面阻燃、抗滑、降噪功能的需要,以及普通热拌沥青能耗高、隧道内施工温度高对施工人员和设备均造成不利影响的问题,围绕节能环保型多功能沥青路面的组成、结构与性能之间的关系,进行了系统研究,取得了以下成果:
     基于沥青高温降粘技术,研究沥青降粘剂对沥青粘度的影响规律,并采用红外光谱、差热分析等测试方法,分析沥青降粘剂的作用机理,研究掺加不同比例沥青降粘剂对沥青高温性能、低温性能、温感性能、老化性能,并复合SBS、增容增粘组分,采用胶体磨碾磨工艺研制出温拌高粘度改性沥青。其60℃粘度高达76000Pa·S,135℃粘度仅为2.2 Pa·S,5℃延度为45cm,离析软化点差仅0.8℃,粘韧性达到22N.m。
     提出了具有高连通孔结构的多级嵌锁设计方法,采用温拌高粘度改性沥青,AM-ZD阻燃型矿粉、MF-AFR阻燃矿物纤维等为原材料,研究在不同温度下成型阻燃多功能隧道沥青路面材料的路用性能和力学性能,在成型温度为135℃时,多功能隧道路面动稳定度达到8200次/mm,飞散值低于3%,析漏值低于0.1%,冻融劈裂试验的残留强度比大于90%,抗剪强度0.71MPa、接近改性SMA沥青混合料的路用性能,施工温度较改性SMA沥青混合料降低20℃以上;吸声系数均值0.418,表面构造深度达到1.7mm,降噪、抗滑性能优于SMA等沥青路面材料;模拟车辆燃烧试验,逃逸汽油80%以上的,表面温度在200℃以下,闪点低,阻燃性能达到安全二级,满足大型公路隧道工程行车舒适性与安全性要求。
     系统研究了节能环保型阻燃、抗滑、降噪多功能隧道沥青混合料温度参数以及拌和、摊铺、碾压等工程应用关键技术,提出了新型路面材料的施工工艺。研究成果成功应用于湖北武英高速公路濛濛山隧道和沪蓉西高速岩湾隧道,阻燃、抗滑、降噪沥青隧道路面施工温度降低了20℃,极大的改善了施工环境,降低了能源消耗,现场检测结果表明构造深度大于1.6mm,与普通沥青混凝土路面相比降低噪音可达4dB(A)以上,是一种具推广应用价值新型隧道面层材料。
With the rapid development of expressway construction in China, more and more road tunnel will be built in the next decade. The inner space of the tunnel is strait, closing, and with serious noise pollution, concentrated vehicle and great traffic flow. The vehicle is frequent slowdowning and accelerating at the tunnel intake port, which may easily result in traffic accident. Once vehicle be in trouble and bring fire, the flowing and diffusing flammable liquid may overspread firebehaviour and serious threat the life of staffs and other vehicle. The asphat pavement is beautiful, comfortable driving, convenient maintenance and become main road pavement material. Now, asphalt pavement construction mostly adopts hot mix type, the internal temperature is far higher than open construction temperature and with permeating fume. Therefore, in order to supply correlation technique support for tunnel construction, it needs to exploit a kind of environment-protecting, energy-saving, flame-retarded, noise reduction and skidding resistance multi-functional asphalt pavement material (WAFNA).
     The research is based on National High Technology Research and Development Program "The physical design and pavement technology of skidding resistance, flame-retarded and noise reduction multi-functional asphalt pavement material" and Hubei province traffic hall science and technology project "The optimal design and project account of high-performanced and multifunctional asphalt pavements". Contrapose the needs of skidding resistance, flame-retarded and noise reduction, and the problem of high energy consumption, high construction temperature, and be done on the composition, structure and performance of environment-protecting and energy-saving asphalt pavement. Such main achievements of this paper are:
     Based on the technique of asphalt viscosity reduced, research the influence of the asphalt viscosity by asphalt viscosity reducer, analyze the mechanism of action of viscosity reducer through IR and DTA, and research the effect on the high-temperature property, low-temperature property, thalposis performance and aging resistance by viscosity reducer. Using colloid mill, the warm and high viscosity modified asphalt is prepared by SBS, compatilizing and viscosity increasing material. The 60℃viscosity is 76000Pa-S,135℃viscosity is 2.2 Pa-S,5℃ductility is 45 cm, isolation soft point is 0.8℃, and toughness is 22N-m.
     Bring out multilevel interlock design method, used warm and high viscosity modified asphalt, AM-ZD flame-retarded breeze and MF-AFR flame-retarded mineral fibre, and research the pavement performance and mechanical property at different molding temperature. At 135℃molding temperature, the dynamic stability could climb to 8200 times/mm, the Cantabria Loss is lower than 3%, run off loss is 0.1%, the ratio of freeze thaw split strength is more than 90%, and shear strength is 0.71MPa, which are approach to the pavement performance of SMA while the construction temperature lower more than 20℃. In addition, the average sound absorption is 0.418 and texture depth 1.5mm, far exceeded that of SMA. And in the miniature fire tests, the gasoline was escaped more than 80%. The temperature was below 200℃on the surface, while the flash point was low. Its fire-retarding performance reach two safety level, which could satisfy the requirements of comfort and security for the large road tunnel projects.
     The temperature parameter and the construction techniques of WAFNA, including temperature parameters, mixing, paving and rolling, were studied, and the construction technics of a new pavement material brought forward. The research achievement were applied to Hubei Wuying Highway Mengmengshan tunnel and Hurongxi Yanwan tunnel, of which the construction temperature was lower more than 20℃, greatly improved the construction environment, and reduced energy consumption. The field test result showed the texture depth of WAFNA is over 1.6mm, the noise level is 4dB(A) lower than normal asphalt pavement, which is a new tunnel asphalt material with great application value.
引文
[1]A.GBendelius. Tunnel fire and life safety within the world road association[J]. Tunnelling and Underground Space Technology,2002, Vol.17 (2):159-161.
    [2]EUREKA project EU 499 FIRETUN. Fires in Transport Tunnels:Report on Full-scale Tests[R]. Stahlanwendung e.V., ed. Dusseldorf, Germany, November 1995.
    [3]沈艾中.警惕隧道交通事故[J].公安学刊,2002(5):45-47.
    [4]王明年,翁汉民.我国3条高速公路隧道污染状况调查[J]环境科学,1995,5:50-54
    [5]范跃武,张同斌(译).低噪音混凝土路面[J].国外公路,1996,16(4):23-25.
    [6]周泽民,周凤霞(译).国外水泥混凝土抗滑技术[J].国外公路,1998,18(4):23-29.
    [7]杨建国;谢永利;张晓等.高速公路隧道路面抗滑可靠性分析[J].西南大学学报(自然科学版),2009,31(11):145-149
    [8]郭进存,廖克俭等.阻燃沥青的研制[J].辽宁石油化工大学学报,2005(2):5-8.
    [9]European Asphalt Pavement Association. Asphalt pavement in tunnels[C]. EAPA position paper, May 2008.
    [10]中华人民共和国交通部.JTJ 026-90.公路隧道设计规范[S].北京:人民交通出版社,1990.
    [11]中华人民共和国交通部.JTG D70-2004.公路隧道设计规范.[S]北京:人民交通出版社,2004:66-67.
    [12]Gardiner S. Hot mix asphalt smoke and emission potential[R].Washington DC: Transportation Research Board,2002.
    [13]徐世法,颜彬,季节等.高节能低排放型温拌沥青混合料的技术现状与应用前景[J].公路,2005(7):195-198
    [14]孙大权,罗杰等.环境友好型温拌沥青混合料制备技术研究进展[J].石油沥青,2007,21(4):54-57
    [15]吴剑,梁云.温拌沥青混合料技术在隧道沥青路面施工中的应用[J].现代交通技术,2008,5(3):9-13
    [16]黄绍龙.多功能隧道沥青路面结构与性能的研究[D].武汉:武汉理工大学,2009.
    [17]李祖伟,陈辉强等.沥青阻燃改性技术研究及其阻燃机理[J].长沙交通学院学报,2002,18(12):44-47.
    [18]陈辉强,陈仕周.沥青阻燃改性技术研究[J].公路交通技术,2003(2):19-39.
    [19]郭进存,廖克俭等.阻燃沥青的研制[J].辽宁石油化工大学学报,2005(2):5-8.
    [20]罗小锋,余剑英等.阻燃沥青的制备与性能研究[J].石油沥青,2005(4):11-13.
    [21]张锐,黄晓明.新型无卤阻燃沥青的开发与性能试验[J].公路交通科技,2007,24(11):40-43.
    [22]余剑英,程松波,吴冬生等.ATH阻燃改性沥青SMA路用性能研究[J].2008(1):184-187
    [23]丁庆军,刘新权,沈凡等.ATH沥青阻燃体系试验及机理分析[J].中国公路学报,2008,21(9):10-14.
    [24]Olof Kristjansdottir, Stephen T. Muench, Larry Michael, et al. Assessing Potential for Warm-Mix Asphalt Technology Adoption[J]. Transportation Research Record:Journal of the Transportation Research Board,2007,vol.2040:91-99.
    [25]仰建岗.温拌沥青混合料应用现状与性能[J].公路交通科技,2006,(08):26-28.
    [26]K. KEENAN. SEAM改性剂——硫磺在公路建设中的应用[J].硫酸工业,2004(3):38-40
    [27]Nazimuddin M. Wasiuddin, Selvaratnam Selvamohan, Musharraf M. Zaman, et al. Comparative Laboratory Study of Sasobit and Aspha-Min Additives in Warm-Mix Asphalt[J]. Transportation Research Record:Journal of the Transportation Research Board,2007, vol. 1998:82-88.
    [28]Graham C. Hurley, Brian D. Prowell. Evaluation of Sasobit for Use in Warm Mix Asphalt[R]. America:NCAT Report 05-06,2005.
    [29]JM Croteau, P Eng, WA Ltd, A Edmonton, et al. Warm Mix Asphalt Paving Technologies:a Road Builder's Perspective[C]. Warm Asphalt Technology as a Sustainable Strategy for Pavements Session of the 2008 Annual Coference, Canada,2008.
    [30]Graham C. Hurley, Brian D. Prowell. Evaluation of Asphalt-min Zeolite for Use in Warm Mix Asphalt[R]. America:NCAT Report 05-04,2005.
    [31]曹翠星,何桂平,韩海峰.泡沫沥青及其混合料的研究现状[J].石油沥青,2003,17(2):54-59
    [32]Douglas I. Hanson, Brian Waller. Evaluation of The Noise Characteristics of Minnesota Pavements[R]. America:NCAT Repaort,2005.
    [33]Hardiman Ph.D. The Improvement of Water Drainage Function and Abrasion Loss of Conventional Porous Asphalt[J]. Proceedings of the Eastern Asia Society for Transportation Studies,2005 (5):671-678.
    [34]陈拴发,陈华鑫,郑木莲.沥青混合料设计与施工[M].北京:化学工业出版社,2006
    [35]黄晓明,吴少鹏,赵永利.沥青与沥青混合料[M].南京:东南大学出版社.2002.
    [36]吕伟民.沥青混合料设计原理与方法[M].上海:同济大学出版社.2001.01.
    [37]程小云,张争奇.粗集料形状对热拌沥青混合料永久变形力学行为的影响[J].中外公路,2008,28(6):192-198.
    [38]GDOT,Georgia. Department of Transportation's Progress in Open-Graded Friction Course Development[R]. Transportation Research Record,2002
    [39]中华人民共和国交通部.JTG F40-2004.公路沥青路面施工技术规范[S].北京:人民交通出版社,2004.
    [40]沈金安.改性沥青与SMA路面[M].北京:人民交通出版社,1999.
    [41]日本道路协会.排水性铺装技术指针(案)[S].东京:丸善株式会社,1996.
    [42]胡曙光,刘小星等.排水降噪防滑沥青路面材料的设计与施工[J].武汉理工大学学报,2006(5):69-72.
    [43]刘大梁,刘清华等.硅藻土改性沥青应用研究[J].长沙理工大学学报(自然科学版),Vol.1,No.2:7-12.
    [44]张厚记,胡曙光.碱性矿物纤维增强沥青混合料的研究[J].武汉理工大学学报,2006(4):31-34.
    [45]Khalid Salim Alshamsi B.S. Development of a Mix Design Methodology for Asphalt Mixtures with Analytically Formulated Aggregate Structures. USA., Louisiana State University,2006
    [46]毕玉峰,孙立军.沥青混合料抗剪试验方法研究[J]..同济大学学报(自然科学版).Vol.33(2005)No.8:1036-1040.
    [47]魏昭荣,朱世富等.沸石基复合抑烟剂的制备及性能研究[J].北京理工大学学报,2004(10):913-916.
    [48]WANG Zuomin, LU Weimin, The acoustical character of low noise asphalt pavements, Chinese Journal of acoustics,1999,18(2):136-141.
    [49]P.M.莫尔斯,K.U.英格特.理论声学.吕如榆等译[M].北京:科学出版社,1984:299-302.
    [50]邝宏柱,廖志高,柳本民.高速公路隧道路面抗滑性能评价标准研究[J].公路,2007,9:85-88.
    [51]朱战军,林壬子,汪双清.稠油主要族组分对其粘度的影响[J].新疆石油地质,2004,25(5):512-513.
    [52]孙杨勇,张起森.沥青粘度测定及其影响因素分析[J].长沙交通学院学报,2002,18(2):67-70.
    [53]方伽俐,黄卫东.沥青结合料零剪切粘度简介[J].中外公路,2003,23(6):83-86.
    [54]陈慧敏.非金属材料及其现代测试技术[M].西安,西北工业大学出版社,1990.
    [55]张付生,王彪.几种原油降凝降粘剂作用机理的红外光谱和X射线衍射研究[J].油田化学.1995,12(4):347-352.
    [56]王翠红,宋艳茹,张荣德等.沥青组分对其粘度的影响[J].石油沥青,2003,17(3):19-21.
    [57]程健,刘以红.几种道路沥青蜡分布研究[J].石油化工高等学校学报,2000,13(3):28-32.
    [58]陈佩茹.关于沥青感温性能指标的讨论[J].交通运输工程学报,2002,2(2):23-26.
    [59]陈俊,岳学军,黄晓明.沥青温度敏感性指标评价与附加指标研究[J].公路交通科技,2007,24(6):46-49.
    [60]刘力新.青混合料粘弹性力学及材料学原理[M].北京:人民交通出版社,2006.
    [61]虞勋忠,王永森,谢旭峰等.改善沥青低温性能的研究[J].公路,1996(1):24-29.
    [62]封基良.沥青BBR小梁试验的流变分析[J].武汉理工大学学报:交通科学与工程版,2006,30(2):205-208.
    [63]李海军,黄晓明.SHRP沥青性能分级量度的探讨[J].公路交通科技,2006,23(2):36-38.
    [64]张争奇,梁晓莉,李平.沥青老化性能评价方法[J].交通运输工程学报,2005,5(1):1-5.
    [65]李海军,黄晓明,曾凡奇.道路沥青老化性状分析及评价[J].公路交通科技,2005,22(4):5-8.
    [66]钱科,傅大放,刘举正.聚合物改性沥青的储存稳定性[J].石油沥青,2003,17(3):1-8.
    [67]陈华鑫,卢军,彭廷.改性沥青的粘度特性和施工温度控制[J].石油沥青,2003,17(4):43-46.
    [68]彭勇,孙立军,石永久.沥青混合料抗剪强度的影响因素[J].东南大学学报:自然科学版,2007,37(2):330-333.
    [69]葛折圣,许国光.用弯曲应变能方法评价沥青混合料的低温抗裂性能[J].东南大学学报:自然科学版,2002,32(4):653-655.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700