小麦组织培养特性的分子遗传分析及遗传转化体系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
遗传转化是作物遗传改良和基因功能研究的重要工具。小麦是比较难转化的禾本科作物之一,农杆菌介导的遗传转化效率目前还没有超过10%,远远低于水稻等作物的转化效率。转化受体植株再生困难是限制小麦遗传转化效率的主要因素,而且受基因型影响很大。小麦遗传转化主要以幼胚或其愈伤组织作为受体。除此之外,成熟胚和花药也已被尝试用作转化受体.与幼胚相比较,成熟胚的取材不受季节限制,有充足的材料来源.然而,其组织培养体系仍不成熟,限制了它在遗传转化中的应用。本研究的目的是阐明影响小麦组织培养特性的遗传基础,并试图建立较高效率的农杆菌介导的小麦遗传转化体系.
     我们首先进行了小麦成熟胚组织培养的遗传研究。普通小麦(Triticum aestivum L.)品种南大2419的成熟胚具有较高的组织培养能力.本研究利用<南大2419×望水白>重组自交系群体,对小麦成熟胚组织培养相关性状(TCR)进行了QTL分析。检测到5个控制愈伤组织诱导率(PEFC),4个控制愈伤组织植株再生潜力(PCRP)和4个控制愈伤组织的植株再生效率(NPRC)的染色体区段。其中,QPefc.nau-2A和QPcrp.nau-2A是分别控制PEFC和PCRP的主效QTL,均位于染色体2A的长臂上,分别解释22.1%和19.7%的表型变异率。同时,在染色体2D和5D上分别检测到一个控制NPRC的QTL,两者一起可以解释51.6%的表型变异率。另外,分别在染色体2A、2D、5A、5B和5D的不同区段上检测到至少两个与TCR相关的QTL。其中,QPefc.nau-2A和QPcrp.nau-2A是分别控制PEFC和PCRP的主效QTL,均位于染色体2A的长臂上,分别解释22.1%和19.7%的表型变异率。同时,在染色体2D和5D上分别检测到一个控制NPRC的QTL,两者一起可以解释51.6%的表型变异率。
     为了研究小麦幼胚组织培养特性的遗传规律,我们分别于2005年在温室和2006年在大田取材,进行了两次试验,定位了控制小麦幼胚组织培养特性的QTLs。发现了11个控制幼胚胚性愈伤组织诱导(PEFEC)和2个控制胚性愈伤组织植株再生效率(PCRP)的QTLs。在两次试验中,都检测到主效位点QPefec.nau-3B.2、QPefec.nau-5B和QNppc.nau-3A。与这些QTLs位点紧密连锁的分子标记,一方面可用于筛选具有较高组织培养能力的基因型材料,另一方面有助于对小麦组织培养能力进行遗传改良。结合前人研究的结果,我们认为小麦的第2群、第3群和第5群染色体上存在控制小麦组织培养能力的相关基因,这些相关基因在禾谷类作物中是保守的。小麦幼胚、成熟胚和花药的组织培养能力由相同的基因或基因组合控制。
     为了提高农杆菌介导的小麦遗传转化的效率,研究了转化前预培养、农杆菌菌株和菌液浓度对小麦遗传转化效率影响。我们发现在转化前将愈伤组织小块置于含有低浓度的细胞分裂素的分化培养基上预培养3天,可以提高株系B31697的遗传转化效率。利用株系B31394进行的转化实验表明,农杆菌菌液浓度为OD_(600)=0.6~0.8比较合适。在AGLI、EHA101、EHA105和LBA4404这4种农杆菌菌株中,菌株LBA4404的转化效率最低。以上述研究为基础,对69个材料进行了遗传转化实验,获得了遗传转化效率较高的小麦基因型材料。这些材料的转化效率明显高于目前小麦遗传转化中普遍使用的扬麦158和Bobwhite。
     此外,我们还构建了小麦泛素融合降解蛋白基因(UFD)、小麦甜菜素-葡糖基转移酶基因(BoGT)、小麦钙网蛋白基因(Crt)和小麦胚胎后期发育积累蛋白基因(LEA)的RNA干扰载体以及LEA基因的过量表达载体。这些基因均是本实验室克隆的基因,这些载体的构建为研究这些基因的功能打下了基础。
Genetic transformation is an important tool for studying genes function and breedingnew varieties. Wheat (Triticurn aestivum L) is one of the cereal crops recalcitrant totransformation, in literatures, the highest transformation efficiency obtained throughAgrobacterium tumefaciens- mediated was just over 10%, which is far below than that ofrice. One of the main factors limiting transformation is the callus regeneration ability,which is dependent of genotype. Immature embryos are currently the main source forgenetic transformation but mature embryos and anthers have also been used. Matureembryos are arguably one of the best explants for genetic transformation because of itsunlimitedness in sources and no growth season restriction. However, efficient regenerationsystem using the mature embryos as explants in wheat is still not available. This studyaimed at clarifying the genetic basis of wheat tissue culture response and to establish moreefficient Agrobacteriurn tumefaciens-mediated transformation system in wheat.
     We started with studying the genetic analysis of tissue culture response (TCR) of wheatmature embryos. We found that callus derived from mature embryos of wheat cultivar'Nanda2419' has good regeneration ability. Using a RIL population derived from cross of'Wangshuibai' with 'Nanda2419', QTLs for callus induction from mature embryos andcallus regeneration were mapped. Through whole genome scanning, we identified five, fourand four chromosome regions conditioning, respectively, percent embryos forming callus(PEFC), percent calli regenerating plantlets (PCRP), and number of plantlets perregenerated callus (NPRC). The major QTLs QPefc.nau-2A and QPcrp.nau-2A weremapped to the long arm of chromosome 2A, explaining up to 22.8%and 17.7%of therespective phenotypic variation. Moreover, two major QTLs for NPRC were detected onchromosomes 2D and 5D, which together explained 51.6%of the phenotypic variation.
     To study the genetic mechanism underlying the TCR of immature embryos of wheat, callus induction and regeneration using the above-mentioned population were conductedtwice. In the first trial, the immature embryos were sampled from plants grown in thegreenhouse in the winter of 2005; in the second trial, the immature embryos were sampledfrom plants grown in the field in the summer of 2006. Through whole genome screening,eleven chromosome regions conditioning percent embryos forming embryogenic callus(PEFEC) and two conditioning the percent caUus-let regenerating plant (PCRP) wereidentified. The main loci QPefec.nau-3B.2、QPefec.nau-5B and QPcrp.nau-3A weredetected in both experiments.
     Based on this study and other reports, group 2, 3 and 5 chromosomes of wheat areimportant for tissue culture, and the corresponding genes were conserved among cereals.TCR of immature embryos, mature embryos and anthers of wheat might be under control ofsome common or tightly linked genes. The PCR-markers linked to TCR QTLs wouldfacilitate germplasm identification and genetic improvement of wheat tissue culture.
     To improve the efficiency of Agrobacterium-mediated genetic transformation in wheat,pre-culture times, Agrobacteria strains and cell densities were studied. As a result, 3dpre-culture on the regeneration medium we used is beneficial to transformation of lineB31697. For line B31394, OD_(600)=0.6~0.8 was the optimal cell density of theAgrobacterium strain used in transformation. Among the four Agrobacterium strain usedin transformation, including AGL I, EHA101, EHA105 and LBA4404, LBA4404produced the lowest transformation efficiency. Based on these results, 69 genotypes weretransformed and genotypes with transformation efficiency higher than that of controlcultivars Yangmai158 and Bobwhite were obtained.
     In addition, we constructed the RNAi vectors of wheat ubiquitin fusion degradationprotein gene (UFD), Betalain Glucosyl transferases gene (BoGT), calreticulin (Crt) and lateembriogenesis abundant protein gene (LEA). We also constructed an over-expression vectorfor the LEA gene.
引文
1.毕瑞明,贾海燕,封德顺;王洪刚(2006)农杆菌介导抗储粮害虫转基因小麦(Triticum aestivum L.)的获得及分析.生物工程学报 22:431-437
    2.苌收伟,程玉红,泰广雍,苏明杰(2004)离子柬辅助大豆基因群导入小麦的研究.华北农学报9:5-7
    3.陈军营,文付喜,何盛莲,陈新建,许海霞,程西永(2006)ABA和AgNO_3对小麦幼胚愈伤组织诱导和分化的影响.麦类作物学报 26:46-48
    4.董槿,何震天,韩成贵(2002)抗小麦黄花叶病毒转基因小麦的获得及病毒诱导的基因沉默.科学通报47:763-767
    5.傅荣昭,曹光城,马江生(1997)用基因枪法将人工雄性不育基因导入小麦的研究初报.遗传学报24:358-361
    6.高宁,陈耀锋,李春莲,郭月霞,张晓红,任惠莉,郭东伟(2004)禾谷镰刀菌(Fusarium graminearum)毒素对小麦幼胚愈伤组织诱导和分化的影响.麦类作物学报24:114-117
    7.郭北海,张艳敏,李洪杰(2000)甜菜碱醛脱氢酶BADH基因转化小麦及其表达.植物学报42:279-283
    8.郭亮,文玉香,梁玉梅(1997)苏云金芽孢杆菌毒蛋白基因在小麦基因组中的甲基化修饰.遗传学报24:255-262
    9.郝建国,李晶,黄董(2004)用基因枪介导法将水稻几丁质酶基因导入小麦.应用与环境生物学报10:421-424
    10.何道一,李中存,王洪刚(2003)农杆菌介导的小麦活体转化.中国农业科学36:1437-1441
    11.侯文胜,郭三堆,路明(2003)利用花粉管通道法将cryIa基因导入小麦.作物学报29:806-809
    12.黄承彦,楚秀生,杨平平(2000)外源DNA导入技术培育抗旱耐盐小麦新品种 山东农业科学4:4-6
    13.黄益洪,刘春光,马鸿翔,刘根齐,周淼平,孙勇如,余桂红,陆维忠(2004)小麦花粉管途径转化及高效筛选体系的建立.分子植物育种2:777-782
    14.康乐,叶兴国,徐惠君(2005)葡萄糖氧化酶基因转化小麦的研究.作物学报31:686-691
    15.李加瑞,赵伟,李全梓,叶兴国,安宝燕,李祥,张宪省(2005)Waxy基因的RNAi沉默使转基因小麦种子中直链淀粉含量下降.遗传学报32:346-354
    16.李艳红,肖兴国,赵广荣(1999)将新的人工雄性不育基因导入小麦栽培品种的研究初报.农业生物技术学报7:255-258
    17.梁辉,吴方盛,王道文,孙东发,贾旭(2005)环形电极介导的小麦基因转化.遗传学报32:66-71
    18.刘志方,陈穗云,夏光敏(2001)利用花粉管通道途径获得转基因小麦.山东大学学报(自然科学版)36:84-89
    19.牟红梅,刘树俊,周文娟(1999)慈菇蛋白酶抑制剂通过花粉管途径对小麦的导入及转基因植株分析.遗传学报26:12-17
    20.邱树毅,姚汝华,宗敏华(1999)超声波在生物工程中的应用.生物工程进展19:45-48
    21.苏明杰,赵传奇,秦广雍(2003)离子束介导外源基因群转移小麦的研究.中州大学学报20:119-121
    22.王立新,孟荣华,郭仁俊,徐民新,孙志民,张润飞,孙家柱(2001)应用花粉管通道法进行小麦抗白粉病基因的研究初报.农业生物技术学报9:265-268
    23.魏松红,曹远银,张艳贞(2003)转pti5-vp16基因小麦的分子检测和抗病性鉴定.中国农业科学36:905-909
    24.吴丽芳,李红,冯慧云(2000)用低能氩离子束介导将水稻几丁质酶基因导入小麦.科学通报21:2316-2321
    25.奚亚军,张启发,林拥军(2004)利用农杆菌漫根法将叶片衰老抑制基因PSAG12-IPT导入普通小麦的研究.中国农业科学37:1235-1238
    26.杨景成,于元杰,刘凤珍(2000)外源DNA导入普通小麦雄性不育变异的分子验证.核农学报14:371-374
    27.于晓红,朱桢,徐鸿林(2000)基因枪法转化小麦及转基因檀株的获得.高技术通讯2:13-17
    28.于晓红,朱祯,付志明(1999)提高小麦愈伤组织分化频率的因素.植物生理学报25:388-394
    29.曾君祉,王东江,吴有强,张健,周文娟,朱小平,徐乃正(1993)用花粉管途径获得小麦转基因植株.中国科学(B辑)23:256-262
    30.张艳敏,郭北海,丁占生(2003)小麦农杆菌转化系统的建立与转基因植株的获得.华北农学报18:1-3
    31.赵元增,茹振钢,李淦(2005)小麦幼胚胚性愈伤组织诱导和再分化研究.河南农业科学2:31-34
    32. Afele JC, Dannenberg LW, Keats R, Sohota S, Swanson EB (1992) Increased induction of microspore embryo following manipulation of donor plant environment and culture temperature in corn (Zea mays L.). Plant Cell Tissue Org Cult 28:87-90
    33. Afsharsterle S, Pang ECK, Brown JS, Kollmorgen JF (2006) Embryogenic callus induction and plant regeneration in Triticum tauschii, the diploid D-genome donor for bread wheat (Triticum aestivum). Aust J Bot 44:488-497
    34. Agache S, Bachelier B, De Buyser J, Henry Y, Snape J (1989) Genetic analysis of anther culture response in wheat using aneuploid chromosome substitution and translocation lines. Theor Appl Genet 77:7-11
    35. Ahloowalia BS (1982) Plant regeneration from callus cultures in wheat. Crop Sci 22:405-410
    36. Ahmad A, Sayed-Shahram M (1999) Response of durum wheat cultivars to immature embryo culture, callus induction and in vitro salt stress. Plant Cell Tissue Org Cult 58:67-72
    37. Ahmed KZ, Sagi F (1993) Culture and fertile plant regeneration from regenerable embryogenic suspension cell derived protoplasts of wheat (Triticum aestivum L.). Plant Cell Rep 12:175-179
    38. Ahn S, Anderson JA, Sorrells ME, Tanksley SD (1993) Homoeologous relationships of rice, wheat and maize chromosomes. Mol Gen Genet 241:483-490
    39. Altpeter F, Diaz I, McAuslane H, Gaddour K, Carbonero P, Vasil IK (1999) Increased insect resistance in transgenic wheat stably expressing trpsin inhibitor Cme. Mol Breed 5:53-63
    40. Altpeter F, Vasil V, Srivastava V, Stoger E, Vasil IK (1996a) Accelerated production of transgenic wheat (Triticum aestivum L.) plants. Plant Cell Rep 16:12-17
    41. Altpeter F, Vasil V, Srivastava V, Vasil IK (1996b) Integration and expression of the high-molecular-weight glutenin subunit 1Ax gene into wheat. Nat Biotech 14:1155-1159
    42. Amoah BK, Wu H, Sparks C, Jones HD (2001) Factors influencing Agrobacterium- mediated transient expression of uidA in wheat inflorescence tissue. J Exp Bot 52:1135-1142
    43. Anand A, Zhou T, Trick HN, Gill BS, Bockus WW, Muthukrishnan S (2003) Greenhouse and field testing of transgenic wheat plants stably expressing genes for thaumatin-like protein, chitinase and glucanase against Fusarium graminearum. J Exp Bot 54:1101-1111
    44. Baga M, Glaze S, Mallard CS, Chibbar RN (1999) A starch-branching enzyme gene in wheat produces alternatively spliced transcripts. Plant Mol Biol 40: 1019-1030.
    45. Bahieldin A, Dyer WE, Qu R (2000) Concentration effects of dicamba on shoot regeneration in wheat. Plant Breed 119:437-439
    46. Bancroft I, Dean C (1993) Transposition pattern of the maize element Ds in Arabidopsis thaliana. Genetics 134:1221-1229
    47. Barakat A, Carel N, Bernardi G (1997) The distribution of genes in the genomes of Gramineae. Proc Natl Acad Sci USA 94:6857-6861
    48. Barakat A, Gallois P, Raynal M, Mestre Ortega D, Sallaud C, Guiderdoni E, Delseny M, Bernardi G (2000) The distribution of T-DNA in the genomes of transgenic Arabidopsis and rice. FEBS Lett 471: 161-164
    49. Barakat A, Matassi G, Bernardi G (1998) Distribution of genes in the genome of Arabidopsis and its implications for the genome organization of plants. Proc Natl Acad Sci USA 95:10044-10049
    50. Barman SR, Sautter C, Chattoo BB (2006) Expression of the lipid transfer protein Ace-AMP1 in transgenic wheat enhances antifungal activity and defense responses. Transgenic Res 15:435-446
    51. Barro F, Rooke L, Bekes F, Gras P, Tatham AS, Fido R, Lazzeri PA, Shewry PR, Barcelo P (1997) Transformation of wheat with high molecular weight subunit genes results in improved functional properties. Nat Biotech 15:1295-1299
    52. Baulcombe DC (2004) RNA silencing in plants. Nature 431: 356-363.
    53. Becket D, Brettschneider R, Lorz H (1994) Fertile transgenic wheat from micro-projectile bombardment of scutellar tissue. Plant J 5:299-307
    54. Ben Amer IM, Borner A (1997a) The relationship between green spot initiation and plantlet regeneration of wheat callus grown under short-term conditions. Plant Cell Tissue Org Cult 50:67-69
    55. Ben Amer IM, Borner A, Schlegel R (1992) The effect of the hybrid dwarfing gene D2 on tissue culture response of wheat (Triticum aestivum L.). Cereal Res Com 20:87-93
    56. Ben Amer IM, Korzun V, Worland AT, Borner A (1997) Genetic mapping of QTL controlling tissue-culture response on chromosome 2B of wheat (Triticum aestivum L,) in relation to major genes and RFLP markers. Theor Appl Genet 94:1047-1052
    57. Ben Amer IM, Worland AJ, Borner A (1996) The effects of whole chromosome substitutions differing in alleles for hybrid dwarfing and photoperiodic sensitivity on tissue culture response (TCR) in wheat. Euphytica 89:81-86
    58. Beyer EM (1976) A potent inhibitor of ethylene action in plants. Plant Physiol 58:268-271
    59. Bieri S, Potrykus I, Futterer J (2000) Expression of active barley seed ribosome-inactivating protein in transgenic wheat. Theor Appl Genet 100:755-763
    60. Birsin MA, Ozgen M (2004) A comparison of callus induction and plant regeneration from different embryo explants of triticale (x Triticosecale Wittmack) Cell Mol Bio Lett 9:353-361
    61. Blechl AE, Anderson OD (1996). Expression of a novel high-molecular-weight glutenin subunit gene in t1ansgenic wheat. Nat Blot 14:875-879
    62. Bliffeld M, Mundy J, Potrykus I, Futterer J (1999) Genetic engineering of wheat for increased resistance to powdery mildew disease. Theor Appl Genet 98:1079-1086
    63. Bohorova NE, Pfeiffer WH, Mergoum M, Crossa J, Pacheco M, Estafiol P (2001) Regeneration potential of CIMMYT durum wheat and triticale varieties from immature embryos. Plant Breed 120: 291-295
    64. Bregitzer P, Campbell RD (2000) Genetic Markers associated green and albino plant regeneration from embryogenic barley callus. Crop Sci 41:173-179
    65. Brinch Pederson H, Oleson A, Rasmussen SK, Holm PB (2000) Generation of transgenic wheat (Triticum aestivum L.) for constitutive accumulation of an Aspergillns phytase. Mol Breed 6:195-206
    66. Brisibe EA, Gajdosova A, Olesen A, Anderson SB (2000) Cytodifferentiation and transformation of embryogenic callus lines derived from anther culture of wheat. J Exp Bot 343:187-196
    67. Brouwer C, Bruce W, Maddock S, Avramova Z, Bowen B (2002) Suppression of transgene silencing by matrix attachment regions in maize: a dual role for the maize 5' ADH1 matrix attachment region. Plant Cell 14:2251-2264
    68. Brunaud V, Baizergue S, Dubreucq B (2002) T-DNA integration into the Arabidopsis genome depends on sequences of pre-insertion sites. EMBO Rep 3:1152-1157
    69. Cannell E J, Farrell PJ, Sinclair AJ (1996) Epstein-Barr virus exploits the normal cell pathway to regulate Rb activity during the immortalisation of primary B-cells. Oncogene 13:1413-1421
    70. Carman JG (1995) Somatic embryogenesis in wheat. In Bajaj YPS (ed.) Biotechnology in Agriculture and Forestry 31:3-13
    71. Carman JG, Campbell WF (1990) Factors affecting somatic embryogenesis in wheat. In Bajaj YPS (ed.) Biotechnology in agriculture and forestry 13:68-86
    72. Carman JG, Jefferson NE, Campbell WF (1988a) Induction of embryogenic Triticum aestivurn L. calli. Ⅰ. Quantification of genotype and culture medium effects. Plant Cell Tissue Org Cult 12:83-95
    73. Carman JG, Jefferson NE, Campbell WF (1988b) Induction of embryogenic Triticum aestivum L. calli. Ⅱ. Quantification of organic addenda and other culture variable effects. Plant Cell Tissue Org Cult 12:97-110
    74. Carthew RW (2001) Gene silencing by double-stranded RNA. Curr Opin Cell Biol 13:244-248
    75. Carvalho CHS, Bohorova N, Bordallo PN, Abreu LL, Valicente FH, Bressan W, Paiva E (1997) Type Ⅱ callus production and plant regeneration in tropical maize genotypes. Plant Cell Rep 17:73-76
    76. Casetillo AM, Egana B, Sanz JM, CistueL (1998) Somatic embryogenesis and plant regeneration from barley cultivars grown in Spain. Plant Cell Rep 17:902-906
    77. Chang YF, Wang WC, Warfield CY, Nguyen HT, Wong JR (1991) Plant regeneration from protoplasts isolated from long-term cell cultures of wheat (Triticum aestivum L.). Plant Cell Rep 9: 611-614
    78. Chawia HS, Cass LA, Simmonds JA (1999a) Expression of anthocyanin pigmentation in wheat tissues transformed with anthocyanin regulatory genes. Curr Sci 76:1365-1370
    79. Chawla HS, Cass LA, Simmonds JA (1999b) Developmental and environmental regulation of anthocyanin pigmentation in wheat tissues transformed with anthocyanin regulatory genes. In Vitro Cell Dev Bio 35:403-408
    80. Chen DF, Dale PJ (1992) A comparison of methods for delivering DNA to wheat: the application of wheat dwarf virus DNA to seeds with exposed apical meristems. Transgenic Res 1:93-100
    81. Chen SY, Jin WZ, Wang MY, Zhang F, Zhou J, Jia QJ, Wu YR, Lin FY, Wu P (2003) Distribution and characterization of over 1000 T-DNA tags in rice genome. Plant J 36:105-113
    82. Chen WP, Chen PD, Liu DJ, Kynast R, Friebe B, Velazhahan R, Muthukrishnan S, Gill BS (1999) Development of wheat scab symptoms is delayed in transgenic wheat plants that constitutively express a rice thaumatin-like protein gene. Theor Appl Genet 99:755-760
    83. Chen XM, Line RF, Leung H (1998) Genome scanning for resistence-gene analogs in rice, barley, and wheat by high-resolution electrophoresis. Theor Appl Genet 97:345-355
    84. Cheng M, Fry JE, Pang S, Zhou H, Hironak CM, Duncan DR, Conner TW, Wan Y (1997) Genetic transformation of wheat mediated by Agrobacterium tumefaciens. Plant Physiol 115:971-980
    85. Chibbar RN, Kartha KK, Leung N, Qureshi J, Caswell K (1991) Transient expression of marker genes in immature zygotic embryos of spring wheat (Triticum aestivwn L.) through microprojectile bombardment. Genome 34:453-460
    86. Chong K, Bao S, Xu T, Tan K, Liang T, Zeng J, Huang H, Xu J (1998) Functional analysis of the vir geae using transgenic wheat. Plant Physiol 102:87-92
    87. Chowdhury MKU, Vasil V, Vasil IK (1994) Molecular analysis of plants regenerated from embryogenic cultures of wheat. Theor Appl Genet 87:821-824
    88. Christensen AB, Thordal Christensen H, Zimmermann G, Gjetting T, Lyngkjaer MF, Dudler R, Schweizer P (2004) The Germinlike protein GLP4 exhibits superoxide dismutase activity and is an important component of quantitative resistance in wheat and barley. Mol Plant-Microbe 17:109-117
    89. Clausen M, Krauter R, Schachermayr G, Potrykus I, Sautter C (2000) Antifungal activity of a virally encoded gene in transgenic wheat. Nat Biot 18: 446-449.
    90. Dahleen LS (1995) Improved plant regeneration from barley callus by increased copper levels. Plant Cell Tissue Org Cult 43:267-269
    91. Dahleen LS (1999) Donor-Plant environment effects on regeneration from barley embryo-derived callus. Crop Sci 39:682-685
    92. Dahleen I.S, Bregitzer P (2002) An improved media system for high regeneration rates from barley immature embryo-derived callus cultures of commercial cultivars. Crop Sci 42:934-938
    93. Daley M, Knauf VC, Summerfelt KR, Turner JC (1998) Co-transformation with one Agrobacterium tumefaciens strain containing two binary plasmids as a method for producing marker-free transgenic plants. Plant Cell Rep 17:489-496
    94. De Block M, Debrouwer D, Moens T (1997) The development of a nuclear male sterility system in wheat, Expression of the barnasegene under the control of tapetum specific promoters. Theor Appl Genet 95:125-131
    95. Delporte F, Mostadel O, Jacquemin JM (2001) Plant regeneration through callus initiation from thin mature embryo fragments of wheat. Plant Cell Tissue Org Cult 67:73-80
    96. Delseny M, Salses J, Cooke R, Sallaud C, Regad F, Lagoda P, Guiderdoni E, Ventelon M, Brugidou C, Ghesquiere A (2001) Rice genomics: present and future. Plant Physiol Biochem 39: 323-334
    97. Demeke T, Huci P, Baga M, Cawell F, Leung N, Chibbar RN (1999) Transgene inheritance and silencing in hexaploid spring wheat. Theor Appl Genet 99:947-953
    98. Dhir SK, Pajean ME, Fromm ME, Fry JE (1994) Anthocyanin genes as a visual marker for wheat transformation. In: Henry RJ and Ronalds JA eds. Improvement of Cereal Quality by Genetic Engineering, Plenum Press New York USA pp: 71-75
    99. Dodds JH, Roberts LW (1995) Experiments in plant tissue culture. Cambridge University Press, New York, pp: 195-203
    100. Douchkov D, Nowara D, Zierold U, Schweizer P (2005) A high-throughput gene-silencing system for the functional assessment of defense-related genes in barley epidermal cells. Mol Plant-Microbe Interact 18:755-761
    101. Ebinuma H, Sugita K, Matsunaga E, Yamakado M (1997) Selection of marker-free transgenic plants using the isopentenyl transferase gene. Proc Natl Acad Sci USA 94:2117-2121
    102. Elbashir SM, Lendeckel W, Tuschl T (2001) KNA innosference is mediated by 21 and 22 nucleotide RNAs. Genes Dev 15:188-200
    103. Fedoroff NV, Furtek DB, Nelson OE (1984) Cloning of the bronze locus in maize by a simple and generalizable procedure using the transposable element Activator (Ac). Proc Natl Acad Sci USA 81: 3825-3829
    104. Fedoroff NV, Wessler S, Shure M (1983) Isolation of the transposable maize controlling elements Ac and Ds. Plant Cell 35: 235-242
    105. Felfodi K, Purnhanser L (1992) Induction of regenerating callus cultures from immature embryos of 44 wheat and 3 Triticeae cultivars. Cereal Res Com 20:273-277
    106. Felsenbury T, Feldman M, Galun E (1987) Aneuploid and alloplasmic lines as tools for the study of nuclear and cytoplasmic control of culture ability and regeneration of scutellar calli from common wheat. Theor Appl Genet 74:802-810
    107. Fennell S, Bohorova N, Ginkel M, Crossa J, Hoisington D (1996) Plant regeneration from immature embryos of 48 elite CIMMYT bread wheats. Theor Appl Genet 92:163-169
    108. Fernandez S, Michaux-Ferriere N, Coumans M (1999) The embryogenic response of immature embryo cultures of durum wheat (Triticum Desf): History and improvement by AgNO3. Plant Growth Regulation 28:147-155
    109. Galiba G, Kovacs G, Sutka J(1986) Substitution analysis of plant regeneration from callus culture in wheat. Plant Breed 97:261-263
    110. Gaunt RS, Riley A, Cannell M, Barcelo P, Lazzeri PA (2001) Procedures allowing the transformation of a range of European elite wheat (Triticum aestivum L.) varieties via particle bombardment. J Exp Bot 52:865-874
    111. Ge XJ, Chu ZH, Lin YJ, Wang SP (2006) A tissue culture system for different germplasms of indica rice. Plant Cell Rep 2006 25:392-402
    112. Ghaemi M, Sarrafi A, Morris R (1995) Reciprocal substitutions analysis of embryo induction and plant regeneration from anther culture in wheat (Triticum aestivum L.) Genome 38:158-165
    113. Greco R, Ouwerkerk PB, Taal AJ, Favalli C, Beguiristain T, Puigdomenech P, Colombo L, Hoge JH and Pereira A (2001) Early and multiple Ac transposition in rice suitable for efficient insertional mutagenesis. Plant Mol Biol 46:215-227
    114. Greco R, Ouwerkerk PBF, de Kam RJ, Sallaud C, Favalli C,Colombo L, Guiderdoul E, Meijer AH, Hoge JHC, Pereira A (2003) Transpositional behaviour of an Ac/Ds system for reverse genetics in rice. Theor Appl Genet 108:10-24
    115. Gu X, Liang GH (1997) Plantlet regeneration from protoplast-derived haploid embryogenic calli of wheat. Plant Cell Tissue Org Cult 50:139-145
    116. Guo GM, Maiwald F, Lorenzen P (1998) Factors influencing T-DNA transfer into wheat and barley cells by Agrobacterium tumefaciens. Cereal Res. Com. 26:15-22
    117. Haberlandt G (1902) Kulturversuche mit isolierten Pflanzenzellen. Sitzungsber Mat Nat K1 Kais Akad Wiss Wien 111:69-92
    118. Haliloglu K (2002) Wheat immature embryo culture for embryogenic callus induction. J Bio Sci 2: 520-521
    119. Haliloglu K, Stephen Baenziger P, Mitra A (2004) Genetic transformation of wheat (Triticum aestivum. L) anther culture derived embryos by eleetroporation. Biotech and Biotech Equipment 19: 62-69
    120. Hannon GJ (2002) RNA interference. Nature 418:244-251
    121. Hansen G, Chilton MD (1996) "Agrolistic" transformation of plant cells: integration of T-strands generated in planta. Proc Natl Acad Sci USA 93:14978-14983
    122. Hansen G, Wright MS (1999) Recent advances in the transformation of plants. Trends in Plant Sci 4: 226-231
    123. Harvey A, Moisan L, Lindup S, Lonsdale D (1999)Wheat regenerated from scutellum callus as a source of material for transformation. Plant Cell Tissue Org Cult 57:153-156
    124. Hauptmann RM, Vasil V, Ozia Akins P, Tabaeizadeh Z, Rogers SG, Fraley RT, Horsch RB, Vasil IK (1988) Evaluation of selectable markers for obtaining stable transformants in the Gramineae. Plant Physiol 86:602-606
    125. He DG, Mouradev A, Yang YM, Mouradeva E, Scott KJ (1994) Transformation of wheat (Triticum aestivum L) through electroporation of protoplasts. Plant Cell Rep 14:192-196
    126. He DG, Yang YM, Scott KJ (1988) A comparison of scutellum callus and epiblast callus induction in wheat: the effect of genotype, embryo age and medium. Plant Sci 57:225-231
    127. He DG, Yang YM, Scott KJ (1989) The effect of macro-elements in the induction of embryogenic callus from immature embryos of wheat (Triticum aestivum L). Plant Sci 64:251-258
    128. He GY, Lazzeri PA (1998a) Analysis and optimization of DNA delivery into wheat scutellum and Tritordeum inflorescence explants by tissue electroporation. Plant Cell Rep18:64-70
    129. He P, Shen LS, Lu CF, Chen Y, Zhu LH (1998b) Analysis of quantitative trait loci which contribute to anther culturability in rice (Oryza sativa L.) Mol Breed 4:165-172
    130. Helliwell C, Wanoshouse P (2003) Constructs and methods for highthroughput gene silencing in plants. Methods 30:289-295
    131. Henry Y, De Buyser J (1985) Effect of the 1B/1R translocation on anther culture ability in wheat (Triticurn aestivum L.). Plant Cell Rep 4:307-310
    132. Henry Y, Marcotte JL, De Byser J (1994a) Chromosomal location of genes controlling short-term and long-term somatic embryogenesis in wheat revealed by immature embryo culture of aneuploid lines. Theor Appl Genet 89:344-350
    133. Henry Y, Vain P, Buyser JD (1994b) Genetic analysis of in vitro plant tissue culture responses and regeneration capacities. Euphytica 79:45-58
    134. Hess JR and Carman JG (1998) Embryogenic competence of immature wheat embryos: genotype, donor plant environment and endogenous hormone levels. Crop Sci 38:249-253
    135. Hiei Y, Komari T, Kubo T (1997) Transformation of rice mediated by Agrobacterium tumefaciens. Plant Mol Biol 35:205-218
    136. Hobbs SLA, Warkenti TD, Delong CMO (1993) Transgene copy number can be positively or negatively associated with transgene expression. Plant Mol Biol 21:17-26
    137. Hohn B, Levy AA, Puchta H (2001) Elimination of selection markers from transgenic plants. Curr Opin Biot 12:139-143
    138. Holme IB, Olesen A, Hansen NJP, Andersen SB (1999) Anther and isolated microspore culture response of wheat, Triticum aestivum L., lines from northwestern and eastern Europe. Plant Breed 118: 111-117
    139. Hu T, Metz S, Chay C, Zhou HP, Blest N, Chen G, Cheng M, Feng X, Radionenko M, Lu F (2003) Agrobacterium-mediated large-scale transformation of wheat (Triticum aestivum L.) using glyphosate selection. Plant Cell Rep 21:1010-1019
    140. Huang WL, Lin LF (2002) Carbohydrate metabolism in rice during callus induction and shoot regeneration induced by osmotic stress. Bot Bull Acad Sin 43:107-113
    141. Huang XZ, Wei LZ, Ma ZQ (2004) Cloning and Characterization of a Ubiquitin Fusion Degradation Protein Gene in Wheat. Acta Botanica Sinica46:1366-1372
    142. Hunsinger H, Schauz K (1987) The influence of dicamba on somatic cmbryogenesis and frequency of plant regeneration from cultured immature embryos of wheat (Triticum aestivum L.). Plant Breed 98: 119-123
    143. Jeon JS, Lee S, Jung KH (2000) T-DNA insertional mutagenesis for functional genomics in rice. Plant J 22:561-570
    144. Jones JDG, Carland F, Lim E, Ralston E, Dooner HK (1990) Preferential transposition of the maize element Activator to linked chromosomal locations in tobacco. Plant Cell 2:701-707
    145. Jordan MC (2000) Green fluorescent protein as a visual marker for wheat transformation. Plant Cell Rep 19:1069-1075
    146. Kaleikau EK, Scars RG, Gill BS (1989a) Monosomic analysis of tissue culture response in wheat (Triticum aestivurn L.). Theor Appl Genet 78:625-632
    147. Kaleikau EK, Scars RG, Gill BS (1989b) Control of tissue culture response in wheat (Triticum aestivum L.). Theor Appl Genet 78:783-787
    148. Karp A (1994) Origins, causes, and uses of variation in plant tissue cultures. In I.K. Vasil and T.A. Thorpe (ed.) Plant cell and tissue culture. Kluwer Academic Publishers, Dordrecht, the Netherlands. pp: 136-151
    149. Karunaratne S, Sohn A, Mouradev A, Janet S, Steinbib HH, Scott KJ (1996) transformation of wheat with the gene encoding the coat protein of barley yellow mosaic virus. Aus J Plant Physiol 23: 429-435
    150. Khanna HK, Daggard GE (2003) Agrobacterium tumefaciens-mediated transformation of wheat using a super binary vector and a polyamine supplemented regeneration medium. Plant Cell Rep 21: 429-436
    151. Khush GS (1999) Green revolution: preparing for the 21st century. Genome 42:646-655
    152. Kloti A, Iglesias VA, Wijnn J, Burkhardt PK, Datta SK, Potrykus I (1993) Gene transfer by electroporation into intact scutellum cells of wheat embryos. Plant Cell Rep 12:671-675
    153. Komatsuda T, Annaka T, Oka S (1993) Genetic mapping of a quantitative trait locus (QTL) that enhances the shoot differentiation rate in Hordeum vulgare L.Theor Appl Genet 86:713-720
    154. Komatsuda T, Taguchi Shiobara F, Oka S, Takaiwa F, Annaka T, Jacobsen HJ (1995) Transfer and mapping of the shoot-differentiation locus Shdl in barley chromosome 2. Genome 38:1009-1014
    155. Koprek T, McElroy D, Louwerse J, Williams.Carrier R, Lemaux PG (2000). An efficient method for dispersing Ds elements in the barley genome as for determining gene function. Plant J 24:253-263
    156. Kothari SL, Varshney A (1998) Morphogenesis in long term maintained immature embryo derived callus of wheat (Triticum aestivum L.) Histological evidence for both somatic embryogenesis and organogenesis. J Plant Biochem Biotech 7:93-98
    157. Kwon YS, Kim KM, Eun MY, Sohn JK (2001) Quantitative trait loci mapping associated with plant regeneration ability from seed derived Callus in Rice (Oryza sativa L.). Mol Cells 11: 64-67
    158. Kwon YS, Kim KM, Eun MY, Sohn JK (2002) QTL mapping and associated marker selection for the efficacy of green regeneration in anther culture of rice. Plant Breed 121:10-16
    159. Lander ES, Botstein D (1989) Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121:185-199
    160. Langland JO, Jin S, Jacobs BL, Roth DA (1995) Identification of a plantencoded analog of PKR, the mammalian double-stranded RNA dependent protein kinase. Plant Physiol 108:1259-1267
    161. Langridge P, Brettschneider R, Lazzeri P, Lorz H (1992) Transformation of cereals via Agrobacterium and the pollen pathway: a critical assessment. Plant J 2: 631-638.
    162. Larsen ET, Tuvesson IKD, Andersen SB (1991) Nuclear genes affecting percentage of green plants in barley (Hordeum vulgare L.) anther culture. Theor Appl Genet 82:417-420
    163. Larue TAG, Gamborgo L (1971) Ethylene production by plant cell culture. Plant Physiol 48: 394-398
    164. Lawrence RJ, Pikaard CS (2003) Transgene-induced RNA innosference: a strategy for overcoming gene redundancy in pelyploids to generate loss-of-function mutations. Plant J 36:114-121
    165. Leckband G, Lorz H (1998) Transformation and expression of a stilbene synthase gene of Vitis vinifera L. in barley and wheat for increased fungal resistance. Theor Appl Genet 96:1004-1012
    166. Lee BT, Murdoch K, Topping J, Kreis M, Jones MGK (1989) Transient gene expression in aleurone protoplasts isolated from developing caryopses of barley and wheat. Plant Mol Bio 13:21-29
    167. Lee BT, Murdock K, Topping J, De Both MTJ, Wu QS, Karp A, Steele S, Symonds C, Kreis M, Jones MGK (1988) Isolation, culture and morphogenesis from wheat protoplasts, and study of expression of DNA constructs by direct gene transfer. Plant Cell Tissue Org Cult 22:233-236
    168. Lee TM, Turgeon R, Wu R (1986) Expression of a foreign gene linked to either a plant virus or a Drosophila promoter, after electroporation of protoplasts of rice, wheat and sorghum. Proc Natl Acad Sci USA 83:6815-6819
    169. Lin F, Kong ZX, Zhu HL, Xee SL, Wu JZ, Tian DG, Wei JB, Zhang CQ, Ma ZQ(2004) Mapping QTL associated with resistance to Fusarium head blight in the Nanda2419 x Wangshuibal population. Ⅰ. Type Ⅱ resistance. Theor Appl Genet 109:1504-1511
    170. Lin YJ, Zhang QF (2005) Optimizing the tissue culture conditions for high efficiency transformation of indica rice. Plant Cell Rep 23:540-547
    171. Lloyd A (2003) Vector construction for gene over-expression as a tool to elucidate gene function.Methods Mol Biol 236:329-344
    172. Lorz H, Baker B, Schell J (1985) Gene transfer to cereal cells mediated by protoplast transformation. Mol General Genet 199:178-192
    173. Loukoianov A, Yan L, Blechl A, Sanchez A, Dubcovsky J (2005) Regulation of VRN-1 vernalization genes in normal and transgenic wheat. Plant Physiol 138:2364-2373
    174. Ma ZQ, Sorrel M E, Tanksley S D (1995) RFLP markers linked to powdery mildew resistance genes Pm1, Pm2, Pm3 and Pm4 in wheat. Theor Appl Genet 90:601-606
    175. Machida C, Onouchi H, Koizumi J, Hamada S, Semiarti E, Torikal S, Machida Y (1997) Characterization of the transposition pattern of the Ac element in Arabidopsis thaliana using endonuclease Ⅰ-SceI. Proc Natl Acad Sci USA 94:8675-8680
    176. Maddock SE, Lancaster VA, Risiott R, Franklin J (1983) Plant regeneration from cultured immature embryos and inflorescences of 25 culfivars of wheat (Triticum aestivum). J Exp Bot 34: 915-926
    177. Maddock SR (1987) Suspension and protoplast culture of hexaploid wheat (Triticum aestivum L.). Plant Cell Rep 6:23-26
    178. Mahalakshmi A, Chugh A, Khurana P (2000) Exogenous DNA uptake via cellular perneabilization and expression of foreign gene in wheat zygotic embryos. Plant Biot 17:235-240
    179. Mahalakshmi A, Khurana P (1995)Agrobacteritan-mediated gene delivery in various tissues and genotypes of wheat (Triticum aestivum L.). J Plant Bioch Biot 4:55-59
    180. Mahalakshmi A, Khurana P (1997)Agrobacterium-mediated cereal transformation: A critical appraisal. Ind J Exp Bio 35:416-426
    181. Makandar R; Essig JS; Schapaugh MA; Trick HN; Shah J Genetically engineered resistance to fusarium head blight in wheat by expression of Arabidopsis NPR1. Mol Plant-microb Interact (2006) 19: 123-129
    182. Mano Y, Komatsuda T (2002) Identification of QTL controlling tissue culture traits in barley (Hordeum vulgate L.). Theor Appl Genet 105:708-715
    183. Mano Y, Takahashi H, Sato K, Takeda K (1996) Mapping genes for callus growth and shoot regeneration in barley (Hordeum vulgare L.). Breed Sci 46: 137-142.
    184. Marx J (2000) Interfering with gene expression. Science 288:1370-1372
    185. Mathias RJ, Atkinson E (1988) In vitro expression of genes affecting whole plant phenotype and the effect of Rht/Gai alleles on the callus culture response of wheat (Triticum aestivum L.). Theor Appl Genet 75:474-479
    186. Mathias RJ, Fukui K (1986a) The effect of specific chromosome and cytoplasm substitutions on the tissue culture response of wheat (Triticum aestivum) callus. Theor Appl Genet 71:797-800
    187. Mathias RJ, Simpson ES (1986b) The interaction of genotype and culture medium on the tissue culture responses of wheat (Triticum aestivum L) callus. Plant Cell Tissue Org Cult 7:31-37
    188. McCallum CM, Comai L, Greene EA, Henikoff S (2000) Targeted screening for induced mutations. Nat Biot 18:455-457
    189. McCormac AC, Wu HX, Bao MZ (1998) The use of visual marker genes as ceil-specific reporters of Agrobaterium-mediated T-DNA delivery to wheat (Triticum aestivum L.) and barley (Hordeum vulgate L.) Euphytica 99:17-25
    190. Mendoza MG, Kaeppler HF (2002) Auxin and sugar effects on callus induction and plant regeneration frequencies from mature wheat embryos of wheat (Triticum aestivum L.). In Vitro Cell Dev Biol Plant 38:39-45
    191. Menke Milczarek I, Zimny J (2001) NH4~+ and NO~(3-) requirement for wheat somatic embryogenesis. Acta Physiol Plant 23:37-42
    192. Mensuari SA, Panizza M, Tognoni E (1992) Quantification of ethylene losses in different container seal system and comparison of biotic and abiotic contributions to ethylene accumulation in cultured tissues. Plant Physiol 84:472-476
    193. Mihaly R, Kotai E, Kiss O, Pauk J (2002) In vitro selection of transformed foreign gene (bar) in wheat anther culture. Acta Biologica Szegediensis 46:9-10
    194. Mikami T, Kinoshita T (1988) Genotypic effects on the callus formation from different explants of rice (Oryza sativa L.). Plant Cell Tiss Org Cult 12:311-314
    195. Miki D, Itoh R, Shimamoto K (2005) RNA silencing of single and multiple members in a gene family of rice. Plant Physiol. 138:1903-1913
    196. Mooney PA, Goodwin PB (1991) Adherence of Agrobacterium tumefaciens to the cells of immature wheat embryos. Plant Cell Tissue Org Cult 25:199-208
    197. Muller E, Lorz H, Lutticke S (1996) Variabilty of transgene expression in clonal cell lines of wheat. Plant Sci 114:71-82
    198. Nabors MW, Heyser JW, Dykes TA, DeMott KJ (1983) Long-term high frequency plant regeneration from cereal tissue cultures. Planta 157:358-371
    199. Nadolska Orczyk A, Orczyk W (2003) Agrobacterium-mediated transformation of cereals. Plant Genetic Engineering 2:1-25
    200. Nehra NS, Chibbar RN, Leung N, Caswell K, Mallard C, Steinhauer L, Baga M, Kartha KK (1994) Self-fertile transgenic wheat plants regenerated from isolated scutellar tissues from microprojectile bombardment with two distinct gene constructs. Plant J 5:285-297
    201. Nishimura A, Ashikari M, Lin SY, Takashi T, Angeles E, Yamamoto T, Matsuoka M (2005) Isolation of a rice regeneration quantitative trait loci gene and its application to transformation systems. Proc Natl Acad Sci USA 102:11940-11942
    202. Nissen P (1994) Stimulation of somatic embryogenesis by ethylene: Effects of modulators of ethylene biosynthesis and action. Plant Physiol 92:397-403
    203. Oard JH, Paige D, Dvorak J (1989) Chimeric gene expression using maize intron in cultured cells of bread wheat. Plant Cell Rep 8:156-160
    204. Oard JH, Paige DV, Simmonds JA, Gradziel TM (1990) Transient gene expression in maize, rice and wheat cells using an air gun apparatus. Plant Physiol 92:334-339
    205. Oktem HA, Eyidogan F, Ertugrul F, Yuel M, Jenes B, Toldi O (1999) Marker gene delivery to mature wheat embryos via particle bombardment. Turkish J Bot 23:303-308
    206. Oldach KH, Becker D, Lorz H (2001) Heterologous expression of genes mediating enhanced fungal resistance in transgenic wheat. Mol Plant Microbe Interact 14:832-838
    207. Opabode JT (2006)Agrobacterium-mediated transformation of plants: emerging factors that influence efficiency. Biot Mol Bio Review 1:12-20
    208. Ortiz JPA, Reggiardo MI, Ravizzini RA, Altabe SG, Cervigni GDL, Spitteler MA, Morata MM, Elias FE, Vallejos RH (1996) Hygromycin resistance as an efficient selectable marker for wheat stable transformation. Plant Cell Rep 15:877-881
    209. Ozgen M, Turet M, Altmok S, Sancak C (1996) Callus induction and plant regeneration from immature and mature embryos of winter durum wheat genotypes. Plant Breed 115:455-458
    210. Ozgen M, Turet M, Altmok S, Sancak C (1998) Efficient callus induction and plant regeneration from mature embryo culture of winter wheat (Triticum aestivum L.) genotypes. Plant Cell Rep 18: 331-335
    211. Ozgen M, Turet M, Avcil M (2001) Cytoplasmic effects on the tissue culture response of callus from winter wheat mature embryos. Plant Cell Tissue Organ Cult 64:81-84
    212. Ozgen M, Turet M, Ozcan S, Sancak C (1996) Callus induction and plant regeneration from immature and mature embryos of winter durum wheat genotypes. Plant Breed 115:455-461
    213. Oztas Akins P, Vasil IK (1982) Plant regeneration from cultured immature embryos and inflorescences of Triticum aestivum L.(wheat) evidence for somatic embryogenesis. Protoplasma 110: 95-105
    214. Papenfuss JM, Carman JG (1987) Enhanced regeneration from wheat callus cultures using dicamba and kinetin. Crop Sci 27:588-593
    215. Patnaik D (2001) Wheat biotechnology: A minireview. Electronic J Biot 4:74-102
    216. Patnaik D, Khurana P (2003) Genetic transformation of Indian bread (T. aestivum) and. pasta (T. durum) wheat by particle bombardment of mature embryo-derived calli. BMC Plant Biol 3:1521-1532
    217. Pedrosa LP, Vasil IK (1996) Optimization of somatic embryogenesis and long-term regeneration in callus cultures of diploperennial teosinte. Maydica 41:333-348
    218. Pellegrineschi A, Noguera LM, Skovmand B, Brito RM, Velazquez L, Salgado MM, Hernandez R, Warburton M, Hoisington D (2002) Identification of highly transformable wheat genotypes for mass production of fertile transgenic plants. Genome 45:421-430
    219. Peterson K, LEAh R, Knudsen S, Cameron Mills V (2002) Matrix attachment regions (MARs) enhance transformation frequencies and reduce variance of transgene expression in barley. Plant Mol Biol 49:45-58
    220. Przetakiewicz A, Karas A, Orczyk W, Nadolska Orczyk A (2004) Agrobacterium-mediated transformation of polyploid cereals: The efficiency of selection and transgene expression in wheat. Cell Mol Biol Lett 9:903-917
    221. Przetakiewicz A, Orczyk W, Nadolska Orczyk A (2003) The effect of auxin on plant regeneration of wheat, barley and triticle. Plant Cell Tissue Org Cult 73:245-256
    222. Purnhauser L, Gyulai G (1993) Effect of copper on shoot and root regeneration in wheat, triticale, rape and tobacco tissue cultures. Plant Cell Tissue Org Cult 35:131-139
    223. Ramage CM, Williams RR (2002) Mineral nutrition and plant morphogenesis. Planta 38:116-24
    224. Rashid H, Ghani RA, Chaudhry Z (1991) Effect of Media, Growth Regulators and Genotypes on Callus Induction and Regeneration in Wheat (Triticum aestivum) Biotech (Asian Network for Scientific Information) 1:49-54
    225. Redway FA, Vasil V, Vasil IK (1990) Characterization and regeneration of wheat embryogenic cell suspension cultures. Plant Cell Rep 8:714-721
    226. Regina A, Bird A, Topping D, Bowden S, Freeman J, Barsby T, Kosar-Hashemi B, Li Z, Rahman S, Morell M (2006) High-amylose wheat generated by RNA interference improves indices of large-bowel health in rats. Proc Natl Acad Sci USA 103:3546-3551
    227. Ren YG, Jia JF, Li MY, Zhen GC (1990) Plant regeneration of protoplasts isolated from embryogenic calli of immature inflorescence of wheat. China Sci Bull 34:1648-1652
    228. Roder MS, Korzun V, Wendehake K, Plaschke J, Tixier M H, Leroy P, Ganal MW (1998) microsatellite map of wheat. Genetics 149:2007-2023
    229. Rota ML, Sorrells ME (2004) Comparative DNA sequence analysis of mapped wheat ESTs reveals the complexity of genome relationships between rice and wheat. Funct Integr Gen 4:34-46
    230. Satyavathi VV, Jauhar PP, Elias EM, Rao MB (2004) Effect of growth regeneration on in vito plant regeneration in durum. Crop Sci 44:1839-1846
    231. Sayar MT, Birsin MA, Ulukan H, Ozgen M (1999) Effect of seed size on the tissue culture response of callus from mature embryos of wheat species. Wheat Information Service 89:1-6
    232. Schweizer P, Pokoruy J, Schulze-Lefert P, Dudler R (2000) Double-stranded RNA interferes with gene function at the single-cell level in cereals. Plant J 24:895-903
    233. Sears RG, Deckard EL (1982) Tissue culture variability in wheat: callus induction and plant regeneration. Crop Sci 22:546-550
    234. Sevenier R, Coumans M (1996) Ethylene production and involvement during the first steps of durum wheat (Triticum durum) anther culture. Plant Physiol 96:146-151
    235. Shah MI, Jabeen M, Ilahi I (2003) In vitro callus induction, its proliferation and regeneration in seed explants of wheat. Pak J Bot 35:209-217
    236. Shah XY, Li DS, Qu RG (2000) Thidiazuron promotes in vitro regeneration of wheat and barely. In Vitro Cell Dev Biol Plant 36:207-210
    237. Sharm VK, Hansch R, Mendel RR, Schulze J (2005) Mature embryo axis-based high frequency somatic embryogenesis and plant regeneration from multiple cultivars of barely (Hordeum vulgate L). J Exp Bot 56:1913-1922
    238. Sharp GL, Martin JM, Launing SP, Blake NK, Brey CW, Sivamani E, Qu R, Talbert LE. (2002) Field evaluation of transgenic and classical sources of wheat streak mosaic virus resistance. Crop Sci 42: 105-110
    239. Simmonds J, Stewart P, Simmonds D (1992) Regeneration of Triticum aestivum apical explants after microinjection of germ line progenitor cells with DNA. Physiologia Plantarum 85:197-206
    240. Sivamani E, Bahieldin A, Wraith JM, Al Niemi T, Dyer WE, Ho TDH, Qu R (2000a) Improved biomass productivity and water use efficiency under water deficit conditions in transgenic wheat constitutively expressing the barley HVA1 gene. Plant Sci 155:1-9
    241. Sivamani E, Brey CW, Dyer WE, Talbert LE, Qu RD (2000b) Resistance to wheat streak mosaic virus in transgenic wheat expressing the viral replicase (NIb) gene. Mol Breed 6:469-477
    242. Smith DL, Yanai Y, Liu YG, Ishiguro S, Okada K, Shibata K, Whittier RF, Fedoroff NV (1996) Characterization and mapping of Ds-GUS-T-DNA lines for targeted insertional mutagenesis. Plant J 10: 721-732
    243. Smith NA, Singh SP, Wang M-B, Stoutjesdijk P, Green A and Wanoshouse PM (2000) Total silencing by intron-spliced hairpin RNAs. Nature 407:319-320
    244. Songstad DD, Duncan DR, Wikholm JM (1988) Effect of 1-Amlno cyclopropane-1-Carboxylic Acid, Silver from maize callus cultures. Plant Cell Rep 7:262-265
    245. Sorokin AP, Ke XY, Chen DF, Elliott MC (2000) Production of fertile transgenic wheat plants via tissue electroporation. Plant Sci 156:227-233
    246. Srivastara V, Anderson OD, Ow DW (1999) Single-copy transgenic wheat generated through the resolution of complex integration patterns. Proc Natl Acad Sci USA 96:11117-11121
    247. Stoger E, Vaquero C, Torres E, Sack M, Nicholson L, Drossard J, Williams S, Keen D, Perrin Y, Christou P, Fischer R (2000) Cereal crops as viable production and storage systems for pharmaceutical scFv antibodies. Plant Mol Bio 42:583-590
    248. Sundaresan V (1996) Horizontal spread of transposon mutagenesis: new uses for old elements. Plant Sci 1:184-190
    249. Szabados L, Kovace I, Oberschall A (2002) Distribution of 1000 sequenced T-DNA tags in the Arabidopsis genome. Plant J 32:233-242
    250. Szakacs E, Kovacs G, Pauk J, Barnabas B (1988) Substitution analysis of callus induction and plant regeneration from anther culture in wheat (Triticum aestivum L.) Plant Cell Rep 7:127-129
    251. Taguchi shiobara F, Komatsuda T, Oka S (2001) Comparative analysis of QTL for regeneration ability on barley 2H chromosome and rice chromosome 4. Rice Genetics Newsletter 18:14-15
    252. Taguchi Shiobara F, Lin SY, Tanno K, Komatseda T, Yano M, Sasaki T, Oka S (1997) Mapping quantitative trait loci associated with regeneration ability of seed callus in rice, Oryza sativa L. Theor Appl Genet 95:828-833
    253. Taguchi Shiobara F, Yamamoto T, Yano M, Oka S (2006) Mapping QTLs that control the performance of rice tissue culture and evaluation of derived near-isogenic lines. Theor Appl Genet 112: 968-972
    254. Tahiliani S, Kothari SL (2004) Increase copper content of the medium improves plant regeneration from immature embryo derived callus of wheat (Triticum aestivum L). J Bioch Blot 13:85-88
    255. Takeuchi Y, Abe T, Sasahara T (2000) RFLP Mapping of QTL influencing shoot regeneration from mature seed-derived callus in rice. Crop Sci 40:246-247
    256. Takuma I, Fuminori K, Kiyoshi M, Chiaki M (2000) Exogenous ethylene enhances formation of embryogenic callus and inhibits embryogenesis in cultures of explants of spinach roots. J Am Soc Hort Sci 25:21-24
    257. Takumi S, Murai K, Mori N, Nakamura C (1999) Trans-activation of a maize Ds transposable element in transgenic wheat plants expressing the Ac transpose gene. Theor Appl Genet 98:947-953
    258. Talukder MZI, Shamsuddin AKM, Rahman H, Has.san L (2004) Effect of Media Components on Nature of Callus and Subsequent Regeneration of Spring Wheat (Triticum aestivum L.) Plant Tissue Cult 14:113-121
    259. Tang G, Galili G (2004) Using RNAi to improve plant nutritional value: from mechanism to application. Trends Biotechnol 22:463-469
    260. Tomas CM, Jones DA, English JJ, Carroll BJ, Bennetzen JL, Harrison K, Burbidge A, Bishop GJ, Jones JD (1994) Analysis of the chromosomal distribution of transposon-carrying T-DNAs in tomato using the inverse polymerase chain reaction. Mol Gen Genet 242:573-585
    261. Torp AM, Hansen AL, Andersen SB (2001) Chromosomal regions associated with green plant regeneration in wheat (Triticum aestivum L.) anther culture. Euphytica 119:377-387
    262. Travella S, Klimm TE, Keller B (2006) RNA innosference-based gene silencing as an efficient tool for functional genomics in hexaploid bread wheat. Plant Physiol 142:6-20
    263. Trifonova A, Madsen S, Olesen A (2001) Agrobacterium-mediated transgene delivery and integration into barley under a range of in vitro culture conditions. Plant Sci 161:871-880
    264. Turhan H, Baser I (2004) Callus induction from mature Embryo of winter wheat (Triticum aestivum L.) Asian J Plant Sci 3:17-19
    265. Tuvesson IKD, Pedersen S, Andersen SB (1989) Nuclear genes affecting albinism in wheat (Triticurn aestivum L.) anther culture. Theor Appl Genet 78:879-883
    266. Ulker B, Allen GC, Tompson WF, Spiker S, Weisinger AK (1999) A tobacco matrix attachment region reduces the loss of transgene expression in the progeny of transgenic tobacco plants. Plant J 18: 253-263
    267. Uze M, Potrykus I, Sautter C (2000) Factors influencing T-DNA transfer from Agrobacterium to precultured immature wheat embryos (Triticum aestivum L.). Cereal Res. Com. 28:17-23
    268. Vain P, Flament P, Soudain P (1989a) Role of ethylene in embryogenic callus initiation and regeneration in Zea Mays L. Plant Physiol 146:537-540
    269. Vain P, Worland B, Kohli A, Shape JW, Christou P, Allen GC (1999) Matrix attachment regions increase transgene expression levels and stability in transgenic rice plants and their progeny. Plant J 18: 233-242
    270. Vain P, Yean H, Plament P (1989b) Enhancement of production and regeneration of embryogenic type callus in Zea Mays L. by AgNO3. Plant Cell Tissue Org Cult 18:143-151
    271. Van Der AHM, Hall GE, Spiker S, Hall TC (1994) The phaseolin gene is flanked by matrix attachment regions. Plant J. 6:413-423
    272. Van Der FL, Deakin EA, Hoge JHC, Memelink J (2000) The ternary transformation system: Constitutive virG on a compatible plasmid dramatically increases Agrobacterium-mediated plant transformation. Plant Mol Biol 43:495-502
    273. Van Deynze AE, Nelson JC, Ygiesias ES, Harrington SE, Braga DP, McCouch SR, Sorrells ME (1995) Comparative mapping in grasses. Wheat relationships. Mol Gen Genet 248:744-754
    274. Vasil V, Brown SM, Re D, Fromm ME, Vasil IK (1991) Stably transformed callus lines from microprojectile bombardment of cell suspension cultures of wheat. Bio/Technology 9:743-747
    275. Vasil V, Castillo AM, Fromm ME, Vasil IK (1992) Herbicide resistant fertile transgenic wheat plants obtained by microprojectile bombardment of regenerable embryogenic callus. Bio/Technology 10: 667-674
    276. Vasil V, Redway FA & Vasil IK (1990) Regeneration of plants from embryogenic suspension culture protoplasts of wheat (Triticum aestivum L.) Bio/Technology 8:429-434
    277. Vasil V, Srivastava V, Castillo AM, Fromm ME, Vasil IK (1993) Rapid production of transgenic wheat plants by direct bombardment of cultured immature embryos. Bio/Technology 11:1553-1558
    278. Viertel K, Schmid A, her M, Hess D (1998) Regeneration of German Spring wheat varieties from embryogenic scutellar callus. Plant Physiol 152:167-172
    279. Wallroth M, Gerates AGM, Rogers SG, Fraley RT, Horsch RB (1986) Chromosomal location of foreign genes in Petunia hybrida. Mol Gen Genet 202:6-15
    280. Wang, YC, Klein TM, Fromm M, Cao J, Sanford JC, Wu R (1988) Transient expression of foreign genes in rice, wheat and soybean cells following particle bombardment. Plant Mol Bio 11:433-439
    281. Weeks T (2000) Transformation of wheat with the cyanamide hydratase gene (09/518,988). Patent. U.S. Department of Agriculture. Agricultural Research Service. Available on world wide web. http://ott.arsusda.gov/Inv/a518988.html
    282. Werr W, Lorz H (1986) Transient gene expression in a Gramineae cell line. Mol Gen Genet 202: 471-475
    283. Wesley SV, Helliwell C, Smith NA, Wang MB, Rouse D, Liu Q, Gooding P, Singh S, Abbott D, Stoutjesdijk P, Robinson S, Gleave A, Green A, Wanosbouse PM (2001) Constructs for Efficient, Effective and High Throughput Gene Silencing in Plants. Plant J 27:581-590
    284. Wu BH, Zheng YL, Liu DC, Zhou YH (2003) Trait correlation of immature embryo culture in breed wheat. Plant Breed 122:47-51
    285. Wu BH, Zheng YL, Liu DC, Zhou YH, Yan ZH (2003) Unisexual pistillate flower regeneration in immature embryo culture of wheat. Acta Bot Sinica 45:452-459
    286. Wu LM, Wei YM, Zheng YL (2006) Effects of Silver Nitrate on the Tissue Cultureof Immature Wheat Embryos. Russia J Plant Physiol 53: 530-534.
    287. Xia GM, Li Z Y, He CM (1999) Transgenic plant regeneration from wheat (Triticum aestivum L.) mediated by Agrobacterium tumefacien. Acta Phyto-physiologica Sinica 25:22-28
    288. Xue H, Yang YT, Wu CA, Yang GD, Zhang MM, Zheng CC (2005) TM2, a novel strong matrix attachment region isolated from tobacco, increases transgene expression in transgenic rice calli and plants. Theor Appl Genet 110:620-627
    289. Xue ZY, Zhi DY, Xue GP, Zhang H, Zhao YX, Xia GM (2004) Enhanced salt tolerance of transgenic wheat (Triticum aestivum L.) expressing a vacuolar Na~+/H~+ antiporter gene with improved grain yields in saline soils in the field and a reduced level of leaf Ha~+. Plant Sci 167:849-859
    290. Yamagishi M, Otani M, Higashi M (1998) Chromosomal regions controlling anther culturability in rice (Oryza sativa L.). Euphytica 1103:227-234
    291. Yan L, Loukoianov A, Blechl A, Tranquilli G, Ramakrishna W, SanMiguel P, Bennetzen JL, Echenique V, Dubcovsky J (2004) The wheat VRN2 gene is a flowering repressor downregulated by vernalization. Science 303:1640-1644
    292. Yasmin R, Javed F, Arfan M (2003) Somatic embryogenesis in callus culture of wheat (Triticum aestivum L.) Accession 235/2. Plant Cell Rep 8:558-560
    293. Yu ZL, Yang JB, Wu YJ (1993) Transferring GUS gene into intact rice cells by low energy ion beam. Nucl Instrum Meth 80:1328-1331
    294. Zaghmout OMF (1994) Transformation of protoplasts and intact cells from slowly growing embryogenic callus of wheat (Triticum aestivum L.). Theor Appl Genet 89:577-582
    295. Zaghmout OMF, Trolinder NL (1993) Simple and efficient method for directly electroporating Agrobacterium plasmid DNA into wheat callus cells. Nucleic Acids Res 21:1048-1052
    296. Zhang LY, French R, Langenberg WG, Mitra A (2001) Accumulation of barely stripe mosaic virus is significantly reduced in transgenic wheat plants expressing a bacterial ribonuclease. Transgenic Res 10:13-19
    297. Zhou H, Konzak CF (1992) Genetic control of green plant regeneration from anther culture of wheat. Genome 35:957-961
    298. Zhou H, Stiff CM, Konzak CF (1993) Stably transformed callus of wheat by electroporation-induced direct gene transfer. Plant Cell Rep 12:612-619

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700