用户名: 密码: 验证码:
酸敏感离子通道与异丙酚抗伤害作用及氯喹所致非组胺性瘙痒的关系
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分:异丙酚的抗伤害性作用与酸敏感离子通道的关系
     研究背景
     异丙酚是一种新型、起效快、作用时间短的静脉麻醉药,并且与其他静脉麻醉药的化学结构有所不同。异丙酚的药理学作用非常复杂,除了具有镇静催眠的作用之外,研究表明其还具有抗伤害性感受的作用:包括降低醋酸引起的内脏痛;抑制炎症性疼痛;降低伤害性信号在脊髓水平的传导等,但其作用机制尚不十分明确。背根神经节(DRG)在机体伤害性感知中具有重要作用,并广泛表达ASIC1a和ASIC3。酸敏感离子通道(ASICs)隶属于上皮钠离子通道家族,广泛表达于中枢和外周神经系统,是由质子(H+)激活的阳离子通道,并可介导酸诱发的伤害性刺激。异丙酚是否对DRG上的ASICs具有调节作用尚不知。
     目的
     通过测定异丙酚对DRG神经元上的ASICs电流的影响,探讨异丙酚抗伤害性作用可能的机制;通过测定异丙酚对转染于HEK293细胞上的AISC la和ASIC3质粒电流的影响,探讨异丙酚对ASICs调节作用可能的机制。
     方法
     1、采用膜片钳全细胞技术测定异丙酚对DRG神经元上ASICs电流的作用
     分离培养DRG神经元,待细胞贴壁后,选择15~30μM的小直径DRG神经元进行膜片钳全细胞实验,测定异丙酚对ASICs电流的影响。
     2、利用膜片钳全细胞技术分别测定异丙酚对转染于人肾上皮细胞株(HEK293)上的ASIC1a和ASIC3电流的影响
     采用脂质体2000,分别转染pcDNA3.0-GFP-ASIC1a和pcDNA3.0-GFP-ASIC3质粒于HEK293细胞上。转染后24-48h,选择具有绿色荧光(GFP)的细胞,采用膜片钳全细胞技术分别测定异丙酚对ASIC1a和ASIC3通道电流的影响。
     结果
     1、异丙酚对大鼠DRG神经元上ASICs电流的影响
     (1)pH值6.0的细胞外液可诱发多数DRG神经元产生内向电流,并且内向电流主要有三种类型:①快激活快失活的电流类型;②快激活慢失活并带有小的稳态成分的电流类型;③稳态不失活的电流类型。三种内向电流的快激活相的峰值几乎完全被广谱的ASICs抑制剂(阿米洛利)所抑制,并且三种内向电流的稳态电流被部分抑制。
     (2)异丙酚对DRG神经元上的三种类型的ASICs电流峰值幅度的影响
     异丙酚(30μM)对三种类型的ASICs电流的峰值幅度均有抑制作用。将电压钳转换为电流钳模式后,pH6.0的溶液可激发部分DRG神经元产生动作电位并且异丙酚(30μM)可降低pH6.0的酸溶液诱发的大鼠DRG神经元的动作电位数目,但对动作电位的动力学没有影响。
     2、异丙酚对DRG神经元上ASICs电流峰值幅度抑制作用的剂量-反应关系异丙酚(3、30、100、300μM)剂量依赖性地抑制ASICs电流的峰值幅度。
     3、异丙酚对DRG神经元上ASICs电流H+的敏感性的影响异丙酚(30μM)对DRG神经元上ASICs电流H+的敏感性没有影响:细胞外液中加入异丙酚,ASICs电流峰值对H+的剂量-反应曲线没有明显的变化。
     4、异丙酚对分别转染于HEK293细胞上的ASIC la和ASIC3电流的峰值幅度的影响
     异丙酚(30μM)对HEK293细胞上转染的ASIC1a和ASIC3电流同样具有抑制作用,表明异丙酚对ASIC1a和ASIC3通道具有直接抑制作用。
     结论
     异丙酚对DRG神经元上ASICs通道电流的峰值幅度具有抑制作用,此作用部分解释了异丙酚抗伤害性的作用机制。
     第二部分
     酸敏感离子通道3与氯喹非组胺依赖性瘙痒的关系
     研究背景
     背根神经节(DRG)在伤害性感知中具有重要作用,并广泛表达ASIC1a和ASIC3。与ASIC1a通道的动力学有所不同,ASIC3在微酸环境(pH7.2)下即可被激活,并含有稳态电流成分,从而产生持续的内向电流,在伤害性感知方面具有更重要的作用。除疼痛外,瘙痒也是一种不愉快的伤害性的机体感受,并伴随着皮肤和神经系统的紊乱。痒觉主要通过组胺依赖性和非组胺依赖性两种途径所产生的,其中非组胺依赖性途径占主要地位,但其机制尚不清楚。临床常用抗疟药氯喹是一种非组胺依赖性致痒物质,最近常被当作工具药研究非组胺性瘙痒的细胞及分子机制。近期研究发现DRG神经元上Mas相关G蛋白偶联受体A3(MrgprA3)和瞬时感受器电位香草酸受体1(TRPV1)参与氯喹诱发的瘙痒。以往研究证实ASIC3和TRPV1都可被H+激活,并都与疼痛引起的伤害性感受机制有关,但ASIC3是否也参与氯喹性瘙痒的产生尚不清楚。
     目的
     通过测定氯喹对转染于中国仓鼠卵母(CHO)细胞上的ASIC3质粒电流的影响,探讨氯喹对ASIC3的调节作用及可能的结合位点;通过动物行为学实验,探讨ASIC3与氯喹性瘙痒的关系。
     方法
     1、转染ASIC3质粒于CHO细胞上,利用膜片钳全细胞技术测定氯喹对CHO细胞上ASIC3电流的影响
     采用脂质体2000,转染pcDNA3.0-GFP-ASIC3质粒于CHO细胞上。转染后24-48h,选择具有绿色荧光的CHO细胞,利用膜片钳全细胞技术测定氯喹对ASIC3电流的影响。
     2、采用快速点突变PCR技术,突变ASIC3非质子激活位点,测定氯喹与ASIC3可能的结合位点
     采用快速点突变PCR技术,突变ASIC3的非质子激活位点(GLU-79或GLU-423),利用脂质体2000,分别转染突变的ASIC3质粒于CHO细胞上,应用膜片钳全细胞技术测定氯喹对CHO细胞上突变的ASIC3电流的影响。
     3、采用膜片钳全细胞技术测定氯喹对DRG神经元上ASIC3样电流的作用分离培养DRG神经元细胞,待细胞贴壁后,选用小直径DRG神经元(15~30μM)进行膜片钳全细胞实验,测定氯喹对ASIC3样电流的影响。
     4、采用动物行为学方法,测定ASIC3与氯喹性瘙痒的关系
     将含有药物的溶液注射到小鼠面颊部,采用双盲法测定30min内小鼠前爪的擦拭次数(代表痛觉)和后爪的搔抓次数(代表痒觉)。
     结果
     1、氯喹对转染于CHO细胞上的ASIC3电流动力学的影响
     氯喹(300μM)延长了pH7.0激活的ASIC3电流的脱敏时间,并增大了其稳态电流,但对ASIC3电流的峰值幅度没有影响。
     2、不同浓度的氯喹对ASIC3稳态电流影响的剂量-效应关系
     不同浓度的氯喹(30、100、300μM及1、1.5、2mM)对pH7.0激发的ASIC3的稳态电流具有剂量依赖性的增大作用。为了测定氯喹对持续开放的ASIC3电流的影响,本研究首先采用pH值7.0的细胞外液激活ASIC3,然后连续阶梯性增加氯喹浓度,结果发现ASIC3的稳态电流也相应阶梯型增大。
     3、氯喹对ASIC3稳态电流pH敏感性的影响
     本实验将细胞外液pH值从7.4阶梯性下降至6.8(以0.1或0.2U为一个阶梯,每阶段持续10s)。结果发现,细胞外液的pH值从7.4降至7.0时,ASIC3的稳态电流逐步增大,之后随着细胞外液pH值的降低,ASIC3的稳态电流反而逐渐变小,从而形成倒钟形曲线。细胞外液中加入氯喹(300μM),再次测定ASIC3的稳态电流对pH阶梯性改变的反应,结果显示,氯喹改变了ASIC3稳态电流对pH的敏感性。
     4、氯喹对ASIC3稳态电流的影响与细胞外H+及Ca2+浓度之间的关系
     本研究测定了不同pH值(pH7.0、pH6.5和pH6.0)下,氯喹(300μM)对ASIC3稳态电流的作用。结果显示:氯喹增大ASIC3稳态电流的作用随着pH值的降低而减小,然而在无钙(0mM)或高钙(3mM)的细胞外液中,氯喹增强ASIC3稳态电流的作用没有显著性变化。
     5、高浓度氯喹可直接激活ASIC3,其可能的结合位点是非质子结合区(Glu-423和Glu-79)
     氯喹不仅在酸性环境下增大ASIC3的稳态电流,而且在正常pH的细胞外液中,高浓度氯喹(3mM)也可直接激活ASIC3,从而产生内向稳态电流。
     以往研究证实ASIC3上GLU-79和GLU-423位点为非质子结合区域,此区域介导稳态电流的激活,对质子不敏感。为进一步测定高浓度氯喹对ASIC3直接激活作用可能的位点,本研究将ASIC3的GLU-79或GLU-423位点进行突变。结果显示:氯喹(3mM)对CHO细胞上突变GLU-79或GLU-423位点的ASIC3的激活作用显著性降低。
     6、氯喹对DRG神经元上ASIC3样电流的影响
     ASIC3质粒形成的是同聚体通道,而研究表明AISC3同聚体与异聚体的电流动力学特性有诸多不同。DRG在伤害性感知中具有重要作用,并高表达ASIC3亚基,为此,本研究测定了氯喹(300μM)对DRG神经元细胞上ASIC3样电流的调节作用,结果显示:氯喹(300μM)对DRG神经元细胞上pH6.5激发的ASIC3样电流的稳态成分同样具有增大作用。
     7、ASIC3在氯喹诱发的小鼠的搔抓反应中的作用以及ASIC3非质子区激活物质(阿米洛利、GMQ及NPFF)对小鼠搔抓反应的影响结果显示:小鼠面颊部注射氯喹后,产生了明显的搔抓反应,并且此反应可被ASIC3特异性阻断剂(APETx2)所抑制。为进一步证实这个结论,本研究测定了小鼠对皮下注射ASIC3非质子激活物质(阿米洛利、GMQ)的搔抓反应,结果发现两者均可引起小鼠的搔抓反应。以往研究表明,内源性神经肽FF(NPFF)可增强ASIC3的稳态电流。本实验将NPFF注射到小鼠面颊部发现:NPFF同样可诱发大鼠的搔抓反应。
     结论
     1、氯喹剂量依赖性的增大ASIC3的稳态电流,此作用具有pH值依赖性且与细
     胞外液的钙离子浓度无关。
     2、氯喹可通过作用于ASIC3的非质子门控区域,直接激活ASIC3.
     3、ASIC3特异性阻断剂(APET×2)可阻断氯喹引起的小鼠的搔抓反应,并且ASIC3非质子激活剂(阿米洛利,GMQ和NPFF)也可诱发瘙痒反应,从而表明ASIC3可能是氯喹非组胺性瘙痒新的感受器。
     第三部分
     氯喹对大鼠回肠粘膜上皮细胞离子转运的影响
     研究背景
     在临床应用过程中,氯喹除了具有瘙痒的副作用之外,还存在胃肠道方面的副作用,包括恶心或腹泻,但其机制尚不明确。肠道离子转异常可导致水电解质吸收减少或分泌过多进而引起腹泻。研究指出氯喹可激活广泛表达于肠道上皮细胞的苦味受体(TAS2Rs),并且苦味化合物(6-PTU)可诱发大肠粘膜上皮细胞阴离子的分泌。氯喹是否影响肠道粘膜上皮细胞的离子转运及此作用是否与TAS2Rs可能的关系,尚不十分清楚。
     目的
     采用尤氏灌流(Ussing Chamber)测定氯喹对大鼠回肠粘膜上皮细胞离子转运的影响及可能的机制。
     方法
     1、采用Ussing Chamber技术,测定氯喹对大鼠回肠粘膜上皮细胞离子转运的影响
     急性分离大鼠的回肠粘膜上皮,将其固定于尤氏灌流槽中,测定氯喹对大鼠回肠分泌的影响,加入各种离子通道阻断剂,探讨其可能的机制。
     2、利用免疫细胞化学技术,测定参与氯喹对大鼠回肠粘膜上皮细胞离子转运的通道与TAS2Rs的关系
     结果
     1、氯喹对大鼠回肠粘膜上皮细胞的短路电流(Isc)具有双相作用
     在较低浓度(≤5×10-4M)时,氯喹剂量依赖性地增加大鼠回肠粘膜上皮细胞的Isc,在较高浓度(≥10-3M)时,氯喹降低大鼠回肠粘膜上皮细胞的Isc。
     2、河豚毒素(TTX)对氯喹诱发的大鼠回肠粘膜上皮细胞Isc变化的影响
     肠道神经系统(ENS)在肠上皮细胞离子转运的调节中起着重要的作用。TTX是一种常用的钠离子通道阻断剂,可抑制肠道神经通路对肠上皮分泌的影响。为研究ENS是否参与氯喹对回肠粘膜上皮细胞Isc的影响,研究者将TTX(10-6M)加入到回肠粘膜上皮细胞的浆膜侧的电解液中孵育15min,然后入氯喹,结果显示:TTX对氯喹诱发的回肠粘膜上皮细胞Isc的变化没有影响。
     3、多种离子通道阻断剂对氯喹诱发的回肠粘膜上皮细胞Isc变化的影响
     为进一步研究氯喹增加回肠粘膜上皮细胞Isc的机制,我们应用多种离子通道阻断剂探讨了氯喹对回肠粘膜上皮细胞浆膜侧Isc影响可能的机制。结果显示:钙激活的氯通道(Calcium-activated chloride channels, CaCCs)参与了氯喹对回肠粘膜上皮细胞Isc的作用。
     4, CaCCs-TMEM16A和TAS2Rs在大鼠回肠细胞株(IEC-18)上的关系
     研究表明跨膜蛋白16A (TMEM16A)是CaCCs的分子结构。本研究采用免疫细胞化学的方法发现CaCCs-TMEM16A和TAS2Rs在IEC-18上共定位。
     5、电解液中的氯离子和钙离子对氯喹诱发的大鼠回肠粘膜上皮细胞Isc变化的影响
     本研究采用无氯离子或无钙离子的电解液,进一步研究氯喹对回肠粘膜上皮细胞Isc影响的机制。结果显示:在无氯离子的电解液中,氯喹对回肠粘膜上皮细胞Isc的作用显著性降低。在无钙离子的电解液中,氯喹对回肠粘膜上皮细胞Isc基线的影响几乎完全消失。
     6、其他苦味化合物对大鼠回肠粘膜上皮细胞Isc的影响
     本研究采用Ussing chamber测量了苦味化合物(苦精,10-4M;奎宁,10-4M)对大鼠回肠粘膜上皮细胞Isc的影响。结果表明:苦精或奎宁同样增加回肠粘膜上皮细胞的Isc。
     结论
     低浓度的氯喹可通过激活TAS2Rs,进而激活CaCCs导致大鼠回肠粘膜上皮细胞氯离子分泌增加,此作用不依赖于肠道神经系统,氯喹的这一机制为其胃肠道的副作用提供了新的理论依据。
Part I The role of ASICs on the anti-nociceptive effects of propofol Background
     Propofol is widely used intravenous anesthetics for the induction and maintenance of general anesthesia. In addition to its anesthetic properties, several studies have shown that propofol has anti-nociceptive effects, including against visceral pain evoked by acetic acid, as well as the capacity to reduce inflammatory pain and depress nociceptive transmission at the spinal level. However, the molecular mechanisms responsible for these anti-nociceptive effects of propofol remain unclear.
     Acid-sensing ion channels (ASICs) belong to the epithelial sodium channel/degenerin (ENaC/DEG) family and are activated by extracellular protons. They are widely distributed within both the central and peripheral nervous systems. ASIC activation by protons induces sodium and/or calcium influx, giving rise to depolarization and evoking action potentials in neurons. Dorsal root ganglion (DRG) cells play an important role in the perception of nociception and highly expressed ASIC la and ASIC3. However, the regulation of propofol on ASIC is still unclear.
     Objective
     The present researched was designed to investigate the effect of propofol on the ASICs in DRG neurons and HEK293cells transfected with either ASIC1a or ASIC3.
     Methods
     1、Investigated the effect of propofol on ASICs in DRG neuron using whole-cell patch clamping.
     DRG neurons were isolated and placed into Petri dishes. DRG neurons in the range of15~30μm diameter were chosen to test the effect of propofol on acid-evoked currents using whole-cell patch clamping.
     2、Investigated the effect of propofol on HEK193cells transfected with either ASIC la or ASIC
     Cells were transfected with pcDNA3.0constructs encoding ASIC la or ASIC3and green fluorescent protein (GFP) using LipofectamineTM2000. All recordings were made24to48h after transfection in GFP-positive cells using whole-cell patch clamping.
     Result
     1、Effects of propofol on acid-evoked currents in rat DRG neurons An acid-evoked inward current was observed in the majority of DRG neurons. Three main current types were observed:1) a rapidly inactivating current with a fast transient phase;2) a slow-inactivating transient current followed by a small sustained component;3) a non-inactivating current with a small transient phase.
     Amiloride, a broad-spectrum proton-gated channel blocker, completely blocked all three types of transient currents and treatment with propofol (30μM) produced a significant reduction in the peak amplitude of acid-evoked currents (pH6.0) in DRG neurons. Under the current-clamp conditions, propofol decreased the number of action potentials induced by acid stimuli in rat DRG neurons.
     2、Dose-response relationship of propofol on acid-evoked currents in rat DRG neurons
     The peak amplitudes of the currents were reduced in response to to3,30, and300μM of propofol, indicating that the propofol-induced inhibition was dose-dependent.
     3、The pH-dependent activation of ASIC currents in response to propofol in rat DRG neurons
     We next investigated whether propofol affects the sensitivity of ASICs to H+. The result showed no apparent shift in the H+dose-response curve.
     4、The effects of propofol on acid-evoked currents in ASIC la and ASIC3-transfected HEK293cells
     Propofol significantly inhibited both ASIC1a and ASIC3currents transfected in HEK293cells, indicating that propofol directly inhibits ASIC currents.
     Conclusion The present results suggested that propofol inhibits proton-gated currents in DRG neurons and this effect could partly explain the anti-nociceptive effects of propofol in primary afferent neurons.
     Part Ⅱ The role of ASIC3on the chloroquine-evoked itch
     Backgroud
     DRG has an important role in the perception of nociception and widely expressed ASIC1a and ASIC3. Different from ASIC la, ASIC3could be activated at slightly acidic environment and has the steady state current which produces sustained inward currents. Therefore, it has a more important role in the perception of nociception. In addition to pain, itch also is an unpleasant sensation that evokes a desire to scratch, which accompanies numerous skin and nervous system disorders. The mechanisms of itch mainly include histamine-dependent and independent pathways. The histamine-independent pathway is more important, but the mechanism is unclear. Chloroquine (CQ) has been used in animal studies and in humans as a tool to study the itch mechanisms. Recent studies have found that Mas-related G protein-coupled receptor A3(MrgprA3) and Trpvl channel involved in CQ-induced itch mechanisms. Previous studies have demonstrated that ASIC3and Trpvl are concerned with the pain caused by nociceptive mechanisms and all can be activated H+. However, whether ASIC3is also involved in CQ-evoked itch is still unclear.
     Objective
     The present researched was designed to investigate the regulation of CQ on ASIC3currents and the relationship of ASIC3channels with CQ-evoked itch.
     Method
     1、Investigated the effect of CQ on Chinese Hamster Ovary (CHO) cells transfected with ASIC3.
     Cells were transfected with pcDNA3.0constructs encoding ASIC3and green fluorescent protein (GFP) using LipofectamineTM2000. All recordings were made24to48h after transfection in GFP-positive cells using whole-cell patch clamping.
     2、Investigated the possible binding sites of CQ on ASIC3by quick point mutation PCR technique.
     GLU-79or GLU-423site of ASIC3was mutated using quick point mutation PCR technique. CHO Cells were transfected with mutated ASIC3using LipofectamineTM2000. Recordings were made24to48h after transfection in GFP-positive cells using whole-cell patch
     3、Investigated the effect of CQ on ASIC3-like currents in DRG neuron using whole-cell patch clamping.
     DRG neurons were isolated and placed into Petri dishes. DRG neurons in the range of15~30μm diameter were chosen to test the effect of CQ on ASIC3-like currents in DRG neuron using whole-cell patch clamping.
     4, Investigated the relationship of ASIC3with CQ-evoked itch.
     The corresponding drugs were injected in the cheek of mice and counted the number of counted scratching with the hind limb as an indicator of itch and wiping with the forelimb as an indicator of pain.
     Result
     1、CQ selectively potentiates the sustained currents of proton gated ion channels in ASIC3-transfected CHO cells.
     CQ enhanced the sustained current and extended the time of desensitization of ASIC3, which was evoked in CHO cells transfected with ASIC3, however, the peak currents were not. Next, we tested the dose dependence of CQ-mediated enhancement of this sustained current. CQ selectively enhances the sustained current in a dose-dependent manner.
     2、CQ reset pH sensitivity of sustained ASIC3current
     The pH is dropped from7.4to6.8in steps of0.1or0.2U, with each step held for10seconds. In CHO cells transfected with ASIC3DNA, the activation curve of sustained ASIC3currents was traditional bell-shaped, which peaks at pH7.0. We tested CQ on the sustained current and found that it increases sustained ASIC3current and shifts the bell-shaped activation curve to right. In other words, CQ resets the pH sensitivity of sustained ASIC3current.
     3、CQ-induced potentiation of the sustained current was pH dependent and Ca2+ independent.
     We found that CQ dramatically enhanced the sustained component without altering the peak component. CQ-induced potentiation of the sustained current was pH dependent. We also investigated the sensitivity of CQ-induced potentiation of the sustained currents to alterations of extracellular Ca2+. The presence of either low extracellular Ca2+(0mM) or high extracellular Ca2+(3raM) has no effect on the CQ-induced potentiation of the ASIC3sustained currents, suggesting that CQ-induced enhancement of the sustained component is independent of extracellular Ca2+.
     4, ASIC subunit specificity
     To address ASIC subunit specificity, we recorded CQ responses in CHO cells expressing different ASIC subunits. Not like the ASIC3, the homomeric channels ASIC1a was not activated by CQ.
     5、Mutation at Glu-79or Glu-423Prevents ASIC3Channel Activation by CQ
     Recently, a novel nonproton ligand-sensing domain of ASIC3channels was uncovered, lined by residues around Glu-423and Glu-79of the extracellular "palm" domain of the ASIC3channel. To ascertain that CQ activates ASIC3via interactions with GMQ-sensing domain, we substituted Glu-79and Glu-423with alanine. Mutation at either Glu-79or Glu-423largerly abolished ASIC3channel activation by CQ, which support the view that CQ directly interacts with the non proton ligand.
     6、CQ enhances the sustain phase of acid-activated curents in DRG neurons
     CQ also selectively enhances the sustained phase of acid-evoked current.
     7、 CQ and other compounds such as Ali, GMQ and NPFF, which are known to induce potentiation of the sustain phase of ASIC3current, induce itch in BALB/c mice.
     We tested BALB/c mice using the "cheek" assay, which reportedly distinguishes itch and pain responses. CQ injection produces scratching, which was largely alleviated by APETx2, a selective ASIC3channel blocker. To further confirm this result, we test the itch-associated responses of other chemicals in mice, such as Ali and GMQ, which have been reported before as the nonproton ligands to activate ASIC3. Like CQ, those compounds also evoked the scratching response. Another endogenous neuropeptide FF (NPFF), which has been proved that it enhances the sustained current of ASIC3.Unsurprisingly, it also evoked the scratching response in rat.
     Conclusion
     1、CQ selectively enhances the sustained current in a dose-dependent manner and the potentiating effect of CQ on the sustained current was pH dependent and Ca2+independent.
     2、Mutation at Glu-79or Glu-423prevents ASIC3channel activation by CQ.3、CQ and other compounds such as Ali, GMQ and NPFF, which are known to induce potentiating of the sustain phase of ASIC3current, induce itch in BALB/c mice and CQ-induced itch could be blocked by APET×2. These results indicated that ASIC3, a proton-gated ion channel, has the functions as an essential component of itch transduction.
     Part Ⅲ The effects of chloriquane on the secretion of rat ileum
     Backgroud
     Apart from itch, CQ (a bitter tasting drug) is associated gastrointestinal side effects including nausea or diarrhea and the bitter taste receptors (TAS2Rs) are widely expressed in the intestinal tract. The bitter compound could evoke anion secretion in the large intestines of humans and rats. However, whether the side effect of CQ on electrolyte transport in rat ileum has the relation with TAS2Rs is still unclear.
     Objective
     The present researched was designed to investigate the effect of CQ on electrolyte transport in rat ileum and the relationship with TAS2Rs.
     Method
     1、Short-circuit current (ISC) was measured in vitro in Ussing chambers.
     The tissue preparations were mounted between the2halves of the Ussing chambers and investigate the effect of CQ on electrolyte transport in rat ileum.
     2、Investigating of CaCC-TMEM16A and bitter receptor T2R in small intestinal epithelial cells using immunohistochemistry.
     Results
     1、CQ evoked an increase ISC in rat ileum
     CQ dose-dependently increased basal ISC at low concentraons (≤5×101-4M). However, it markedly decreased basal ISC at high concentrations (≥10-3M).
     2、The mechanisms of CQ evoked an increase in ISC in rat ileum
     CQ-induced increases in ISC were also abolished by CaCCs inhibitors.
     Conclusion
     Chloroquine could activate TAS2Rs and induces Cl-secretion in rat ileum through CaCCs, suggesting a novel explanation for CQ-associated gastrointestinal side-effects during the treatment of malaria.
引文
1. Yamakura T, Bertaccini E, Trudell JR, Harris RA. Anesthetics and ion chan nels:molecular models and sites of action. Annual review of pharmacology an d toxicology.2001;41:23-51.
    2. Barann M, Dilger JP, Bonisch H, Gothert M, Dybek A, Urban BW. Inhibit ion of 5-HT3 receptors by propofol:equilibrium and kinetic measurements. Ne uropharmacology.2000;39:1064-1074.
    3. Kurt M, Bilge SS, Kukula O, Celik S, Kesim Y. Anxiolytic-like profile of propofol, a general anesthetic, in the plus-maze test in mice. Polish journal of pharmacology.2003;55:973-977. 4. Engelhard K, et al. Influence of propofol on neuronal damage and apoptoti c factors after incomplete cerebral ischemia and reperfusion in rats:a long-term observation. Anesthesiology.2004;101:912-917.
    5. Fassoulaki A. Is propofol an analgesic? European journal of anaesthesiology. 2011;28:481-482.
    6. Grounds RM, Lalor JM, Lumley J, Royston D, Morgan M. Propofol infusi on for sedation in the intensive care unit:preliminary report. Br Med J (Clin Res Ed).1987;294:397-400.
    7. Nadeson R, Goodchild CS. Antinociceptive properties of propofol:involvem ent of spinal cord gamma-aminobutyric acid(A) receptors. The Journal of phar macology and experimental therapeutics.1997;282:1181-1186.
    8. Jewett BA, Gibbs LM, Tarasiuk A, Kendig JJ. Propofol and barbiturate dep ression of spinal nociceptive neurotransmission. Anesthesiology.1992;77:1148-115 4.
    9. Guindon J, LoVerme J, Piomelli D, Beaulieu P. The antinociceptive effects of local injections of propofol in rats are mediated in part by cannabinoid CB 1 and CB2 receptors. Anesthesia and analgesia.2007; 104:1563-1569, table of co ntents.
    10. Sun YY, Li KC, Chen J. Evidence for peripherally antinociceptive action o f propofol in rats:behavioral and spinal neuronal responses to subcutaneous be e venom. Brain research.2005; 1043:231-235.
    11. Basbaum AI, Bautista DM, Scherrer G, Julius D. Cellular and molecular m echanisms of pain. Cell.2009; 139:267-284.
    12. Rampil IJ, Mason P, Singh H. Anesthetic potency (MAC) is independent o f forebrain structures in the rat. Anesthesiology.1993;78:707-712.
    13. Yoon YW, Na HS, Chung JM. Contributions of injured and intact afferents to neuropathic pain in an experimental rat model. Pain.1996;64:27-36.
    14. Deval E, et al. ASIC3, a sensor of acidic and primary inflammatory pain. The EMBO journal.2008;27:3047-3055.
    15. Omori M, et al. Effects of selective spinal nerve ligation on acetic acid-in duced nociceptive responses and ASIC3 immunoreactivity in the rat dorsal root ganglion. Brain research.2008; 1219:26-31.
    16. Qiu F, Qiu CY, Liu YQ, Wu D, Li JD, Hu WP. Potentiation of acid-sensi ng ion channel activity by the activation of 5-HT(2) receptors in rat dorsal roo t ganglion neurons. Neuropharmacology.2012;63:494-500.
    17. Trevisan G, et al. Transient receptor potential ankyrin 1 receptor stimulatio n by hydrogen peroxide is critical to trigger pain during monosodium urate-ind uced inflammation in rodents. Arthritis and rheumatism.2013;65:2984-2995.
    18. Fischer MJ, et al. The general anesthetic propofol excites nociceptors by a ctivating TRPV1 and TRPA1 rather than GABAA receptors. The Journal of bio logical chemistry.2010;285:34781-34792.
    19. Mu X, et al. Effects of anesthetic propofol on release of amino acids from the spinal cord during visceral pain. Neuroscience letters.2010;484:206-209.
    20. Nishiyama T, Matsukawa T, Hanaoka K. Intrathecal propofol has analgesic effects on inflammation-induced pain in rats. Canadian journal of anaesthesia= Journal canadien d'anesthesie.2004;51:899-904.
    21. Xu AJ, Duan SM, Zeng YM. Effects of intrathecal NMDA and AMPA rec eptors agonists or antagonists on antinociception of propofol. Acta pharmacologi ca Sinica.2004;25:9-14.
    22. Yagi J, Wenk HN, Naves LA, McCleskey EW. Sustained currents through ASIC3 ion channels at the modest pH changes that occur during myocardial is chemia. Circulation research.2006;99:501-509.
    23. Krishtal OA, Pidoplichko VI. A receptor for protons in the membrane of s ensory neurons may participate in nociception. Neuroscience,1981;6:2599-2601.
    24. Mamet J, Baron A, Lazdunski M, Voilley N. Proinflammatory mediators, st imulators of sensory neuron excitability via the expression of acid-sensing ion channels. The Journal of neuroscience:the official journal of the Society for Neuroscience.2002;22:10662-10670.
    25. Krishtal O. The ASICs:signaling molecules? Modulators? Trends in neuros ciences.2003;26:477-483.
    26. Voilley N, de Weille J, Mamet J, Lazdunski M. Nonsteroid anti-inflammato ry drugs inhibit both the activity and the inflammation-induced expression of a cid-sensing ion channels in nociceptors. The Journal of neuroscience:the offic ial journal of the Society for Neuroscience.2001;21:8026-8033.
    27. Jones NG, Slater R, Cadiou H, McNaughton P, McMahon SB. Acid-induce d pain and its modulation in humans. The Journal of neuroscience:the officia 1 journal of the Society for Neuroscience.2004;24:10974-10979.
    28. Ugawa S, Ueda T, Ishida Y, Nishigaki M, Shibata Y, Shimada S. Amilorid e-blockable acid-sensing ion channels are leading acid sensors expressed in hu man nociceptors. The Journal of clinical investigation.2002;110:1185-1190.
    29. Wemmie JA, et al. Overexpression of acid-sensing ion channel 1a in transg enic mice increases acquired fear-related behavior. Proceedings of the National Academy of Sciences of the United States of America.2004;101:3621-3626.
    30. Wu WN, et al. Sinomenine protects against ischaemic brain injury:involve ment of co-inhibition of acid-sensing ion channel la and L-type calcium chann els. British journal of pharmacology.2011;164:1445-1459.
    31. Li M, Kratzer E, Inoue K, Simon RP, Xiong ZG. Developmental change i n the electrophysiological and pharmacological properties of acid-sensing ion ch annels in CNS neurons. The Journal of physiology.2010;588:3883-3900.
    32. Liu YQ, et al. Cannabinoids inhibit acid-sensing ion channel currents in rat dorsal root ganglion neurons. PloS one.2012;7:e45531.
    33. Smith ES, Cadiou H, McNaughton PA. Arachidonic acid potentiates acid-se nsing ion channels in rat sensory neurons by a direct action. Neuroscience.2007; 145:686-698.
    34. Cadiou H, et al. Modulation of acid-sensing ion channel activity by nitric oxide. The Journal of neuroscience:the official journal of the Society for Neu roscience.2007;27:13251-13260.
    35. Wemmie JA, Taugher RJ, Kreple CJ. Acid-sensing ion channels in pain an d disease. Nature reviews Neuroscience.2013;14:461-471.
    36. Bilge SS, Bozkurt A, Ilkaya F, Ciftcioglu E, Kesim Y, Uzbay TI. The anti nociceptive effects of intravenous tianeptine in colorectal distension-induced visc eral pain in rats:the role of 5-HT(3) receptors. European journal of pharmacol ogy.2012;681:44-49.
    37. Kanda H, Kobayashi K, Yamanaka H, Noguchi K. COX-1-dependent prosta glandin D2 in microglia contributes to neuropathic pain via DP2 receptor in sp inal neurons. Glia.2013;61:943-956.
    38. Molina-Ortega F, et al. Immediate effects of spinal manipulation on nitric oxide, substance P and pain perception. Manual therapy.2014.
    39. Steen KH, Issberner U, Reeh PW. Pain due to experimental acidosis in hu man skin:evidence for non-adapting nociceptor excitation. Neuroscience letters. 1995; 199:29-32.
    40. Lingueglia E. Acid-sensing ion channels in sensory perception. The Journal of biological chemistry.2007;282:17325-17329.
    41. Alvarez de la Rosa D, Zhang P, Shao D, White F, Canessa CM. Functiona 1 implications of the localization and activity of acid-sensitive channels in rat p eripheral nervous system. Proceedings of the National Academy of Sciences of the United States of America.2002;99:2326-2331.
    42. Wemmie JA, Price MP, Welsh MJ. Acid-sensing ion channels:advances, qu estions and therapeutic opportunities. Trends in neurosciences.2006;29:578-586.
    43. Reeh PW, Steen KH. Tissue acidosis in nociception and pain. Progress in brain research.1996; 113:143-151.
    44. Steen KH, Reeh PW, Anton F, Handwerker HO. Protons selectively induce lasting excitation and sensitization to mechanical stimulation of nociceptors in rat skin, in vitro. The Journal of neuroscience:the official journal of the Soci ety for Neuroscience.1992; 12:86-95.
    45. Nagae M, Hiraga T, Yoneda T. Acidic microenvironment created by osteocl asts causes bone pain associated with tumor colonization. Journal of bone and mineral metabolism.2007;25:99-104.
    46. Vukicevic M, Weder G, Boillat A, Boesch A, Kellenberger S. Trypsin clea ves acid-sensing ion channel la in a domain that is critical for channel gating. The Journal of biological chemistry.2006;281:714-722.
    47. Ji W, Cui C, Zhang Z, Liang J. Paradoxic effects of propofol on visceral pain induced by various TRPV1 agonists. Experimental and therapeutic medicin e.2013;5:1259-1263.
    48. Picard P, Tramer MR. Prevention of pain on injection with propofol:a qua ntitative systematic review. Anesthesia and analgesia.2000;90:963-969.
    49. Nakane M, Iwama H. A potential mechanism of propofol-induced pain on i njection based on studies using nafamostat mesilate. British journal of anaesthe sia.1999;83:397-404.
    50. Ewen A, Archer DP, Samanani N, Roth SH. Hyperalgesia during sedation: effects of barbiturates and propofol in the rat. Canadian journal of anaesthesia = Journal canadien d'anesthesie.1995;42:532-540.
    51. Wang B, Samanani N, Roth SH, Archer DP. Spinal carbonic anhydrase con tributes to nociceptive reflex enhancement by midazolam, pentobarbital, and pro pofol. Anesthesiology.2003;98:921-927.
    52. Anwar MM, Abdel-Rahman MS. Effect of propofol on perception of pain i n mice:mechanisms of action. Comparative biochemistry and physiology Part A, Molecular & integrative physiology.1998;120:249-253.
    53. O'Connor TC, Abram SE. Inhibition of nociception-induced spinal sensitizat ion by anesthetic agents. Anesthesiology.1995;82:259-266.
    54. Cheng SS, Yeh J, Flood P. Anesthesia matters:patients anesthetized with p ropofol have less postoperative pain than those anesthetized with isoflurane. An esthesia and analgesia.2008; 106:264-269, table of contents.
    55. Anker-Moller E, Spangsberg N, Arendt-Nielsen L, Schultz P, Kristensen M S, Bjerring P. Subhypnotic doses of thiopentone and propofol cause analgesia t o experimentally induced acute pain. British journal of anaesthesia.1991;66:185-188.
    1. Ikoma A, Steinhoff M, Stander S, Yosipovitch G, Schmelz M. The neurobi ology of itch. Nature reviews Neuroscience.2006;7:535-547.
    2. Paus R, Schmelz M, Biro T, Steinhoff M. Frontiers in pruritus research:sc ratching the brain for more effective itch therapy. The Journal of clinical invest igation.2006;116:1174-1186.
    3. Paus R, Schmelz M, Biro T, Steinhoff M. Frontiers in pruritus research:sc ratching the brain for more effective itch therapy. The Journal of clinical invest igation.2006;116:1174-1186.
    4. Basbaum AI, Bautista DM, Scherrer G, Julius D. Cellular and molecular m echanisms of pain. Cell.2009;139:267-284.
    5. Sun YG, Chen ZF. A gastrin-releasing peptide receptor mediates the itch se nsation in the spinal cord. Nature.2007;448:700-703.
    6. Akiyama T, Carstens MI, Carstens E. Enhanced scratching evoked by PAR-2 agonist and 5-HT but not histamine in a mouse model of chronic dry skin i tch. Pain.2010;151:378-383.
    7. Akiyama T, Carstens MI, Ikoma A, Cevikbas F, Steinhoff M, Carstens E. Mouse model of touch-evoked itch (alloknesis). The Journal of investigative de rmatology.2012;132:1886-1891.
    8. Alving K, Sundstrom C, Matran R, Panula P, Hokfelt T, Lundberg JM. As sociation between histamine-containing mast cells and sensory nerves in the ski n and airways of control and capsaicin-treated pigs. Cell and tissue research.19 91;264:529-538.
    9. Han SK, Mancino V, Simon MI. Phospholipase Cbeta 3 mediates the scrat ching response activated by the histamine H1 receptor on C-fiber nociceptive n eurons. Neuron.2006;52:691-703.
    10. Kajihara Y, Murakami M, Imagawa T, Otsuguro K, Ito S, Ohta T. Histami ne potentiates acid-induced responses mediating transient receptor potential VI i n mouse primary sensory neurons. Neuroscience.2010; 166:292-304.
    11. Kim BM, Lee SH, Shim WS, Oh U. Histamine-induced Ca(2+) influx via the PLA(2)/lipoxygenase/TRPV1 pathway in rat sensory neurons. Neuroscience 1 etters.2004;361:159-162.
    12. Shim WS, et al. TRPV1 mediates histamine-induced itching via the activati on of phospholipase A2 and 12-lipoxygenase. The Journal of neuroscience:the official journal of the Society for Neuroscience.2007;27:2331-2337.
    13. Imamachi N, et al. TRPV1-expressing primary afferents generate behavioral responses to pruritogens via multiple mechanisms. Proceedings of the National Academy of Sciences of the United States of America.2009; 106:11330-11335.
    14. Davidson S, Zhang X, Yoon CH, Khasabov SG, Simone DA, Giesler GJ, J r. The itch-producing agents histamine and cowhage activate separate population s of primate spinothalamic tract neurons. The Journal of neuroscience:the offi cial journal of the Society for Neuroscience.2007;27:10007-10014.
    15. Johanek LM, et al. A role for polymodal C-fiber afferents in nonhistaminer gic itch. The Journal of neuroscience:the official journal of the Society for Neuroscience.2008;28:7659-7669.
    16. Johanek LM, et al. Psychophysical and physiological evidence for parallel afferent pathways mediating the sensation of itch. The Journal of neuroscience the official journal of the Society for Neuroscience.2007;27:7490-7497.
    17. Nakagawa H, Hiura A. Four Possible Itching Pathways Related to the TRP V1 Channel, Histamine, PAR-2 and Serotonin. The Malaysian journal of medic al sciences:MJMS.2013;20:5-12.
    18. Fjellner B, Hagermark O. Pruritus in polycythemia vera:treatment with asp irin and possibility of platelet involvement. Acta dermato-venereologica.1979;59: 505-512.
    19. Weisshaar E, Ziethen B, Gollnick H. Can a serotonin type 3 (5-HT3) rece ptor antagonist reduce experimentally-induced itch? Inflammation research:offi cial journal of the European Histamine Research Society [et al].1997;46:412-4 16.
    20. Liang J, He Y, Ji W. Bradykinin-evoked scratching responses in complete Freund's adjuvant-inflamed skin through activation of B1 receptor. Exp Biol Me d (Maywood).2012;237:318-326.
    21. Abila B, Ezeamuzie IC, Igbigbi PS, Ambakederemo AW, Asomugha L. Eff ects of two antihistamines on chloroquine and histamine induced weal and flare in healthy African volunteers. African journal of medicine and medical science s.1994;23:139-142.
    22. Ezeamuzie CI, Igbigbi PS, Asomugha L, Ambakederemo AW, Abila B, Ass em ES. Urine methylhistamine concentrations before and after chloroquine in h ealthy black subjects. The Journal of tropical medicine and hygiene.1990;93:423-425.
    23. Nojima H, Carstens E.5-Hydroxytryptamine (5-HT)2 receptor involvement in acute 5-HT-evoked scratching but not in allergic pruritus induced by dinitrof luorobenzene in rats. The Journal of pharmacology and experimental therapeutic s.2003;306:245-252.
    24. Liu Q, et al. Sensory neuron-specific GPCR Mrgprs are itch receptors med iating chloroquine-induced pruritus. Cell.2009;139:1353-1365.
    25. Qiu F, Qiu CY, Liu YQ, Wu D, Li JD, Hu WP. Potentiation of acid-sensi ng ion channel activity by the activation of 5-HT(2) receptors in rat dorsal roo t ganglion neurons. Neuropharmacology.2012;63:494-500.
    26. Liu BY, Zhang HL. [Bradykinin modulates ion channel in inflammatory pai n]. Yao xue xue bao= Acta pharmaceutica Sinica.2009;44:1066-1071.
    27. He SQ, et al. MrgC agonism at central terminals of primary sensory neuro ns inhibits neuropathic pain. Pain.2014;155:534-544.
    28. Mnyika KS, Kihamia CM. Chloroquine-induced pruritus:its impact on chlo roquine utilization in malaria control in Dar es Salaam. The Journal of tropical medicine and hygiene.1991;94:27-31.
    29. Sowunmi A, et al. Comparative efficacy of chloroquine plus chlorphenirami ne alone and in a sequential combination with sulfadoxine-pyrimethamine, for t he treatment of acute, uncomplicated, falciparum malaria in children. Annals of tropical medicine and parasitology.2000;94:209-217.
    30. Bussaratid V, Walsh DS, Wilairatana P, Krudsood S, Silachamroon U, Looa reesuwan S. Frequency of pruritus in Plasmodium vivax malaria patients treated with chloroquine in Thailand. Tropical doctor.2000;30:211-214.
    31. Wilson SR, et al. TRPA1 is required for histamine-independent, Mas-related G protein-coupled receptor-mediated itch. Nature neuroscience.2011;14:595-602.
    32. Reddy VB, Iuga AO, Shimada SG, LaMotte RH, Lerner EA. Cowhage-evo ked itch is mediated by a novel cysteine protease:a ligand of protease-activate d receptors. The Journal of neuroscience:the official journal of the Society fo r Neuroscience.2008;28:4331-4335.
    33. Gu Q, Lee LY. Regulation of acid signaling in rat pulmonary sensory neur ons by protease-activated receptor-2. American journal of physiology Lung cellu lar and molecular physiology.2010;298:L454-461.
    34. Wang X, et al. Serotonin facilitates peripheral pain sensitivity in a manner that depends on the nonproton ligand sensing domain of ASIC3 channel. The J ournal of neuroscience:the official journal of the Society for Neuroscience.20 13;33:4265-4279.
    35. Osmakov DI, et al. Sea anemone peptide with uncommon beta-hairpin stru cture inhibits acid-sensing ion channel 3 (ASIC3) and reveals analgesic activity. The Journal of biological chemistry.2013;288:23116-23127.
    36. Rios ER, et al. TRP and ASIC channels mediate the antinociceptive effect of citronellyl acetate. Chemico-biological interactions.2013;203:573-579.
    37. Izumi M, Ikeuchi M, Ji Q, Tani T. Local ASIC3 modulates pain and disea se progression in a rat model of osteoarthritis. Journal of biomedical science.20 12;19:77.
    38. Tominaga M, et al. The cloned capsaicin receptor integrates multiple pain-p roducing stimuli. Neuron.1998;21:531-543.
    39. Kim SJ, et al. Analysis of cellular and behavioral responses to imiquimod reveals a unique itch pathway in transient receptor potential vanilloid 1 (TRPV l)-expressing neurons. Proceedings of the National Academy of Sciences of the United States of America.2011;108:3371-3376.
    40. Steen KH, Issberner U, Reeh PW. Pain due to experimental acidosis in hu man skin:evidence for non-adapting nociceptor excitation. Neuroscience letters. 1995; 199:29-32.
    41. Li WG, Yu Y, Huang C, Cao H, Xu TL. Nonproton ligand sensing domain is required for paradoxical stimulation of acid-sensing ion channel 3 (ASIC3) channels by amiloride. The Journal of biological chemistry.2011;286:42635-4264 6.
    42. Yu Y, et al. A nonproton ligand sensor in the acid-sensing ion channel. Ne uron.2010;68:61-72.
    43. Shimada SG, LaMotte RH. Behavioral differentiation between itch and pain in mouse. Pain.2008;139:681-687.
    44. Dawson RJ, et al. Structure of the acid-sensing ion channel 1 in complex with the gating modifier Psalmotoxin 1. Nature communications.2012;3:936.
    45. Sherwood TW, Askwith CC. Endogenous arginine-phenylalanine-amide-relate d peptides alter steady-state desensitization of ASIC1a. The Journal of biologica 1 chemistry.2008;283:1818-1830.
    46. Wemmie JA, Price MP, Welsh MJ. Acid-sensing ion channels:advances, qu estions and therapeutic opportunities. Trends in neurosciences.2006;29:578-586.
    47. Lingueglia E. Acid-sensing ion channels in sensory perception. The Journal of biological chemistry.2007;282:17325-17329.
    48. Liu YQ, et al. Cannabinoids inhibit acid-sensing ion channel currents in rat dorsal root ganglion neurons. PloS one.2012;7:e45531. 49. McCoy ES, Taylor-Blake B, Street SE, Pribisko AL, Zheng J, Zylka MJ. P eptidergic CGRPalpha primary sensory neurons encode heat and itch and tonica lly suppress sensitivity to cold. Neuron.2013;78:138-151.
    50. Liu XY, et al. Unidirectional cross-activation of GRPR by MOR1D uncoup les itch and analgesia induced by opioids. Cell.2011;147:447-458.
    51. Allard M, Rousselot P, Lombard MC, Theodosis DT. Evidence for neurope ptide FF (FLFQRFamide) in rat dorsal root ganglia. Peptides.1999;20:327-333.
    52. Kontinen VK, Aarnisalo AA, Idanpaan-Heikkila JJ, Panula P, Kalso E. Neu ropeptide FF in the rat spinal cord during carrageenan inflammation. Peptides.1 997;18:287-292.
    53. Vilim FS, et al. Gene for pain modulatory neuropeptide NPFF:induction i n spinal cord by noxious stimuli. Molecular pharmacology.1999;55:804-811.
    54. Panula P, Kalso E, Nieminen M, Kontinen VK, Brandt A, Pertovaara A. N europeptide FF and modulation of pain. Brain research.1999;848:191-196.
    55. McCoy ES, Taylor-Blake B, Zylka MJ. CGRPalpha-expressing sensory neur ons respond to stimuli that evoke sensations of pain and itch. PloS one.2012;7: e36355.
    1. Fogh S, et al. Malaria chemoprophylaxis in travellers to east Africa:a com parative prospective study of chloroquine plus proguanil with chloroquine plus sulfadoxine-pyrimethamine. Br Med J (Clin Res Ed).1988;296:820-822.
    2. Steffen R, et al. Mefloquine compared with other malaria chemoprophylacti c regimens in tourists visiting east Africa. Lancet.1993;341:1299-1303.
    3. Barrett PJ, Emmins PD, Clarke PD, Bradley DJ. Comparison of adverse ev ents associated with use of mefloquine and combination of chloroquine and pro guanil as antimalarial prophylaxis:postal and telephone survey of travellers. B MJ.1996;313:525-528.
    4. Durrheim DN, Gammon S, Waner S, Braack LE. Antimalarial prophylaxis-use and adverse events in visitors to the Kruger National Park. South African medical journal= Suid-Afrikaanse tydskrif vir geneeskunde.1999;89:170-175.
    5. Raybould HE. Nutrient tasting and signaling mechanisms in the gut. I. Sen sing of lipid by the intestinal mucosa. The American journal of physiology.199 9;277:G751-755.
    6. Cote GA, Buchman AL. Antibiotic-associated diarrhoea. Expert opinion on drug safety.2006;5:361-372.
    7. Deshpande DA, et al. Bitter taste receptors on airway smooth muscle bron chodilate by localized calcium signaling and reverse obstruction. Nature medici ne.2010;16:1299-1304.
    8. Xu J, Cao J, Iguchi N, Riethmacher D, Huang L. Functional characterizati on of bitter-taste receptors expressed in mammalian testis. Molecular human re production.2013;19:17-28.
    9. Hofer D, Puschel B, Drenckhahn D. Taste receptor-like cells in the rat gut identified by expression of alpha-gustducin. Proceedings of the National Acade my of Sciences of the United States of America.1996;93:6631-6634.
    10. Margolskee RF. Molecular mechanisms of bitter and sweet taste transductio n. The Journal of biological chemistry.2002;277:1-4.
    11. Spielman AI. Gustducin and its role in taste. Journal of dental research.199 8;77:539-544.
    12. Gilbertson TA, Damak S, Margolskee RF. The molecular physiology of tast e transduction. Current opinion in neurobiology.2000; 10:519-527.
    13. Kaji I, Karaki S, Fukami Y, Terasaki M, Kuwahara A. Secretory effects of a luminal bitter tastant and expressions of bitter taste receptors, T2Rs, in the human and rat large intestine. American journal of physiology Gastrointestinal and liver physiology.2009;296:G971-981.
    14. Wu SV, Rozengurt N, Yang M, Young SH, Sinnett-Smith J, Rozengurt E. Expression of bitter taste receptors of the T2R family in the gastrointestinal tra ct and enteroendocrine STC-1 cells. Proceedings of the National Academy of S ciences of the United States of America.2002;99:2392-2397.
    15. Rozengurt E. Taste receptors in the gastrointestinal tract. I. Bitter taste rece ptors and alpha-gustducin in the mammalian gut. American journal of physiolog y Gastrointestinal and liver physiology.2006;291:G171-177.
    16. Rozengurt N, Wu SV, Chen MC, Huang C, Sternini C, Rozengurt E. Colo calization of the alpha-subunit of gustducin with PYY and GLP-1 in L cells of human colon. American journal of physiology Gastrointestinal and liver physio logy.2006;291:G792-802.
    17. Jeon TI, Zhu B, Larson JL, Osborne TF. SREBP-2 regulates gut peptide se cretion through intestinal bitter taste receptor signaling in mice. The Journal of clinical investigation.2008;118:3693-3700.
    18. Jing F, Liu M, Yang N, Liu Y, Li X, Li J. Relaxant effect of chloroquine in rat ileum:possible involvement of nitric oxide and BKCa. The Journal of pharmacy and pharmacology.2013;65:847-854.
    19. Ajeigbe KO, Emikpe BO, Olaleye SB. Augmentation of gastric acid secreti on by chloroquine and amodiaquine in the rat stomach. Nigerian journal of ph ysiological sciences:official publication of the Physiological Society of Nigeri a.2012;27:89-94.
    20. Fogel R, Sharp GW, Donowitz M. Chloroquine stimulates absorption and i nhibits secretion of ileal water and electrolytes. The American journal of physi ology.1982;243:G 117-126.
    21. Seeman P. The membrane actions of anesthetics and tranquilizers. Pharmac ological reviews.1972;24:583-655.
    22. Clarke LL. A guide to Ussing chamber studies of mouse intestine. America n journal of physiology Gastrointestinal and liver physiology.2009;296:G1151-11 66.
    23. Dotson CD, et al. Bitter taste receptors influence glucose homeostasis. PloS one.2008;3:e3974.
    24. Schroeder BC, Cheng T, Jan YN, Jan LY. Expression cloning of TMEM16 A as a calcium-activated chloride channel subunit. Cell.2008;134:1019-1029.
    25. Caputo A, et al. TMEM16A, a membrane protein associated with calcium-d ependent chloride channel activity. Science.2008;322:590-594.
    26. Thiagarajah JR., Verkman AS. CFTR pharmacology and its role in intestinal fluid secretion. Current opinion in pharmacology.2003;3:594-599.
    27. Basavappa S, Vulapalli SR, Zhang H, Yule D, Coon S, Sundaram U. Chlor ide channels in the small intestinal cell line IEC-18. Journal of cellular physiol ogy.2005;202:21-31.
    28. Isenring P, Forbush B,3rd. Ion and bumetanide binding by the Na-K-Cl c otransporter. Importance of transmembrane domains. The Journal of biological c hemistry.1997;272:24556-24562.
    29. Yan W, Sunavala G, Rosenzweig S, Dasso M, Brand JG, Spielman AI. Bit ter taste transduced by PLC-beta(2)-dependent rise in IP(3) and alpha-gustducin-dependent fall in cyclic nucleotides. American journal of physiology Cell physi ology.2001;280:C742-751.
    30. Ogura T, Mackay-Sim A, Kinnamon SC. Bitter taste transduction of denato nium in the mudpuppy Necturus maculosus. The Journal of neuroscience:the official journal of the Society for Neuroscience.1997;17:3580-3587.
    31. Ogura T, Margolskee RF, Kinnamon SC. Taste receptor cell responses to th e bitter stimulus denatonium involve Ca2+ influx via store-operated channels. J ournal of neurophysiology.2002;87:3152-3155.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700