磁性和粘土纳米颗粒在润滑油中的摩擦学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米颗粒材料由于自身的物理和化学特性(即,大比表面积、高扩散性、易烧结、低熔点、高硬度等),不仅使其能在摩擦副表面形成低剪切应力膜、降低摩擦系数,且对摩擦表面具有填补和修复作用,因而,其作为润滑添加剂具有优良的抗磨减摩性能。本论文主要对磁性Fe3O4纳米颗粒、纳米高岭土和纳米伊/蒙粘土作为润滑添加剂添加在#40润滑油中的摩擦学性能进行了研究。
     首先,采用四球摩擦磨损试验机所获得的平均摩擦系数、磨斑直径、磨损量以及润滑油最大无卡咬负荷(PB)等指标评价和研究了不同的纳米颗粒(即,磁性Fe3O4纳米颗粒、纳米高岭土和纳米伊/蒙粘土)添加在#40润滑油中的抗摩擦性能;同时,考察了纳米颗粒的微观形貌(主要针对磁性Fe3O4纳米颗粒的六方片状、八面体状和不规则状)、添加量和摩擦时间等参数对纳米颗粒在#40润滑油中抗摩擦性能的影响。结果表明:不同的纳米颗粒(即,磁性Fe3O4纳米颗粒、纳米高岭土和纳米伊/蒙粘土)在#40润滑油中均表现出良好的抗摩擦磨损性能;当分别地添加的纳米颗粒含量为最优时(即,磁性Fe3O4纳米颗粒为1.5wt%;纳米高岭土为1.0wt%;纳米伊/蒙粘土为2.0wt%),可使摩擦副的平均摩擦系数和磨斑直径最小、摩擦接触面最光滑平整、犁沟和划痕最浅,与当使用纯润滑油时的摩擦效果相比,含六方片状、八面体状和不规则状磁性纳米颗粒的润滑油的平均摩擦系数和磨斑直径分别降低58.16%、47.96%、34.69%和13.87%、11.17%和10.18%;含纳米高岭土的润滑油的摩擦系数和磨斑直径分别降低24.21%和16.43%;含纳米伊/蒙粘土的润滑油的摩擦系数降低60%。另外,对不同形貌的磁性Fe3O4纳米颗粒而言,其微观形貌是影响其在润滑油中抗摩擦性能的主要因素之一。由于六方片状磁性Fe3O4纳米颗粒薄片所接触的表面积比其它两种形貌的大得多,对摩擦副表面的覆盖更完全,摩擦化学反应形成的保护膜更均一完整;且层片之间以滑动摩擦为主(其它两种形貌的滚动和类滚动摩擦为主),因此,其抗摩擦磨损性能优于其它两种形貌的磁性纳米颗粒。
     其次,通过分析摩擦前后片状磁性Fe3O4纳米颗粒、纳米高岭土和纳米伊/蒙粘土的相组成、化学元素组成、非晶化程度、晶面间距、平均晶粒尺寸、磁性能和氧化转变温度等研究了润滑油中与摩擦副表面接触的纳米颗粒和与之相关的润滑油和摩擦副表面的摩擦化学性能;同时,探索了不同纳米颗粒添加剂在#40润滑油中的抗摩擦机理,重点分析和讨论了动态抗摩擦保护膜的形成和组分及其抗摩擦作用,并比较和分析了它们的抗摩擦性能特点。结果表明:与摩擦前片状磁性Fe3O4纳米颗粒、纳米高岭土和纳米伊/蒙粘土的性质相比,摩擦后纳米颗粒的非晶化程度和氧化转变温度均增大,而晶面间距和平均晶粒尺寸减小;磁性Fe3O4纳米颗粒性质经摩擦后的相组成和化学元素组成等均比摩擦前丰富。与摩擦前的纯润滑油相比,含片状磁性Fe3O4纳米颗粒的润滑油摩擦后其性质变化不明显。由于纳米高岭土和纳米伊/蒙粘土层片间含有结晶水,因此,摩擦后的润滑油中含有少量的水分。改性纳米颗粒的表面作用(即,纳米颗粒的尺寸效应、范德华力、改性形成的表面有机链和磁性Fe3O4纳米颗粒剩磁作用(Mr)产生的磁吸引力等)促使其在摩擦开始前粘附在摩擦副表面,并对其进行有效的补充修复;摩擦副持续、激烈的高速旋转摩擦形成的高速剪切力诱导磁性Fe3O4纳米颗粒、纳米高岭土和纳米伊/蒙粘土分别与摩擦副发生摩擦化学反应,最终在摩擦接触面上生成具有自修复能力、富含元素Fe、C、O和纳米颗粒特征元素(即,磁性Fe3O4纳米颗粒中的Fe元素;纳米高岭土和纳米伊/蒙粘土中的Al和Si元素)的化合物的动态抗摩擦保护膜,阻碍摩擦副间的直接接触,从而降低摩擦、减少磨损、改善和提高润滑油的摩擦学性能。
     另外,对比片状磁性Fe3O4纳米颗粒、纳米高岭土和纳米伊/蒙粘土在#40润滑油中的抗摩擦性能特点可知:三种纳米润滑添加剂在润滑油(#40润滑油)中均表现出良好的摩擦学性能;且纳米颗粒的微观层片结构有利于其在摩擦副表面的粘附和完全覆盖,从而有助于摩擦接触面上性能均一、覆盖完全的抗摩擦保护膜的生成;摩擦后润滑油的性质变化虽不明显,但纳米颗粒的性质(如:相组成、非晶化程度、晶面间距、平均晶粒尺寸、磁性能、氧化转变温度等)与摩擦前有较大变化。同时,三种片状润滑添加剂在摩擦表面的粘附作用方式和摩擦化学略有不同:摩擦开始时,除了纳米颗粒的尺寸效应、范德华力和改性形成的表面有机链外,磁性Fe3O4纳米颗粒还依靠剩磁作用(Mr)产生的磁力粘附在摩擦副表面;而纳米粘土薄片表面积较大,易对摩擦副表面形成完全覆盖,且在摩擦过程中更易碎裂成颗粒尺寸和薄片面积更小的碎小薄片,出现大量的不饱和键(如Si-O、Si-O-Si、-OH等),这不仅有利于其在摩擦副表面的粘附,也增强了O2的释放能力,促进摩擦副表面上摩擦化学的发生,加快表面自修复膜的生成速度,从而更好地改善摩擦副的抗摩擦性能。另外,纳米粘土在摩擦过程中还有脱水现象。
     再次,采用数值方法对不含和含1.5wt%含量的片状磁性Fe3O4纳米颗粒的润滑油在汽油机曲轴和连杆间形成油膜的膜厚度及其压力分布进行了模拟计算和分析。结果表明,与纯润滑油相比,片状磁性Fe3O4纳米颗粒(含量为1.5wt%)的加入对润滑过程中的油膜膜厚影响较小,甚至轴承某些位置的膜厚有所减小;但其油膜的承载压力显著提高,这与磁性纳米颗粒加入后所引起的润滑油的最大无卡咬负荷(PB)提高的实验结果一致。
     最后,利用汽油发动机检验和评价了片状磁性Fe3O4纳米颗粒作为润滑添加剂在#40润滑油中的实际抗磨减摩效果。结果表明:当含有1.5wt%片状磁性Fe3O4纳米颗粒的润滑油加入汽油发动机时,摩擦后的连杆表面更平整光滑、犁沟更浅,表面粗糙度比采用纯润滑油时降低约25%;且表面元素分布更均匀;同时,汽油机的时平均耗油量比采用纯润滑油时降低约10%;经检测,摩擦过程中所生成的抗摩擦自修复保护膜的厚度为40~50nm。
As lubricating additives, inorganic nanoparticles (NPs) have superior anti-wear andanti-friction properties due to their distinctive physical and chemical characterizations (i.e.,great specific surface area, superior diffusivity, low sintering temperature, low fusion and highhardness, etc.). The multilayer films with a lower shearing are formed on the friction pairsurfaces in the presence of NPs in lubricating oil, resulting in the reduction of the averagefriction coefficient, and the filling and reparation of the friction pair surfaces. This dissertationwas thus to investigate the tribological properties of the magnetic Fe3O4NPs, kaolin clay NPsand Iillite/Smectite (I/S) clay NPs in#40lubricating oil as lubricating additives.
     Firstly, the anti-friction properties of various NPs (i.e., magnetic Fe3O4NPs, kaolin clayNPs and I/S clay NPs) were evaluated by average friction coefficient (c f), wear scar diameter(WSD), wear weight and maximum non-seizure load (PB) of lubricating oil, etc., which wereobtained in a four-ball tribo-tester, respectively. The effects of micro-morphologies of Fe3O4NPs (i.e., hexagonal, octahedral and irregular morphologies), NPs concentration in thelubricating oil and friction duration on the anti-friction properties in#40lubricating oil werealso investigated. The results show that all the NPs additives (i.e., magnetic Fe3O4NPs, kaolinclay NPs and I/S clay NPs) have superior anti-friction properties. The optimum concentrationsfor Fe3O4NPs, kaolin clay NPs and I/S clay NPs as an additive in lubricating oil are1.5,1.0and2.0wt%, respectively. The low values of averagec fand WSD of the friction pairsurfaces are obtained at each optimum concentration. Compared to the pure lubricating oil,the WSD was reduced by13.87,11.17, and10.18%and thec fwas reduced by58.16,47.96,and34.69%in the case of the oils containing Fe3O4NPs with hexagonal, octahedral, andirregular morphologies, respectively, at the concentration of1.5wt%. In the case of the oilscontaining kaolin clay NPs at the concentration of1.0wt%, the WSD andc fwere reducedby16.43%and24.21%, respectively. In the case of the oils containing I/S clay NPs at theconcentration of2.0wt%, thec fwas reduced by60%. The friction pair surfaces appear smooth and the furrows are shallow after the friction in the oils with NPs. In addition, thehexagonal morphology of Fe3O4NPs has a positive effect on the anti-friction properties ratherthan the octahedral and irregular morphologies due to its sliding friction mechanism, resultingin the more whole coverage for the friction pair surfaces and the more uniform protectivefilm.
     Secondly, the tribochemical behaviors of the NPs on the friction surfaces in thelubricating oil were investigated via the analysis of the properties of NPs (i.e., magnetic Fe3O4NPs with hexagonal morphology, kaolin clay NPs and I/S clay NPs), such as phasecomposition, chemical elemental composition, non-crystallizing degree, interplanar spacing,average grain size, magnetic characterization and transition temperature of oxidation, etc..The tribochemical properties of the lubricating oil and the friction pair surfaces related to theNPs were also analyzed. Moreover, the anti-friction mechanism of various NPs in lubricatingoil as additives were discussed, particularly for the formation, chemical composition andanti-friction properties of the dynamic self-repairing film, and the tribological properties ofvarious NPs (i.e., magnetic Fe3O4NPs with hexagonal morphology, kaolin clay NPs and I/Sclay NPs). The results show that, compared to the properties of the original NPs (beforefriction), the non-crystallizing degree and transition temperature of oxidation are reduced forall the NPs after friction. The phase composition and chemical composition on the frictionpair surfaces lubricated with the lubricating oil containing Fe3O4NPs with hexagonalmorphology at a concentration of1.5wt%are most abundant among all the NPs. Theproperties of the lubricating oil containing Fe3O4NPs with hexagonal morphology after48-dfriction does not change. There exists crystal water in the lubricating oil when kaolin clay NPsand I/S NPs are used. It is indicated that the adhesion between the NPs (i.e., Fe3O4NPs withhexagonal morphology, kaolin clay NPs and I/S clay NPs) and the friction pair surfaces canbe enhanced due to the presence of van der Waals force, organic chain introduced by surfacemodification, and magnetic force from the remanent magnetization (Mr) of Fe3O4NPs. Thetribochemical reactions between the NPs and the friction pairs surface occur in the drasticfriction, finally resulting in the formation of a mono-or multi-layer self-repairing film with various phases containing the elements Fe, C, O and the characteristic elements (i.e., elementFe for Fe3O4NPs and elements Al and Si for kaolin clay NPs and I/S clay NPs, respectively.)on the friction surfaces. The film could prevent the direct contact between friction pairsurfaces and decrease the friction and wear for the improvement of the tribological propertiesof the lubricating oil.
     In addition, compared to the anti-friction properties of various NPs (i.e., Fe3O4NPs withhexagonal morphology, kaolin clay NPs and I/S clay NPs) in lubricating oil, all the NPsadditives have superior tribological properties, and the adhesion and coverage of various NPson the friction pair surfaces are enhanced due to the layered structure, resulting in theformation of the uniform and whole coverage self-repairing film on the friction pair surfaces.It is indicated that the chemical composition of the lubricating oil containing various NPsafter48-h friction does not change. However,the physical and chemical properties of the NPsafter friction (i.e., phase composition, crystallizing degree, interplanar spacing, average grainsize, magnetic properties and transition temperature of oxidation, etc.) do vary. Besides thesize effect, van der Waals force, organic chain introduced by surface modification, theadhesion between Fe3O4NPs with hexagonal morphology and the friction pair surfaces can beenhanced due to the presence of magnetic force from the remanent magnetization (Mr). Thefriction pair surfaces can be entirely coverd by kaolin clay NPs and I/S clay NPs due to theirlarge surface areas and the unsaturated bonds (like Si-O、Si-O-Si、-OH). The release of O2from the clay NPs during friction results in the tribochemical reactions and the formation ofthe self-repairing film on the friction pair surface to improve the anti-friction properties of thefriction pairs.
     Thirdly, the thickness and pressure distribution of the oil film without and with Fe3O4NPs with hexagonal morphology at a concertration of1.5wt%between the crankshaft andconnecting rod of a gasoline engine were analyzed by a numerical method. The results showthat, compared to those of the lubricating oil, Fe3O4NPs with hexagonal morphology have aslight impact on the thickness of the oil film, even less in some positions on the journalbearing. However, the load carrying capacity of the oil film can be improved, which is in accordance with the PBresults of lubricating oil containing Fe3O4NPs.
     Finally, the effect of Fe3O4NPs with hexagonal morphology in#40lubricating oil on theanti-friction performance in a gasoline engine was evaluated. The results show that theconnecting rod surface appears smooth, the furrows are shallow and the chemical elementsdistribution on friction surface are uniform after friction in the lubricating oils containingFe3O4NPs with hexagonal morphology. The surface roughness and the average gasolineconsumption are reduced by approximately25%and10%, respectively. Moreover, thethickness of self-repairing film on the friction surface determined by X-ray photoelectronspectroscopy (XPS) is40~50nm.
引文
[1] Nosonovsky M., Rohatgi P.K. Biomimetics in Materials Science: Self-Healing,Self-Lubricating and Self-Cleaning Materials [M]. Springer New York DordrechtHeidelberg London,2012.
    [2] Zhang X.S., Sun W.C., Ma H.J., et al. Investigation of the tribological properties of twodifferent layered sodium silicates utilized as solid lubrication additives in lithiumgrease [J]. Ind Eng Chem Res,2014,53:182-188.
    [3] Tevet O., Von-Huth R., Popovitz-Biro R., et al. Friction mechanism of individualmultilayered nanoparticles [J]. Proc NatlAcad Sci, USA,2011,108:19901-19905.
    [4]沃恒洲,胡坤宏,胡献国.纳米二硫化钼作为机械添加剂的摩擦学特性研究[J].摩擦学学报,2004,(1):33-37.
    [5]王汝霖.润滑剂摩擦化学[M].北京中国石化出版社,1994.
    [6]徐政文.磨损自补偿修复润滑剂及其机理研究[D].广州:机械科学研究院,2002.
    [7] Zhang J., Tian B., Wang C.B. Long-term surface restoration effect introduced byadvanced silicate based lubricant additive [J]. Tribol Int,2013,57:31-37.
    [8] Gleiter H. Nano-crystalline materials [J]. Prog Mater Sci,1989,33(4):223-315.
    [9] Chen G.X., Hu Z.S., Dong J.X., et al. Study on antiwear and reducing friction additiveof nanometer cobalt hydroxide [J]. Lubr Eng,2001,57(4):36-39.
    [10] Zhang S.W., Hu L.T., Wang H.Z., et al. The anti-seizure effect of Ag nanoparticlesadditive in multialkylated cyclopentanes oil under vacuum condition [J]. Tribol Int,2012,55:1-6.
    [11] Pranab G., Gobinda K. Evaluation of sunflower oil as a multifunctional lubaricating oiladditive [J]. Int J Ind Chem,2014,5:7.
    [12] Nosonovsky M., Bhushan B. Green Tribology: Biomimetics, Energy Conservation andSustainability [M]. Springer New York Dordrecht Heidelberg London,2012.
    [13] Gobinda K., Pranab G. Green additives for lubricating oil [J]. ACS Sustainable ChemEng,2013,1:1364-1370.
    [14] Yang G.B., Chai S.T., Xiong X.J., et al. Preparation and tribological properties ofsurface modified Cu nanoparticles [J]. Trans Nonferrous Met Soc China,2012,22:366-372.
    [15] Zhang C.L., Zhang S.M., Song S.Y., et al. Preparation and tribological propertiesl ofsurface-capped copper nanoparticle as water-based lubricant additive [J]. Tribol Lett,2014,22.
    [16] Chen Y.F., Zhang Y.J., Zhang S.M., et al. Preparation of Nickel-based nanolubricantsvia a facile in situ one-step route and investigation of their tribological properties [J].Tribol Lett,2013,51:73-83.
    [17]王晓丽,徐滨士,许一.纳米润滑油添加剂的摩擦磨损特性及其机理研究[J].摩擦学学报,2007,127(3):235-239.
    [18] Kosidowski L., Powell A.V. Naphthalene interrelation into molybdenum disulfide [J].Chemical Communication,1988,(20):2201-2202.
    [19] Ho S.C., Lin J.H., Ju C.P. Effect of fiber addition on mechanical and tribologicalproperties of a copper/phenolic-based friction material [J]. Wear,2005,258(5/6):861-869.
    [20] Efeoglu I., Baca O., Yetim F., et al.Tribological characteristics of MoS2-NB solidlubricant film in different tribo-test conditions [J]. Surf Coat Tech,2008,2003(5/6/7):766-770.
    [21] Marinello F., Passeri D., Savio E. NanoScience and Technology [M]. SpringerHeidelberg New York Dordrecht London,2013.
    [22]朱俊武,张维光,王恒志,等.纳米CuO的形貌控制合成及其性能研究[J].无机化学学报,2004,20(7):863-867.
    [23] Wu Y.Y., Tsui W.C., Liu T.C. Experimental analysis of tribological properties oflubricating oils with nanoparticles additives [J]. Wear,2007,262:819-825.
    [24] Shi P.J., Yu H.L., Wang H.M., et al. Tribological behavior of surface modified coppernanoparticles as lubricating additives [J]. Phys Proc,2013,50:461-465.
    [25] Liang H.Y., Bu Y.F., Zhang J.Y., et al. Graphene oxide film as solid lubricant [J]. ACSAppl Mater Inter,2013,5:6369-6375.
    [26] Ettefaghi E.O.I., Ahmadi H., Rashidi A., et al. Investigation of the anit-wear propertiesof nano additives on sliding bearing of internal combustion engines [J]. Int J Precis EngMan,2013,14(5):805-809.
    [27] Zhang Y., Tang H., Ji X.R., et al. Synthesis of reduced graphene oxide/Cu nanoparticlecomposites and their tribological properties [J]. RSCAdv,2013,3:26086-26093.
    [28] Ilberg L., Manis-Levy H., Raveh A., et al. Effect of structure of carbon films on theirtribological properties [J]. Diam Relat Mater,2013,38:79-86.
    [29]刘正林.摩擦学原理[M].北京:高等教育出版社,2009.
    [30] Wang X.B., Liu W.M. Nanoparticle-based lubricant additives [J]. Encyclopedia oftribology,2013,2369-3-2376.
    [31] Cho D.H., Kim J.S., Kwon S.H., et al. Evaluation of hexagonal boron nitridenano-sheets as a lubricant additive in water [J]. Wear,2013,302:981-986.
    [32] Ettefaghi E.O.I., Ahmadi H., Rashidi A., et al. Experimental evaluation of engine oilproperties containg copper oxide nanoparticles as a nanoadditive [J]. Int J Ind Chem,2013,4:28.
    [33]侯文英.摩擦磨损与润滑[M].北京:机械工业出版社,2012.
    [34] Yu H.L., Xu Y., Shi P.J., et al. Microstructure, mechanical properties and tribologicalbehavior of tribofilm generated from natural serpentine mineral powders as lubricantadditive [J]. Wear,2013,297:802-810.
    [35] Zhang B., Xu B.S., Xu Y. Tribological characteristics and self-rapairing effect ofhydroxyl-magnesium silicate on various roughness firction pairs [J]. J Cent South UnivTechnol,2011,18:1326-1333.
    [36] Qi X.W., Jia Z.N., Yang Y.L., et al. Characterization and auto-restoration mechanism ofnanoscale serpentine powder as lubricating oil additive under high temperature [J].Tribol Int,2011,44:805-810.
    [37]金元生.蛇纹石内氧化效应对铁基金属磨损表面自修复层生成的作用[J].中国表面工程,2010,23(1):45-50.
    [38] Wicks F.J., Whittaker E.J. A reappraisal of the structures of the serpentine minerals [J].Can Mineral,1975,13:227-243.
    [39] Mellini M., Zanazzi P.F. Crystal structures of lizardite–IT and lizardite–2Hl from Coli[J].Am Mineral,1987,72:943-948.
    [40] Mckelvy M.J., Chizmeshya A.G., Diefenbacher J., et al. Exploration of the role of heatactivation in enhancing serpentine carbon sequestration reactions [J]. Environ SciTechnol,2004,38:6897-6903.
    [41]杨其明,白志民.超细蛇纹石粉体的材料特性、摩擦学介入行为及其工业应用[J].润滑与密封,2010,35(9):98-101.
    [42] Qi X.W., Jia Z.N., Yang Y.L. Comparative tribological properties of magnesiumhexasilicate and serpentine powder as lubricating oil additives under high temperature[J]. Tribol Int,2012,49:53-57.
    [43] Yu H.L., Xu Y., Shi P.J., et al. Effect of thermal activation on the tribological behaviorsof serpentine ultrafine powders as an additive in liquid paraffin [J]. Tribol Int,2011,44:1736-1741.
    [44]郑水林,袁继祖.非金属矿加工技术与应用手册[M].北京:冶金工业出版社,2005.
    [45] Gong G.F., Yang H.Y., Fu X. Triboligical properties of kaolin filled UHMWPEcomposites in unlubricated sliding [J]. Wear,2004,256:88-94.
    [46] Scharf T.W., Prasad S.V. Solid lubricants: a review [J]. J Mater Sci,2013,48:511-513.
    [47]王海斗,徐滨士,刘家浚.固体润滑膜层技术与应用[M].北京:国防工业出版社,2009.
    [48] Huang H.D., Tu J.P., Gan L.P., et al. An investigation on tribological properties ofgraphite nanosheets as oil additive [J]. Wear,2006,261:140-144.
    [49] Pogosian A.K., Martirosyan T.R. Impact of surfactant structure on the tribologicalproperties of bentonite-based greases [J]. J Tribol,2007,129:920-922.
    [50] Wang Z.Y., Xia Y.Q., Liu Z.L. Study the sensitivity of solid lubricating additives toattapulgite clay base grease [J]. Tribol Lett,2011,42:141-148.
    [51]南峰,许一,高飞,等.凹凸棒石粉体作为润滑油添加剂的摩擦学性能[J].硅酸盐学报,2013,41(6):836-841.
    [52] Rudenko P., Bandyopadhyay A. Talc as friction reducing additive to lubricating oil [J].Appl Surf Sci,2013,276:383-389.
    [53] Bucholz E.W., Zhao X.Y., Sinnott S.B., et al. Friction and wear of pyrophyllite on theatomic scale [J]. Tribol Lett,2012,46:159-165.
    [54] Yu H.L., Xu Y., Shi P.J., et al. Tribological behaviors of surface-coated serpentineultrafine powders as lubricant additive [J]. Tribol Int,2010,43:667-675.
    [55] Zhang B.S., Xu Y., Gao F., et al. Sliding friction and wear behaviors of surface-coatednatural serpentine mineral powders as lubricant additive [J]. Appl Surf Sci,2011,257:2540-2549.
    [56] Zhao F.Y., Kasrai M., Sham T.K., et al. Characterization of tribofilms generated fromserpentine and commercial oil using X-ray absorption spectroscopy [J]. Tribol Lett,2013,50:287-297.
    [57] Zhao F.Y., Bai Z.M., Fu Y., et al. Tribological properties of serpentine, La(OH)3andtheir composite particles as lubricant additives [J]. Wear,2012,288:72-77.
    [58] Yue W., Wang C.B., Liu Y.D., et al. Study of the regenerated layer on the worn surfaceof a cylinder liner lubricated by a novel silicate additive in lubricating oil [J]. Tribol T,2010,53:288-295.
    [59] Yu Y., Gu J.L., Kang F.Y., et al. Surface restoration induced by lubricant additive ofnatural minerals [J].Appl Surf Sci,2007,253:7549-7553.
    [60] Choi Y., Lee C., Hwang Y., et al. Tribological behavior of copper nanopartles asadditives in oil [J]. CurrAppl Phys,2009,9: e124-e127.
    [61] Padgurskas J., Rukuiza R., Prosy evas I., et al. Tribological properties of lubricantadditives of Fe, Cu and Co nanoparticles [J]. Tribol Int,2013,60:224-232.
    [62] Chou R., Hernández Battez A., Cabello J.J., et al. Tribological behavior ofpolyalphaolefin with the addition of nickel nanoparticles [J]. Tribol Int,2010,43:2327-2332.
    [63] Wang Y., Yang J., Yu J.S., et al. Ag nanoparticle-multiply alkylated cyclopentanecomposite ultrathin films fabricated by one step dip coating process and its tribologicalperformances [J]. Surf Coat Tech,2014,239:65-69.
    [64] Ma J.Q., Mo Y.F., Bai M.W. Effect of Ag nanoparticles additive on the tribologicalbehavior of multialkylated cyclopentanes (MACs)[J]. Wear,2009,266:627-631.
    [65] Xiong X.J., Kang Y.K., Yang G.B., et al. Preparation and evaluation of tribologicalproperties of Cu nanoparticles surface modified by tetradecyl hydroxamic acid [J].Tribol Lett,2012,46:211-220.
    [66]张志,崔作林.纳米技术与纳米材料[M].北京:国防工业出版社,2000.
    [67] Zhang Y.D., Yan J.S., Yu L.G., et al. Effect of nano-Cu lubrication additive on thecontact fatigue behavior of steel [J]. Tribol Lett,2010,37:203-207.
    [68] Yu H.L., Yi X., Shi P.J., et al. Tribological properties and lubricating mechanism of Cunanoparticles in lubricant [J]. Trans Nanferrous Met Soc China,2008,18:636-641.
    [69] Zhao Y.B., Zhang Z.J., Dang H.X. Fabrication and tribolobical properties of Pbnanoparticles [J]. J Nanopart Res,2004,6:47-51.
    [70] Hiroshi K., Yuta N., Aidil A.A., et al. Tribological properties of monolayer grapheneoxide sheets as water-based lubricant additives [J]. Carbon,2014,66:720-723.
    [71] Zhang W., Zhou M., Zhu H.W., et al. Tribological properties of oleic acid-modifiedgraphene as lubricant oil additives [J]. J Phys D: Appl Phys,2011,44(205303):1-4.
    [72]张栋,胡晓刚,仝毅,等.纳米金刚石用作润滑添加剂的研究进展[J].润滑油,2006,21(1):50-54.
    [73] Bakunin V.N., Suslov A.Y., Kuzmina G.N., et al. Synthesis and application of inorganicnanoparticles as lubricat components-a review [J]. J Nanopart Res,2004,6:273-284.
    [74] Bakunin V.N., Suslov A.Y., Kuzmina G.N., et al. Recent achievement in the synthesisand application of inorganic nanoparticles as lubricant components [J]. Lubr Sci,2005,17:127-145.
    [75] Wang H.D., Xu B.S., Liu J.J., et al. The friction-reduction model of iron sulfide filmprepared by plasma source ion sulfuration [J]. Surf Coat Tech,2007,201:5236-5239.
    [76] Hu J.Q., Wei X.Y., Dai G.L., et al. Tribological behabiors and mechanism of sulfur-andphosphorous-free organic molybdate ester with zinc ialkyldithiophosphate [J]. TribolInt,2008,41:549-555.
    [77] Hu Z.S., Dong J.X., Chen G.X., et al. Preparation and tribological properties ofnanoparticle lanthanum borate [J]. Wear,2000,243:43-47.
    [78] Hu Z.S., Lai R., Lou F., et al. Preparation and tribological properties of nanometermagnesium borate as lubricating oil additive [J]. Wear,2002,252:370-374.
    [79] Li J.S., Hao L.F., Xu X.H., et al. Tribological synergism of surface-modified calciumborate nanoparticles and sulfurized olefin [J]. Ind Lubr Tribol,2012,64(4):217-223.
    [80] Hernández Battez A., González R., Viesca J.L., et al. CuO, ZrO2and ZnO nanoparticlesas antiwear additive in oil lubricants [J]. Wear,2008,265:422-428.
    [81] Shi G., Zhang M.Q., Rong M.Z., et al. Friction and wear of low nanometer Si3N4filledepoxy composites [J]. Wear,2003,254:784-796.
    [82] Rapoport L., Leshchinsky V., Lapsker I., et al. Tribological properties of WS2nanoparticles under mixed lubrication [J]. Wear,2003,255:785-793.
    [83] Rashmi R.S., Sanjay K.B. Deformation and friction of MoS2particles in liquidsuspensions used to lubricate sliding contact [J]. Thin Solid Films,2010,518:5995-6005.
    [84] Liu F.Z., Xin S., Yin Y.B., et al. Shape controlled synthesis and tribological propertiesof CeVO4nanoparticles as lubricating additive [J]. J Rare Earth,2011,29(7):688-691.
    [85] Wang L.B., Zhang M., Wang X., et al. The preparation of CeF3nanocluster capped witholeic acid by extraction method and application to lithium grease [J]. Mater Res Bull,2008,43:2220-2227.
    [86] Zhou J.F., Wu Z.S., Zhang Z.J., et al. Study on an antiwear and extreme pressureadditive of surface coated LaF3nanoparticles in liquid paraffin [J]. Wear,2001,249:333-337.
    [87]高良风,傅晓炜,王瑞金.磁流体润滑技术[J].新技术新工艺,2005,7:29-31.
    [88]洪若瑜.磁性纳米粒与磁性流体制备与应用[J].北京:化学工业出版社,2009.
    [89] Wang L.J., Guo C.W., Yamane R., et al. Tribological properties of Mn-Zn-Fe magneticfluids under magnetic field [J]. Tribol Int,2009,42:792-797.
    [90] Huang W., Wang X.L., Ma G.L., et al. Study on the synthesis and tribological propertyof Fe3O4based magnetic fluids [J]. Tribol Lett,2009,33:187-192.
    [91]焦芬芬,胡大为,王燕民.摩擦副钢在含不同形貌纳米Fe3O4颗粒润滑油中的摩擦性能[J].硅酸盐学报,2011,39(1):152-157.
    [92]赵福燕,白志民,赵栋,等.蛇纹石/La复合粉体的制备及其摩擦性能[J].硅酸盐学报,2012,40(1):126-129.
    [93] Zhang B.S., Shi X.B., Xu Y., et al. Cu nanoparticles effect on the tribological propertiesof hydrosilicate powders as lubricant additive for steel-steel contacts [J]. Tribol Int,2011,44:878-886.
    [94]徐滨士.纳米表面工程[M].北京:化学工业出版社,2004.
    [95] Pradeep L.M., Satish V.K., Michael R.L. Chapter1: Fundamentals of engineeringsurfaces.//Pradeep L.M., Sudeep P.I., Michael N., et al. Tribology for scientists andengineers [M]. Springer New York Heidelberg Dordrecht London,2013.
    [96]陈鼎,陈振华.机械力化学[M].北京:化学工业出版社,2008.
    [97]戴振东,王珉,薛群基.摩擦体系热力学引论[M].北京:国防工业出版社,2002.
    [98] Miller B.P., Kotvis P.V., Furlong O.J., et al. Relating molecular structure to tribologicalchemistry: borate esters on copper [J]. Tribol Lett,2013,49:21-29.
    [99] Berlin H.G. Tribochemistry [M].Akademie-Verlag,1984.
    [100]钱林茂,田煜,温诗铸.纳米摩擦学[M].北京:科学出版社,2013.
    [101] Bowden F.P., Tabor D. The friction and lubrication of solids [M]. UK: Oxford at theClarenden Press,1954.
    [102]郑林庆.摩擦学原理[M].北京:高等教育出版社,1994.
    [103] Qi X.W., Lu L., Jia Z.N., et al. Comparative tribological properties of magnesiumhexasilicate and serpentine powder as lubricating oil additives under high temperature[J]. Tribol Int,2012,49:53-57.
    [104] Liu W.M., Chen S. An investigation of the tribological behavior of surfaced-modifiedZnS nanoparticles in liquid paraffin [J]. Wear,2000,238:120-124.
    [105]温诗铸,黄平.摩擦学原理(第1版)[M].北京:清华大学出版社,1988.
    [106]温诗铸,黄平.摩擦学原理(第2版)[M].北京:清华大学出版社,2002.
    [107]温诗铸,黄平.摩擦学原理(第3版)[M].北京:清华大学出版社,2008.
    [108]黄平.润滑数值计算方法[M].北京:高等教育出版社,2012.
    [109]侯文英.摩擦磨损与润滑[M].北京:机械工业出版社,2012.
    [110] Tiong C.I., Azli Y., Abdul Kadir M.R., et al. Tribological evalution of refined, bleachedand deodorized palm stearin using four-ball tribotester with different normal loads [J]. JZhejiang Univ-Sci A(Appl Phys Eng),2012,13(8):633-640.
    [111] Rapoport L., Bilik Y., Feldman Y., et al. Hollow nanoparticles of WS2as potentialsolid-state lubricants [J]. Nature,1997,387(19):791-793.
    [112] Kato H., Komai K. Tribofilm formation and mild wear by tribo-sintering ofnanometer-sized oxide particles on rubbing steel surfaces [J]. Wear,2007,262:36-41.
    [113]樊建春,林富生,温诗铸,等.设备状态检测中的摩擦学应用工程[J].润滑与密封,1997,4:13-14.
    [114] Huo Y.X., Chen D.R., Wen S.Z., et al. Monitoring of the wear condition and research onthe wear process for running equipment [J]. Tribol Trans,1997,40(1):87-90.
    [115] Hu D.W., Wang Y.M., Song Q. Weakly magnetic field-assisted synthesis of magnetitenano-particles in oxidative co-precipitation [J]. Particuology,2009,7:363-367.
    [116] Sakthivel S., Pitchumani B. Production of nano talc material and its applicability asfiller in polymeric nanocomposites [J]. Particul Sci Technol,2011,29(5):441-448.
    [117]杜艳艳,王燕民,潘志东.应用于橡胶补强的活性纳米高岭土制备[J].硅酸盐学报,2013,41(1):76-82.
    [118] Reynolds JR R.C., Hower J. The nature of interlayering in mixed-lyaerillite-montmorillonites [J]. Clay Clay Miner,1970,18:25-36.
    [119] Bekovdky B.M. Magnetic fluids engineering application [M]. Oxford: OxfordUniversity Press,1994.
    [120] Lin C.L., Lee C.F., Chiu W.Y. Preparation and properties of poly (acrylic acid) oligomerstabilized superparamagnetic ferrofluid [J]. J Colloid Interf Sci,2005,291:411-420.
    [121] Bourlinos A.B., Bakandritsos A., Georgakilas V., et al. Facile synthesis of cappedγ-Fe2O3and Fe3O4nanoparticles [J]. J Mater Sci,2006,41:5250-5256.
    [122] Sartoratto P.P.C., Neto A.V.S., Lima E.C.D., et al. Preparation and electric properties ofoil-based magnetic fluids [J].J Appl Phys,2005(97):1-3.
    [123]李小红,江向平,陈超,等.几种不同产地高岭土的漫反射傅里叶红外光谱分析[J].光谱学与光谱分析,2010,31(1):114-117.
    [124] Frost R.L., Makó é., Kristóf J., et al. Modification of kaolinite surfaces throughmechanochemical treatment/a mid-IR and near-IR spectroscopic study [J]. SpectrochimActaA,2002,58(13):2849-2859.
    [125] Maila C., Antonio T., Paola R., et al. Bulk and surface properties of commercial kaolins[J].Appl Clay Sci,2010,48(3):446-454.
    [126] Valá ková M., Rieder M., Matějka V., et al. Exfoliation/delamination of kaolinite bylow-temperature washing kaoinite-urea intercalates [J]. Appl Clay Sci,2007,35(1-2):108-118.
    [127] Silvio R. T., Jorge R. Adsorption of sodium dodecyl benzene sulfonate from aqueoussolution using a modified natural zeolite with CTAB [J]. Miner Eng,2010,23(10):771-779.
    [128]赵艳芬,孙全吉,黄艳华,等.三苯基硅醇与含氢硅油脱氢反应的研究[J].有机硅材料,2009,23(1):27-30.
    [129]韩燕平.磁流体粘滞特性的研究[D].苏州:苏州大学,2007.
    [130]魏宸官,赵家象.液体粘性传动技术[M].北京:国防工业出版社,1996.
    [131] Diamandescu L., Mih il-t r b sanu D., Teodorescu V., et al. Hydrothermal synthesisand structural characterization of some substituted magnetites [J]. Mater Lett,1998,37(6):340-348.
    [132]杨瑞成,郧栋,穆元春.纳米Fe3O4磁流体的制备及表征[J].兰州理工大学报,2008,34(1):22.
    [133]陈明洁,张汉昌,关志荣.化学共沉淀法制备Fe3O4纳米颗粒的结构和磁性能研究[J].材料导报,2008,22(12):94-97.
    [134] Wu M.Z., Xiong Y.S., Jia Y., et al. Magnetic field-assisted hydrothermal growth ofchain-like nanostructure of magnetite [J]. Chem Phys Lett,2005,401(4-6):374-379.
    [135] Yao K.L, Tao J., Liu Z.L., et al. Structural and magnetic analyses of magneticnanoparticles coated with oleate molecules [J]. J Mater Sci Technol,2004,20(4):417-420.
    [136] Jung H., Kim J.W., Choi H., et al. Synthesis of nanosized biogenic magnetite andcomparison of its catalytic activity in ozonation [J]. Appl Catal B-Environ,2008,83:208-213.
    [137] Firouzabadi H., Iranpoor N., Gholinejad M., et al. Magnetite (Fe3O4)nanoparticles-catalyzed sonogashira-hagihara reactions in ethylene glycol underligand-free conditions [J].Adv Synth Catal,2011,353:125-132.
    [138] Patel D., Moon J.Y., Chang Y., et al. Poly (d,l-lactide-co-glycolide) coatedsuperparamagnetic iron oxide nanoparticles: Synthesis, characterization and in vivostudy as MRI contrast agent [J]. Colloid SurfA,2008,314-314:91-94.
    [139] Huang Z.G., Guo Z.P., Calka A., et al. Effects of iron oxide (Fe2O3, Fe3O4) on hydrogenstorage properties of Mg-based composites [J]. J Alloy Compd,2006,422:299-304.
    [140] Laurent S., Forge D., Port M., et al. Magnetic iron oxide nanoparticles: synthesis,stabilization, vectorization, physicochemical characterizations, and biologicalapplication [J]. Chem Rev,2008,108(6):2064-2110.
    [141] Colombo M., Carregal-Romero S., Casula M.F., et al. Biolobical applications ofmagnetic nanoparticles [J]. Chem Soc Rev,2012,41:4306-4334.
    [142] Tran N., Webster T.J. Magnetic nanoparticles: biomedical applications and challenges[J]. J Mater Chem,2010,20:8760-8767.
    [143] Gao J.H., Gu H.W., Xu B. Multifunctional magnetic nanoparticles: design, synthesis,and biomedical applications [J].Accounts Chem Res,2009,42:1097-1107.
    [144] Hao R., Xing R.J., Xu Z.C., et al. Synthesis, functionalization, and biomendicalapplications of multifunctional magnetic nanoparticles [J]. Adv Mater,2010,22:2729-2742.
    [145] Zheng R.K., Gu H.W., Xu B., et al. Self-assembly and self-orientation of truncatedoctahedral magnetite nanocrystals [J].Adv Mater,2006,18:2418-2421.
    [146] Wan J., Yao Y., Tang G. Controlled-synthesis, characterization, and magnetic propertiesof Fe3O4nanostructures [J].Appl Phys A-Mater,2007,89:529-532.
    [147] Hu K.H., Hu X.G., Xu Y.F., et al. The effect of morphology on the tribologicalproperties of MoS2in liquid paraffin [J]. Tribol Lett,2010,40:155-165.
    [148] Zou G.F., Xiong K., Jiang C.L., et al. Magnetic Fe3O4nanodisc synthesis on a largescale via a surfactant-assisted process [J]. Nanotechnology,2005,16:1584-1588.
    [149] Shang T.M., Sun J.H., Zhou Q.F., et al. Controlled synthesis of various morphologies ofnanostructured zinc oxide: flower, nanoplate, and urchin [J]. Cryst Res Technol,2007,42(10):1002-1006.
    [150] Liu F.Z., Shao X., Yin Y.B., et al. Shape controlled synthesis and tribological propertiesof CeVO4nanoparticles as lubricating additive [J]. J Rare Earth,2011,29(7):688-691.
    [151] Pan Z.W., Dai Z.R., Wang Z.L. Nanobelts of semiconducting oxides [J]. Science,2001,291(5510):1947-1949.
    [152] Liu Y.H., Wang X.K., Pan G.S., et al. Acomparative study between grapheme oxide anddiamond nanoparticles as water-based lubricating additives [J]. Sci China Tech Sci,2013,56(1):152-157.
    [153] Wang Y.M., Forssberg E., Pugh R.J., et al. Magnetic aggregation in dispersions ofmineral ultrafines [J]. J Disper Sci Technol,1995,16(2):137-154.
    [154] Berman D., Erdemir A., Sumant A.V. Few layer graphene to reduce wear and friction onsliding steel surfaces [J]. Carbon,2013,54:454-459.
    [155] Bartz W.J. Solid lubricant additive-effect of concentration and other additives onantiwear performance [J]. Wear,1971,17:421-432.
    [156] Sahoo R.R., Biswas S.K. Effect of layered MoS2nanoparticles on the frictionalbehavior and microstructure of lubricating greases [J]. Tribol Lett,2014,53:157-171.
    [157] Hu Z.S., Dong J.X., Chen G.X. Study on antiwear and reducing friction additive ofnanometer ferric oxide [J]. Tribol Int,1998,31(7):355-360.
    [158] Hu K.H., Hu X.G., Wang J., et al. Tribological properties of MoS2with differentmorphologies in high-density polyethylene [J]. Tribol Lett,2012,47:79-90.
    [159] Kogov ek J., Kalin M. Various MoS2-, WS2-and C-Based micro-and nanoparticles inboundary lubrication [J]. Tribol Lett,2014,53:585-597.
    [160] Schlüter B., Mülhaupt R., Kailer A. Synthesis and tribological characterization of stabledispersions of thermally reduced graphite oxide [J]. Tribol Lett,2014,53:353-363.
    [161] Chen Q., Wang X., Wang Z.T., et al. Preparation of water-soluble nanographite and itsapplication in water-based cutting fluid [J]. Nanoscale Res Lett,2013,8:52.
    [162] Ratoi M., Niste V.B., Walker J., et al. Mechanism of action of WS2lubricantnanoadditives in high-pressure contacts [J]. Tribol Lett,2013,52:81-91.
    [163] Taha-Tijerina J., Pe a-Paras L., Narayanan T.N., et al. Multifunctional nanofluids with2D nanosheets for thermal and tribological management [J]. Wear,2013,302:1241-1248.
    [164] Sahoo R.R, Biswas S.K. Deformation and friction of MoS2particles in liquidsuspensions used to lubricate sliding contact [J]. Thin Solid Films,2010,518:5995-6005.
    [165] Barman B.N. Behavioral differences between group I and group II base oils duringthermo-oxidative degradation [J]. Tribol Int,2002,35:15-26.
    [166] Kihal A., Bouzabata B., Fillion G., et al. Magnetic and structural properties ofnanocrystalline iron oxides [J]. Phys Proce,2009,2:665-671.
    [167] Ohlberg S.M., Strickler D.W. Determination of percent crystallinity of partly devitrifiedglass by X-ray diffraction [J]. J Am Ceram Soc,1962,45:170-171.
    [168] Balaz P. Extractive Metallurgy of Activated Minerals [M]. Holland: Elsevier Science,B.V.,2000.
    [169]彭文世,刘高魁.矿物红外光谱图集[M].北京:科学出版社,1982.
    [170] Stoner E.C., Wohlfarth E.P. A mechanism of magnetic hysteresis in heterogeneousalloys [J]. Philos Trans R Soc,1948,A240:599-642.
    [171] Mathew D.S., Juang R.S. An overview of the strcutre and magnetism of spinel ferritenanoparticles and their synthesis in microemulsions [J]. Chem Eng J,2007,129:51-65.
    [172] Yamashita T., Hayes P. Analysis of XPS spectra of Fe2+and Fe3+ions in oxide materials[J].Appl Surf Sci,2008,254:2441-2449.
    [173] Wagner C. Handbook of X-ray Photoelectron Spectroscopy [M], Perkin-Elmer, PhysicalElectronic Division, MI,1979.
    [174] Wang L.B., Wang B., Wang X.B., et al. Tribological investigation of CaF2nanocrystalsas grease additives [J]. Tribol Int,2007,40:1179-1185.
    [175] McIntyre N., Zetaruk D. X-ray photoelectron spectroscopic studies of iron oxides [J].Anal Chem,1977,49(11):1521-1529.
    [176] Baba K., Hatada R. Synthesis and properties of TiO2thin films by plasma source ionimplantation [J]. Surf Coat Technol,2001,136:241-243.
    [177] Chen Y., Li X.H., Wu P.L., et al. Enhancement of structure stability of nano-sizedamorphous Fe2O3powders by surface modification [J]. Mater Lett,2007,61:1223-1226.
    [178]施建成,王桂华,王欣,等.新鲜铁表面锈蚀过程的拉曼光谱研究[J].上海师范大学学报(自然科学版),2001,30(4):62-66.
    [179] Dunnwal D.J., OTTO A. The application of Ramon spectroscopy to the study ofatmo-spheric rust systems [J]. Corros Sci,1989:1167.
    [180] Lee C.W., Jung S.S., Lee J.S. Phase transformation of β–Fe2O3hollow nanoparticles [J].Mater Lett,2008,62:561-563.
    [181] Gao C.P., Wang Y.M., Hu D.W., et al. Tribological properties of magnetite nanoparticleswith various morphologies as lubricating additives [J]. J Nanopart Res,2013,15:1502.
    [182] Li B., Wang X., Liu W., et al. Tribochemistiy and antiwear mechanism oforganic-inorganic nanoparticles as lubricant additives [J]. Tribol Lett,2006,22(1):79-84.
    [183] Barber J.R. Thermoelastic instabilities in the sliding of conforming solids [J]. Proc RoySocA,1969,312:381-394.
    [184]周韡,翟洪祥,黄振莺,等.钛铝碳的高速摩擦特性及摩擦氧化行为[J].硅酸盐学报,2006,34(5):523-526.
    [185] Johansson U. Spectroscopic studies of kaolinite surfaces [D]. Sweden: Lule Unviersityof Technology,1998.
    [186] Frost R.L., Kristof J. Raman and infrared spectroscopic studies of kaolinite surfacesmodified by intercalation.//Wypych F., Satanarayana K.G. Clay Surfaces: fundamentaland applications [M]. Elsevier, the Netherlands,Amsterdam,2004:184-215.
    [187] Ibrahim M.M., Ei-Zawawy W.K., Nawwar G.A.M. Modified kaolin and polyacrylicacid-g-cellulosic fiber and microfiber as additives for paper properties improvements[J]. Carbohyd Polym,2012,88:1009-1014.
    [188] Raftari M., Rashid A.S., Kassim K.A., et al. Evaluation of kaolin slurry propertiestreated with cement [J]. Measurement,2014,50:222-228.
    [189] Harabi A., Zenikheri F., Boukhemis B., et al. Anew and economic approach to fabricateresistant porous membrane supports using kaolin and CaCO3[J]. J Eur Ceram Soc,2014,34:1329-1340.
    [190] Ganesh I., Ferreira J.M.F. Influence of raw material type and of the overall chemicalcomposition on phase formation and sintered microstructure of mullite aggregates [J].Ceram Int,2009,35:2007-2015.
    [191] Bai J.H. Fabrication and properties of porous mullite ceramics from calcinedcarbonaceous kaolin and α-Al2O3[J]. Ceram Int,2010,36:673-678.
    [192] Murray H.H., Kogel J.E. Engineered clay products for the paper industry [J]. Appl ClaySci,2005,29:199-206.
    [193] Lam C.K., Lau K.T. Tribological behavior of nanoclay/epoxy composites [J]. MaterLett,2007,61:3863-3866.
    [194] Sentenac P., Ayeni S., Lynch R.J. Effects of gasoline and diesel additives on kaolinite[J]. Environ Earth Sci,2012,66:783-792.
    [195] Jia Z.N., Yang Y.L. Self-lubricating properties of PTFE/serpentine nanocompositeagainst steel at different loads and sliding velocities [J]. Compos Part B: Eng,2012,43:2072-2078.
    [196]梁永和,李楠.结构对高岭石脱水活化能大小的影响[J].硅酸盐通报,1989,8(3):53-57.
    [197] Chen W.G., Gao Y.Z., Zhang H.C. XPS and SEM analysis of self-repairing film formedby mineral particles as lubricant additives on the metal friction pairs [A]. TechnicalSessions-Proceeding of CIST2008&ITS-IFToMM2007Beijing, China,2008.
    [198]杨鹤,张正业,李生华,等.金属磨损自修复层的X光电子能谱研究[J].光谱学与光谱分析,2005,25(6):945-948.
    [199] Bethke C.M., Altaner S.P. Layer-by-layer mechanism of smectite illitization andapplication to a new rate law [J]. Clay Clay Miner,1986,34:136-145.
    [200] Cuadros J., Linares J. Experimental kinetic study of the semctitie-to-illitetransformation [J]. Geochim CosmochimAc,1996,60:439-453.
    [201] Feng X.H., Faiia A.M., WoldeGabriel G., et al. Oxygen isotope studies of illite/smectiteand clinoptilolite from Yucca Mountai: implications for paleohydrologic conditions [J].Earth Planet Sci Lett,1999,171:95-106.
    [202] Lamontagne B., Semond F., Roy D. X-ray photoelectron spectroscopic study of Si (111)oxidation promoted by potassium multilayers under low O2pressures [J]. J ElectronSpectrosc,1995,73:81-88.
    [203]程啸凡.工程流体力学[M].北京:冶金工业出版社,1986.
    [204]王毛兰,胡春华,罗新.磁流体的制备、性质及其应用[J].化学通报,2004,67:1-7.
    [205] Huke B., Lücke M. Magnetic properties of colloidal suspensions of interactingmagnetic particles [J]. Pep Prog Phys,2004,67:1731-1768.
    [206] Chikazumi S., Taketomi S., Ukita M., et al. Physics of magnetic fluids [J]. Magn MagnMater,1987,65:245-251.
    [207]休斯W.F.,布莱顿J.A.流体动力学[M].北京:科学出版社,2002.
    [208] Ghods P., Isgor O.B., Brown J.R., et al. XPS depth profiling study on the passive oxidefilm of carbon steel in saturated calcium hydroxide solution and the effect of chlorideon the film properties [J].Appl Surf Sci,2011,257:4669-4677.
    [209] Vengudusamy B., Grafl A., Novotny-Farkas F., et al. Tribological behaviour of antiwearadditives used in hydraulic applications: Synergistic or antagonistic with othersurface-active additives [J]. Tribol Int,2013,67:199-210.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700