复合金磁性γ-Fe_2O_3纳米粒子的制备研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磁性载体的生物传感技术在生物医学的许多领域展现出广阔的应用前景。磁性纳米粒子除了对外加磁场具有响应性外,磁性粒子的另一特点是通过功能化修饰使其表面带有不同的功能基团,通过修饰在其表面的功能化活性基团可连接抗体、抗原、核酸及寡核昔酸等生物活性物质。因此,以金等贵金属功能化的磁性纳米粒子为载体在免疫检测、核酸的纯化与分离、靶向载药、固定化酶、细胞分离等生物医学领域得到了广泛的应用。
     本文的主旨在于以磁性纳米颗粒为核,在其表面包覆一层具有生物相容性的贵金属原子,从而制备出具有核壳结构的纳米复合颗粒。而作为磁性纳米材料的一个重要组成部分,磁性γ-Fe_2O_3纳米颗粒也有着广泛的应用前景。本论文正是基于以上考虑,选择了“复合金磁γ-Fe_2O_3纳米粒子的制备研究”作为研究方向,从以下几个方面开展了工作:
     1、以改进的共沉淀法制备的Fe3O4为前驱,采用高温氧化法制备了超顺磁性γ-Fe_2O_3纳米粉体,对其形貌、结构、磁学性能进行了考察,并考察了不同的氧化温度对粒子晶型结构的影响。主要取得以下结果:用高温氧化法制备了粒径为20nm左右的磁性γ-Fe_2O_3纳米粒子。在高温氧化过程中考察了不同的氧化温度对粒子结构的影响,随着氧化温度的升高,前驱体粒子Fe3O4逐渐转化为γ-Fe_2O_3,继续提高温度则产物转变为α-Fe_2O_3。
     2、合成了氨基功能化和巯基功能化两种表面功能化的磁性γ-Fe_2O_3纳米粒子,并对其形貌、结构和磁学性能进行了比较研究。分别采用3-氨丙基三乙氧基硅烷(APTES)和3-巯丙基三乙氧基硅烷(MPTES)将γ-Fe_2O_3纳米粒子表面修饰上氨基(-NH_2)官能团和巯基(-SH)官能团,从而获得了表面功能化的磁性γ-Fe_2O_3纳米粒子。氨基功能化和巯基功能化后的磁性粒子粒径略有增加,较好的保留了原始结构和磁性特征。
     3、提出了基于超声化学法制备γ-Fe_2O_3/Au和自组装法制备Gold-Mag两种金包覆的磁性复合纳米粒子的方法,并对这些金磁纳米粒子的形貌、结构和磁学性能进行了研究,主要取得如下结果:1)采用超声化学法制备的γ-Fe_2O_3/Au复合粒子在常温下表现出较好的顺磁性特征,并具有较为稳定的光学吸收特点,并且其饱和磁化强度可以达到80 emu/g以上,为其在生物医学领域中的应用奠定了基础。2)采用自组装法制备的Gold-Mag金磁复合纳米粒子,结果显示自组装金磁粒子具有更好的磁响应性,且兼有磁性纳米粒子和胶体金的特性。
The magnetic carrier-based biosensor technique displays widely promising applications in many fields of biomedical engineering. Magnetic nanoparticles (MNPs) could respond simultaneously as the magnetic field is applied, besides, the MNPs can be modified with different bioactivators such as antibody, antigen, nucleic acid, oligonucleotide and so on. Therefore, the noble such as gold functionalized MNPs are used as carrier and then can be widely applied in immunoassay, purification and separation of nucleic acid, target delivery, enzyme immobilization, cell separation and so on.
     This thesis reported that the MNPs were used as carrier core, then biocompatibile noble mental gold were modified onto the MNPs for preparing gold-coated nanocomposites. As an important component part of MNPs, Maghemite (γ-Fe_2O_3) MNPs have widely promising applications. Considering the above reasons, our research focused on the preparation of maghemite-based nanocomposites. The thesis includes the following parts:
     Charpter 1 Magnetic Fe3O4 nanopowders were prepared by modified chemical coprecipitation and then were used as precursors, the maghemite nanopowders were prepared under high temperature oxidation. The properties and structure of maghemite were thoroughly studied under different oxidation temperature. The results revealed that the nanopowders were of average diameter ca.20 nm. Moreover, as the oxidation temperature increases, the precursor nanoparticles gradully changed into maghemite (γ-Fe_2O_3) under proper temperature, and finally becameα-Fe_2O_3 if temperature continues to increase.
     Charpter 2 Reported silane tailoring of maghemite nanoparticles to obtain amino-coated and thiolated MNPs via 3-aminopropyltriethy loxysilane (APTES) and mercaptopropyltriethoxysilane (MPTES) modification, respectively. Corresponding structure and magnetics properties of the functinalized maghemite were thoroughly studied. The results prove that the surface functionalized MNPs have a slight dimensional increase in average diameter, and retain almost original structures and saturation magnetization (Ms) of parent maghemite.
     Chapter 3 Described two gold mental functionalized MNPs (γ-Fe_2O_3/Au and Gold-Mag) by sonochemical synthesis and self-assembly methods, respectively. Meanwhile, the structure and magnetic properties of the nanocomposites were investigated. Some results were as follows:
     1)γ-Fe_2O_3/Au nanocomposites presented paramagnetism at room temperature, and possessed a very high Ms of about 80 emu·g-1. In addition,γ-Fe_2O_3/Au nanoparticles had a steady optical absorption. These combined-properties can readily extend the nanocomposites to further biochemical applications.
     2) Gold-Mag nanocomposites particles were prepared by self-assembly. The nanoparticles demonstrated well magnetic response and had the similar optical properties of colloidal gold.
引文
[1] Clark LC Jr. Lyons C. Electrode systems for continuous monitoring in cardiovascular surgery, Ann N Y Acad Sci. 1962, 102:29-45.
    [2] J Frenkel. J Dorfman. Spontaneous and induced magnetisation in ferromagnetic bodies. Nature, 1930, 126: 274-275.
    [3] M Vazquez. C Luna. MP Morales. et al. Magnetic nanoparticles: synthesis, ordering and properties. Phys. B, 2004, 354 (1-4): 71-79.
    [4] J C Mallinson. The foundations of magnetic recording. Academic: Berkeley, 1987, Chapter 3.
    [5] P Tartaj. T Gonzalez-Carreno. C J Serna. Single-step nanoengineering of silica coated maghemite Hollow Sphere with Tunable Magnetic Properties. Adv. Mater., 2001, 13 (21): 1620-1624.
    [6] X Battle. Labarta A. Finite-size effects in fine particles: magnetic and transport properties. J. Phys. D: Appl. Phys., 2002, 35 (6): R15-R42.
    [7] Sun S. Murray C. B. Weller D. Folks, L. Moser, A. Monodisperse FePt Nanoparticles and Ferromagnetic FePt Nanocrystal Superlattices. Science 2000, 287, 1989.
    [8] Miller M. M. Prinz, G. A. Cheng S. F. Bounnak, S. Detection of a micron-sized magnetic sphere using a ring-shaped anisotropic magnetoresistance-based sensor: A model for a magnetoresistance-based biosensor , Appl. Phys. Lett. 2002, 81, 2211.
    [9] Jain T. K. Morales M. A. Sahoo, S. K. Leslie-Pelecky, D. L. Labhasetwar, V. Iron oxide nanoparticles for sustained delivery of anticancer agents.Mol. Pharm. 2005, 2 (3), 194.
    [10] Chourpa I. Douziech-Eyrolles L. Ngaboni-Okassa L. Fouquenet J. F. Cohen-Jonathan S. Souce, M. Marchais H. Dubois P. Molecular composition of iron oxide nanoparticles, precursors for magnetic drug targeting, as characterized by confocal Raman microspectroscopy. Analyst 2005, 130 (10), 1395.
    [11] BultéJ. W. Intracellular Endosomal Magnetic Labeling of Cells.Methods Mol. Med. 2006, 124, 419.
    [12] Modo M. Bulte′, J. W. Cellular MR imaging. Mol. Imaging 2005, 4 (3), 143.
    [13] Burtea C. Laurent S. Roch A. Vander Elst L. Muller R. N. C-MALISA (cellular magnetic-linked immunosorbent assay), a new application of cellular ELISA for MRI. J. Inorg. Biochem. 2005, 99 (5), 1135.
    [14] Boutry S. Laurent S. Vander Elst L. Muller, R. N. Specific E-selectin targeting with a superparamagnetic MRI contrast agent.Contrast Med. Mol. Imaging 2006, 1 (1), 15.
    [15] Babes L. Denizot B. Tanguy G. Le Jeune J. J. Jallet P., J. Colloid Interface Sci. 1999, 212 (2),474.
    [16] Sonvico F. Dubernet C. Colombo P. Couvreur P., Metallic Colloid Nanotechnology, Applications in Diagnosis and Therapeutics.Curr. Pharm. Des. 2005, 11, 2091.
    [17] Corot C. Robert P. Idee J. M. Port M. Recent advances in iron oxide nanocrystal technology for medical imaging.AdV. Drug DeliVery ReV. 2006, 58 (14), 1471.
    [18] Modo M. M. J., Bulte′J. W. M., An Outlook on Molecular and Cellular MR Imaging.Molecular and Cellular MR Imaging; CRC Press: Boca Raton, FL, 2007.
    [19] Gupta A. K. Gupta M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 2005, 26 (18), 3995.
    [20] Charles S. W. Popplewell J. Agglomerate formation in a magnetic fluid.EndeaVour 1982, 6, 153.
    [21] Fernando Patolsky, Yossi Weizmann, Eugenii Katz, and Itamar Willner, Magnetically Amplified DNA Assays (MADA): Sensing of Viral DNA and Single-Base Mismatches by Using Nucleic Acid Modified Magnetic particles, Angew. Chem. Int. Ed. 42 (2003), 2372-2376
    [22] Yossi Weizmann, Fernando Patolsky, Oleg Lioubashevski, and Itamar Willner, Magneto-Mechanical Detection of Nucleic Acids and Telomerase Activity in Cancer Cells, J. Am. Chem. Soc. 126(2004), 1073-1080
    [23] Yossi Weizmann, Fernando Patolsky, Eugenii Katz, and Itamar Willner, Amplified DNA Sensing and Immunosensing by the Rotation of Functional Magnetic Particles, J. Am. Chem. Soc. 125(2003), 3452-3454
    [24] Chastellain M. Petri A. Gupta A. Rao K. V. Hofmann, H. Superparamagnetic iron oxide particles embedded in silica are studied for application in hyperthermia.AdV. Eng. Mater. 2004, 6 (4), 235.
    [25] C Bergemann., D Müller-Schulte, J Oster, Magnetic ion-exchange nano- and microparticles for medical, biochemical and molecular biological applications. J. Magn. Magn. Mater., 1999,194 (1-3):45-52.
    [26] J Ugelstad, P Stenstad, L Kilaas, et al. Immobilization and separation of cells and other particles. USP5763203, 1998.
    [27] I ?afa?ík, M ?afa?íková. Magnetic Nanoparticles and Biosciences. Monatsh. Chem., 2002, 133(6): 737-759.
    [28] R Weissleder, A Bogdanov, E A Neuwelt, et al. Long-circulating iron oxides for MR imaging. Adv. Drug Deliver. Rev., 1995, 16 (2):321-334.
    [29] A Jordan, R Scholz, P Wust, et al. Magnetic fluid hyperthermia (MFH): Cancer treatment with AC magnetic field induced excitation of biocompatible superparamagnetic nanoparticles. J. Magn. Magn. Mater., 1999, 201(1-3): 413-419.
    [30] D Müller-Schulte, F Füssl, H Lueken, et al. In scientific and clinical applications of magnetic carriers. New York and London: Plenum Press, 1997, 517.
    [31] Gould J L, Kirschvink J L. Deffeyes KS. Bees Have Magnetic Remanence Science, 1978, 201: 1026-1028.
    [32] Walcott C, Gould J L, Kirschvink J L. Pigeons have magnets. Science, 1979, 205: 1207-1029.
    [33] Torres de Araujo F F, Pires M A, Frankel R B et al. Magnetite and Magnetotaxis in Algae.Biophys. J., 1986, 50: 375-378.
    [34] Kirschvink S. Homing in on vertebrates.Nature, 1997, 390: 339-340.
    [35] Kirschvink J L, Kobayashi\|Kirschvink A, Woodford B J. Magnetite biomineralization in the human brain. Proc. Natl. Acad. Sci., 1992, 89:7683-7687.
    [36] Schüler D. Formation of magnetosomes in magnetotactic bacteria.J Mol Microbiol Biotechnol,1999,1(1): 79-86.
    [37] I ?afa?ík, M ?afa?íková, Magnetic nanoparticles and biosciences, Monatshefte für Chemie, 2002, 133: 737-759.
    [38] LaMer V K and Dinegar R H theory production and mechanism of formation of monodispersed hydrosols, J. Am. Chem. Soc., 72 (1950): 4847-4854.
    [39] F Patolsky, Y Weizmann, E Katz, et al. Theory production and mechanism of formation of monodispersed hydrosols. Angew. Chem. Int. Ed., 2003, 42 (21): 2372-2376.
    [40] M Oca?a, R Rodriguez-Clemente, C J Serna. Uniform colloidal particles in solution: Formation mechanisms. Adv. Mater., 1995, 7 (2): 212-216.
    [41] Young Soo Kang, Subhash Risbud, John F. Rabolt, and Pieter Stroeve, Synthesis and Characterization of Nanometer-Size-Fe3O4 andγ-Fe2O3 Particles, Chem.Mater., 8(1996), 2209-2211.
    [42] R Massart. Preparation of aqueous magnetic liquids in alkaline and acidic media. IEEE Trans. Magn., 1981, 17 (2): 1247-1248.
    [43] Jolivet, J. P.; Chaneac, C.; Tronc, E. Iron oxide chemistry. From molecular clusters to extended solid networks.Chem. Commun. 2004, 5, 481-487.
    [44] Dai Z. Meiser F. Mo¨hwald, H. Nanoengineering of iron oxide and iron oxide/silica hollow spheres by sequential layering combined with a sol–gel process.J. Colloid Interface Sci. 2005, 28 (1): 298-300.
    [45]Dura?es L. Costa B. F. O. Vasques J. Campos J. Portugal A. Phase investigation of as-prepared iron oxide/hydroxide produced by sol–gel synthesis. Mater. Lett. 2005, 59 (7), 859-863.
    [46] Ismail, A. A. Synthesis and characterization ofγ-Fe2O3/ Fe2O3/TiO2 nanoparticles by sol-gel method . Appl. Catal., B 2005, 58, 115-121.
    [47] Liu X. Q. Tao S. W. Shen Y. S., Preparation and characterization of nanocrystallineα-Fe2O3 bya sol-gel process. Sens. Actuators, A 1997, 40, 161-165.
    [48] Kojima K. Miyazaki M. Mizukami F. Maeda K., Effect of Organic Ligands Used in Sol-Gel Process on the Formation of Mullite .J. Sol-Gel Sci. Technol. 1997, 8, 101-106.
    [49] Solinas S. Piccaluga G. Morales M. P. Serna C., Sol-gel formation ofγ-Fe2O3/SiO2 nanocomposites.J. Acta Mater. 2001, 2805-2811.
    [50] Raileanu M. Crisan M. Petrache C. Crisan D. Zaharescu M. Fe2O3-SiO2 Nano Composites Obtained By Different Sol-Gekroutes, J. Optoelectron. AdV. Mater. 2003, 5 (3), 693-698.
    [51] Feltin N and Pileni M P, New technology for synthesizing Iron Ferrite Magnetic Nanosized particles, Langmuir, 13 (1997) 3927-3933.
    [52] Jun Lin, Weilie Zhou, A. Kumbhar, J. Wiemann, Jiye Fang, Carpenter EE, Gold-Coated Iron (Fe@Au) Nanoparticles: Synthesis, Characterization, and Magnetic Field-Induced Self-Assembly. J Solid State Chem. 159 (2001), 26-31.
    [53] Dong-Hwang Chen and Szu-Han Wu, Synthesis of Nickel Nanoparticles in Water-in-Oil Microemulsions, Chem. Mater. 12 (2000) , 1354-1360.
    [54] K Deshpande, M Nersesyan, A Mukasyan, Novel ferrimagnetic iron oxide nanopowders. Ind. Eng. Chem. Res., 2005, 44 (16):6196-6199.
    [55] J L Pérez-Rodríguez, A Wiewióra, J Drapala The effect of sonication on dioctahedral and trioctahedral micas. Ultrasonics Sonochemistry, 2006, 13:61-67.
    [56] Osuna J. de Caro D. Amiens C. Chaudret B. Snoeck E. Respaud M. Broto J. M. Fert A., Synthesis, Characterization, and Magnetic Properties of Cobalt Nanoparticles from an Organometallic Precursor.J. Phys. Chem. 1996, 10, 14571-14574.
    [57] Verelst M. Ely T. O. Amiens C. Snoeck E. Lecante P. Mosset A. Respaud M. Broto J. M. Chaudret B. Synthesis and Characterization of CoO, Co3O4, and Mixed Co/CoO Nanoparticules.Chem. Mater. 1999, 11, 2702-2708.
    [58] Dinega D. P. Bawendi M. G. A Solution-Phase Chemical Approach to a New Crystal Structure of Cobalt., Angew. Chem., Int. Ed. 1999, 38, 1788-1791.
    [59] Puntes, V. F.; Krishnan, K. M.; Alivisatos, A. P. Colloidal Nanocrystal Shape and Size Control: The Case of Cobalt .Science 2001, 291, 2115-2117.
    [60] Puntes V. F. Krishnan K. M. Alivisatos A. P. Synthesis of Colloidal Cobalt Nanoparticles with Controlled Size and Shapes .Top. Catal. 2002, 19, 145-148.
    [61] Puntes V. F. Krishnan K. M. Alivisatos A. P. Synthesis, self-assembly, and magnetic behavior of a two-dimensional superlattice of single-crystalα-Co nanoparticles. Appl. Phys. Lett. 2001, 78, 2187.
    [62] Yin, J. S.; Wang, Z. L. Ordered self-assembling of tetrahedral oxide nanocrystals.Phys. ReV. Lett. 1997, 79, 2570-2573.
    [63] Rotstein H. G. Tannenbaum R. Cluster Coagulation and Growth Limited by Surface Interactions with Polymers.J. Phys. Chem. B 2002, 106, 146-151.
    [64] Ely T. O. Amiens C. Chaudret B. Snoeck E. Varest M. Respaud M. Broto J. M. Synthesis of Nickel Nanoparticles. Influence of Aggregation Induced by Modification of Poly(vinylpyrrolidone) Chain Length on Their Magnetic Properties.Chem. Mater. 1999, 11, 526-529.
    [65] Rozenfeld O. Koltypin Y. Bamnolker H. Margel S. Gedanken, A. Self-Assembled Monolayer Coatings on Amorphous Iron.Langmuir 1994, 10, 3919-3921.
    [66] Sidorov S. N. Bronstein L. M. Davankov V. A. Tsyurupa M. P. Solodovnikov S. P. Valetsky P. M. Wilder E. A. Spontak R. J. Cobalt Nanoparticle Formation in the Pores of Hyper-Cross-Linked Polystyrene: Control of Nanoparticle Growth and Morphology. Chem. Mater. 1999, 11, 3210-3215.
    [67] Park S. J. Kim S. Lee S. Khim Z. G. Char K. Hyeon T. J. Convenient Molecular Approach of Size and Shape Controlled ZnSe and ZnTe Nanocrystals. Am. Chem. Soc. 2000, 122, 8581-8586.
    [68] Kim E. H. Lee H. S. Kwak B. K. Kim B. K. Synthesis of ferrofluid with magnetic nanoparticles by sonochemical method for MRI contrast agent. J. Magn. Magn. Mater. 2005, 289-328.
    [69] Suslick K. S. Choe S. B. Cichowlas A. A. Grinstaff M. W. Sonochemical synthesis of amorphous iron. Nature 1991, 353-414.
    [70] Suslick K. S. Hyeon T. Fang M. Nanostructured Materials Generated by High-Intensity Ultrasound: Sonochemical Synthesis and Catalytic Studies. Chem. Mater. 1996, 8, 2172-2179.
    [244] Suslick K. S. Fang M. Hyeon T. Sonochemical Synthesis of Iron Colloids. J. Am. Chem. Soc. 1996, 118, 11960-11961.
    [71] Suslick K. S. Hyeon T. Fang M. Cichowlas, A. A. Sonochemical synthesis of nanostructured catalysts. Mater. Sci. Eng., A 1995, 204, 186-192.
    [72] Bellissent R. Galli G. Hyeon T. Migliardo P. Parette G. Suslick K. S. Magnetic and structural properties of amorphous transition metals and alloys. J. Non-Cryst. Solids 1996, 205-207, 656-659.
    [73]Shafi K. V. P. M. Gedanken A. Goldfarb R. B. Felner I. Restore Desktop ViewSonochemical preparation of nanosized amorphous Fe-Ni alloys.J. Appl. Phys. 1997, 81, 6901.
    [74] Katabi G. Koltypin Y. Cao X. Gedanken A. Self-assembled monolayer coatings of iron nanoparticles with thiol derivatives. J. Cryst. Growth 1996, 166, 760-762.
    [75] Katabi G. Prozorov T. Koltypin Y. Cohen, H. Sukenik C. N. Ulman A. Gedanken A. Langmuir 1997, 13, 6151.
    [76] Ramesh S. Cohen Y. Aurbach D. Gedanken A. Atomic force microscopy investigation of thesurface topography and adhesion of nickel nanoparticles to submicrospherical silica . Chem. Phys. Lett. 1998, 287, 461-467.
    [77] Gibson C. P. Putzer K. J. Synthesis and Characterization of Anisometric Cobalt Nanoclusters.Science 1995, 267, 1338-1340.
    [78] Koltypin Y. Katabi G. Cao X. Prozorov T. Gedanken, A. J. Non-Cryst. Solids 1996, 201, 159.
    [79] Shafi K. V. P. M. Gedanken A. Prozorov T. Sonochemical preparation and characterization of nanosized amorphous Co–Ni alloy powders. J. Mater. Chem. 1998, 8, 769-773.
    [80] Katabi G. Koltypin Y. Rothe J. Hormes J. Felner I. Cao X. Gedanken, A. Thin Solid Films 1998, 333, 41.
    [81] Shafi K. V. P. M. Koltypin Y. Gedanken A. Prozorov R. Balogh J. Lendvai J. Felner I. Sonochemical Preparation of Nanosized Amorphous NiFe2O4 Particles. J. Phys. Chem. B 1997, 101, 6409-6414.
    [82] Shafi K. V. P. M. Ulman A. Yari X. Yang N. L. Estournes C. White H. Rafailovich, M. Sonochemical Synthesis of Functionalized Amorphous Iron Oxide Nanoparticles. Langmuir 2001, 17, 5093-5907.
    [83] Kumar R. V. Koltypin Y. Cohen Y. S. Cohen Y. Aurbach D. Palchik O. Felner I. Gedanken, A. Preparation of amorphous magnetite nanoparticles embedded in polyvinyl alcohol using ultrasound radiation. J. Mater. Chem. 2000, 10, 1125-1129.
    [84] Vijayakumar R. Diamant Y. Gedanken, A. Sonochemical Synthesis and Characterization of Nanometer-Size Transition Metal Oxides from Metal Acetates. Chem. Mater. 2000, 12, 2301-2305.
    [85] Vijayakumar R. Koltypin Yu. Felner I. Gedanken A. Sonochemical synthesis and characterization of pure nanometer-sized Fe3O4 particles. Mater. Sci. Eng., A 2000, 286, 101-105.
    [86] Derjaguin B. V. Landau L. Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solutions of electrolytes. Acta Physicochim. URSS 1941, 14, 633.
    [87]张立德,牟季美.纳米材料和纳米结构.科学出版社, 2001
    [88] Vanm .C, Le Edene tal .J Colloid Interface Sci,19 92,152:337
    [89]杨咏来等.液相法制备纳米粉体时防团聚方法概述.材料导报. 1998, 12 (2): 12
    [90]沈钟等.固体表面改性及其应用.化工进展.1993, (5): 44
    [91] Cornell, R. M.; Schertmann, U. The Iron Oxides: Structure, Properties, Reactions, Occurrence and Uses VCH Publishers: Weinheim, Germany, 1996.
    [92] Sahoo Y.; Pizem, H.; Fried, T.; Golodnitsky, D.; Burstein, L.; Sukenik, C. N.; Markovich, G. Alkyl Phosphonate/Phosphate Coating on Magnetite Nanoparticles: A Comparison with FattyAcids. Langmuir 2001, 17, 7907-7911.
    [93] Sahoo, Y.; Goodarzi, A.; Swihart, M. T.; Ohulchanskyy, T. Y.; Kaur, N.; Furlani, E. P.; Prasad, P. N. Aqueous Ferrofluid of Magnetite Nanoparticles: Fluorescence Labeling and Magnetophoretic ControlJ. Phys. Chem. B 2005, 109, 3879-3885.
    [94] Bee, A.; Massart, R.; Neveu, S. Synthesis of very fine maghemite particles.J. Magn. Magn. Mater. 1995, 149, 6-9.
    [95] Krishnamurti G. S. R.; Huang, P. M. Synthetic allophane and layer-silicate formation in SiO2-Al2-O3-FeO-Fe2O3-MgO-H2O systems at 23℃and 89℃in a calcareous environment. Clays Clay Miner. 1991, 39, 561-570.
    [96] Huang P. M.; Wang, M. K. In AdVances in Geoecology; Auerswald, K., Stanjek, H., Bigham, J. M., Eds.; International Development Centre: Ottawa, Canada, 1997; Vol. 30, p 241.
    [97] Liu C.; Huang, P. M. Atomic Force Microscopy and Surface Characteristics of Iron Oxides Formed in Citrate Solutions.Soil Sci. Soc. Am. J. 1999, 63, 65-72.
    [98] Fauconnier N. Bee, A.; Roger, J.; Pons, J. N. Synthesis of aqueous magnetic liquids by surface complexation of maghemite nanoparticles. J. Mol. Liq. 1999, 83, 233-242.
    [99] Kodama H. Schnitzer, M. Effect of fulvic acid on the crystallization of Fe (III) oxides.Geoderma 1977, 19, 279.
    [100] Kandori K. Kawashima, Y.; Ishikawa, T. Effects of citrate ions on the formation of monodispersed cubic hametite particles.J. Colloid Interface Sci. 1992, 125, 284-288.
    [101] Kandori K.; Kawashima, Y.; Ishikawa, T. J. Mater. Sci. 1991, 26, 3313.
    [102] Fauconnier N.; Bee, A.; Roger, J.; Pons, J. N. Adsorption of gluconic and citric acids on maghemite particles in aqueous medium Prog. Colloid Polym. Sci. 1996, 100, 212.
    [103] Fauconnier N.; Pons, J. N.; Roger, J.; Bee, A. Thiolation of Maghemite Nanoparticles by Dimercaptosuccinic Acid.J. Colloid Interface Sci. 1997, 194, 427-433.
    [104] Denizot, B.; Tanguy, G.; Hindre, F.; Rump, E.; LeJeune, J.-J.; Jallet, P. Phosphorylcholine Coating of Iron Oxide Nanoparticles.J. Colloid Interface Sci. 1999, 209, 66-77.
    [105] Portet D.; Denizot, B.; Rump, E.; LeJeune, J.-J.; Jallet, P. Nonpolymeric Coatings of Iron Oxide Colloids for Biological Use as Magnetic Resonance Imaging Contrast Agents .J. Colloid Interface Sci. 2001, 238, 37-42.
    [106] Cousin F.; Dubois, E.; Cabuil, V. Tuning the interactions of a magnetic colloidal suspension.Phys. ReV. E: Stat. Phys., Plasmas, Fluids, Relat. 2003, 68, 021405.
    [107] Cousin F.; Dubois, E.; Cabuil, V.; Boue′, F.; Perzynski, R. Braz. Overview of the phase diagram of ionic magnetic colloidal dispersions. J. Phys. 2001, 31 (3), 350.
    [108] Cousin F.; Dubois, E.; Cabuil, V. Approach of the critical point of gas–liquid transitions in an electrostatically stabilized colloidal suspension.J. Chem. Phys. 2001, 115 (13), 6051.
    [109] Cabuil V. Phase behavior of magnetic nanoparticles dispersions in bulk and confined geometries Curr. Opin. Colloid Interface Sci. 2000, 5, 44-48.
    [110] Dubois E. Perzynski R. Boue′F. Cabuil, V. Liquid?Gas Transitions in Charged Colloidal Dispersions: Small-Angle Neutron Scattering Coupled with Phase Diagrams of Magnetic Fluids. Langmuir 2000, 16, 5617-5625.
    [111] Meriguet G.; Cousin, F.; Dubois, E.; Boue′, F.; Cebers, A.; Farago, B.; Perzynski, R. What Tunes the Structural Anisotropy of Magnetic Fluids under a Magnetic Field?.J. Phys. Chem. B 2006, 110, 4378-4386.
    [112] Portet D.; Denizot, B.; Rump, E.; Hindre, F.; LeJeune, J.-J.; Jallet, P. Comparative biodistribution of thin-coated iron oxide nanoparticles TCION: Effect of different bisphosphonate coatings. Drug DeV. Res. 2001, 54, 173-181.
    [113] Mutin P. H.; Guerrero, G.; Vioux, A. C. R. Chim. 2003, 6, 1153.
    [114] Kreller D. I.; Gibson, G.; Novak, W.; Van Loon, G. W.; Hugh Horton, J. Competitive adsorption of phosphate and carboxylate with natural organic matter on hydrous iron oxides as investigated by chemical force microscopy. Colloids Surf., A 2003, 212, 249-264.
    [115] Yee, C.; Kataby, G.; Ulman, G.; Prozorov, T.; White, H.; King, A.; Rafailovich, M.; Sokolov, J.; Gedanken, A. Self-Assembled Monolayers of Alkanesulfonic and -phosphonic Acids on Amorphous Iron Oxide Nanoparticles.Langmuir 1999, 15, 7111-7115.
    [116] Tejedor-Tejedor, M. I.; Anderson, M. A. The protonation of phosphate on the surface of goethite as studied by CIR-FTIR and electrophoretic mobility. Langmuir 1990, 6 (3), 602-611.
    [117] Persson, P.; Nilsson, N.; Sjo¨berg, S. Structure and Bonding of Orthophosphate Ions at the Iron Oxide–Aqueous Interface .J. Colloid Interface Sci. 1996, 177, 263-275.
    [118] Mohapatra, S.; Pramanik, N.; Ghosh, S. K.; Pramanik, P. Synthesis and Characterization of Ultrafine Poly(vinylalcohol phosphate) Coated Magnetite Nanoparticles . J. Nanosci. Nanotechnol. 2006, 6 (3), 823-829.
    [119] Roberts, D.; Zhu, W. L.; Fromenn, C. M.; Rosenzweig, Z. Synthesis of gadolinium oxide magnetoliposomes for magnetic resonance imaging. J. Appl. Phys. 2000, 87, 6208.
    [120] Palmacci, S.; Josephson, L.; Groman, E. V. Synthesis of polysaccharide covered superparamagnetic oxide colloids. U.S. Patent 5,262,176,1995; Chem. Abstr. 1996, 122, 309897.
    [121] Hafeli, U.; Schu¨tt, W.; Teller, J.; Zbrorowski, M. Scientific and Clinical Applications of Magnetic Carriers; Plenum Press: New York, 1997.
    [112] Arshady, R. Radiolabeled and Magnetic Particles in Medicine and Biology; Critrus Books: London, U.K., 2001; Vol. 3.
    [123] Okassa LN,Marchais H,Douziech-Eyrolles L,et al.Development and characterization ofsub-micron poly(D,L-lactide-co-glycolide) particles loaded with magnetite/maghemite nanoparticles[J].Inter J Pharmaceut,2005,302:187-196.
    [124] Zhang, Y.; Kohler, N.; Zhang, M. Surface modification of superparamagnetic magnetite nanoparticles and their intracellular uptake Biomaterials 2002, 23, 1553-1561.
    [125] Lacava, L. M.; Lacava, Z. G. M.; Da Silva, M. F.; Silva, O.; Chaves,S. B.; Azevedo, R. B.; Pelegrini, F.; Gansau, C.; Buske, N.; Sabolovic,D.; Morais, P. C. Magnetic Resonance of a Dextran-Coated Magnetic Fluid Intravenously Administered in Mice.Biophys. J. 2001, 80, 2483.
    [126] Groman, E. V.; Josephson, L.; Lewis, J. M. Biologically degradable superparamagnetic materials for use in clinical applications. PCT Int. Appl. WO8800060, 1988; Chem. Abstr. 1989, 109, 69622.
    [127] Berry, C. C.; Wells, S.; Charles, S.; Curtis, A. S. G. Dextran and albumin derivatised iron oxide nanoparticles: influence on fibroblasts in vitro . Biomaterials 2003, 23, 4551-4557.
    [128] Lee, K. M.; Kim, S. G.; Kim, W. S.; Kim, S. S. Korean Properties of iron oxide particles prepared in the presence of dextran . J. Chem.Eng. 2002, 19, 480-485.
    [129] Laurent, S.; Nicotra, C.; Gossuin, Y.; Roch, A.; Ouakssim, A.; Vander Elst, L.; Cornant, M.; Soleil, P.; Muller, R. N. Influence of the length of the coating molecules on the nuclear magnetic relaxivity of superparamagnetic colloids . Phys. Status Solidi 2004, 12, 3644-3650.
    [130] Gamarra, L. F.; Brito, G. E. S.; Pontuschka, W. M.; Amaro, E.; Parma,A. H. C.; Goya, G. F. Biocompatible superparamagnetic iron oxide nanoparticles used for contrast agents: a structural and magnetic study J. Magn. Magn. Mater. 2005, 289, 439-441.
    [131] Molday, R. S.; MacKenzie, D. Immunospecific ferromagnetic iron-dextran reagents for the labeling and magnetic separation of cells.J. Immunol. Methods 1982, 52, 353-367.
    [132] Tartaj, P.; Morales, M. P.; Veintemillas-Verdaguer, S.; Gonzalez-Carreno, T.; Serna, C. J. Synthesis, properties and biomedicalapplications of magnetic nanoparticles. Handbook of MagneticMaterials; Elsevier: Amsterdam, The Netherlands, 2006; 403.
    [133] Paul, K. G.; Frigo, T. B.; Groman, J. Y.; Groman, E. V. Synthesis of Ultrasmall Superparamagnetic Iron Oxides Using Reduced Polysaccharides. Bioconjugate Chem. 2004, 15, 394-401.
    [134] Tiefenauer, L. X.; Tschirky, A.; Ku¨hne, G.; Andres, R. Y. In vivo evaluation of magnetite nanoparticles for use as a tumor contrast agent in MRI. Magn.Reson. Imaging 1996, 14, 391-402.
    [135] Moghimi, S. M.; Hunter, A. C.; Murray, J. C. Long-Circulating and Target-Specific Nanoparticles: Theory to Practice .Pharmacol. ReV. 2001, 53, 283-318.
    [136] Schellenberger, E. A.; Bogdanov, A. J.; Hogemann, D.; Tait, J.; Weissleder, R.; Josephson, L.Mol. Imaging 2002, 1, 102.
    [137] Yokoi, H.; Kantoh, T. Thermal Decomposition of the Iron(III) Hydroxide and Magnetite Composites of Poly(vinyl alcohol). Preparation of Magnetite and Metallic Iron Particles.Bull. Chem. Soc. Jpn. 1993, 66, 1536-1541.
    [138] Sairam, M.; Naidu, B. V. K.; Nataraj, S. K.; Sreedhar, B.; Aminabhavi, T. M. Poly(vinyl alcohol)-iron oxide nanocomposite membranes for pervaporation dehydration of isopropanol, 1,4-dioxane and tetrahydrofuran. J. Membr. Sci. 2006, 283, 65-73.
    [139] Scho¨pf, B.; Neuberger, T.; Schulze, K.; Petri, A.; Chastellain, M.; Hofmann, M.; Hofmann, H.; von Rechenberg, B. Methodology description for detection of cellular uptake of PVA coated superparamagnetic iron oxide nanoparticles (SPION) in synovial cells of sheep .J. Magn. Magn. Mater. 2005, 293, 411-418.
    [140] Xue, B.; Sun, Y. Protein adsorption equilibria and kinetics to a poly(vinyl alcohol)-based magnetic affinity support.J. Chromatogr., A 2001, 921, 109-119.
    [141] Lee, J.; Isobe, T.; Senna, M. Preparation of ultrafine Fe3O4 particles by precipitation in the presence of PVA at high pH. J. Colloid Interface Sci. 1996, 177,490-494.
    [142] Osada, Y.; Gong, J. Soft and Wet Materials: Polymer Gels. Polymer Gels AdV. Mater. 1998, 10, 827-837.
    [143] Albornoz, C.; Jacobo, S. E. Preparation of a biocompatible magnetic film from an aqueous ferrofluid . J. Magn. Magn. Mater. 2006, 305, 12-15.
    [144] Jia, Z.; Yujun, W.; Yangcheng, L.; Jingyu, M.; Guangsheng, L. In situ preparation of magnetic chitosan/Fe3O4 composite nanoparticles in tiny pools of water-in-oil microemulsion. React. Funct. Polym. 2006, 66, 1552-1558.
    [145] Sipos, P.; Berkesi, O.; Tombacz, E.; St. Pierre, T. G.; Webb, J. Formation of spherical iron(III) oxyhydroxide nanoparticles sterically stabilized by chitosan in aqueous solutions J. Inorg. Biochem. 2003, 95, 55-63.
    [146] Bhattarai, S. R.; Bahadur, K. C.; Aryal, S.; Khill, M. S.; Kim, H. Y. N-Acylated chitosan stabilized iron oxide nanoparticles as a novel nano-matrix and ceramic modification .Carbohydr. Polym. 2007, 69,467-477.
    [147] Kim, E. H.; Ahn, Y.; Lee, H. S. Biomedical applications of superparamagnetic iron oxide nanoparticles encapsulated within chitosan. J. Alloys Compd. 2007, 434-435,633-636.
    [148] Kim, E. H.; Lee, H. S.; Kwak, B. K.; Kim, B. K. J. Magn. Magn. Mater. 2005, 289, 328.
    [149] Llanes, F.; Ryan, D. H.; Marchessault, R. H. Magnetic nanostructured composites using alginates of different M/G ratios as polymeric matrix. Int. J. Biol. Macromol. 2000, 27, 35-40.
    [150] Finotelli, P. V.; Morales, M. A.; Rocha-Lea?o, M. H.; Baggio- Saitovitch, E. M.; Rossi, A. M. Magnetic studies of iron(III) nanoparticles in alginate polymer for drug delivery applications.Mater. Sci. Eng. 2004, 24, 625-629.
    [151] Cornell, R. M.; Schertmann, U. The Iron Oxides: Structure, Properties, Reactions, Occurrence and Uses; VCH Publishers: Weinheim, Germany, 1996.
    [152] Shu Chen, Ying Li, Chen Guo, Jing Wang, Junhe Ma, Xiangfeng Liang, Liang-Rong Yang, and Hui-Zhou Liu, Temperature-Responsive Magnetite/PEO-PPO-PEO Block Copolymer Nanoparticles for Controlled Drug Targeting Delivery, Langmuir 2007, 23, 12669-12676
    [153] Zhang C. Wangler B. Morgenstern B. Zentgraf H. Eisenhut M. Untenecker H. Kruger R. Huss R. Seliger C. Semmler W. Kiessling F. Silica- and Alkoxysilane-Coated Ultrasmall Superparamagnetic Iron Oxide Particles: A Promising Tool To Label Cells for Magnetic Resonance Imaging. Langmuir 2007, 23 (3), 1427-1434.
    [154] Mulvaney P. Liz-Marzan L. M. Giersig M. Ung T. Silica encapsulation of quantum dots and metal clusters . J. Mater. Chem. 2000, 10, 1259-1270.
    [155] Tartaj P. Gonzalez-Carreno T. Serna C. J. Synthesis of Nanomagnets Dispersed in Colloidal Silica Cages with Applications in Chemical Separation. Langmuir 2002, 18, 4556-4558.
    [156] Tartaj P. Gonzalez-Carreno T. Serna, C. J. AdV. Mater. 2001, 13, 1620.
    [157] Santra S. Tapec R. Theodoropoulou N. Dobson J. Hebard A. Tan W. Synthesis and Characterization of Silica-Coated Iron Oxide Nanoparticles in Microemulsion: The Effect of Nonionic Surfactants. Langmuir 2001, 17, 2900-2906.
    [158] Chen M. Yamamuro S. Farrell D. Majetich S. A. Gold-coated iron nanoparticles for biomedical applications. J. Appl. Phys. 2003, 93, 7551-7555.
    [159] Lin J. Zhou W. Kumbhar A. Fang J. Carpenter E. E. O’Connor, C. J. Gold-Coated Iron (Fe@Au) Nanoparticles: Synthesis, Characterization, and Magnetic Field-Induced Self-Assembly. J. Solid State Chem. 2001, 159, 26-31.
    [160] Zhou W. L. Carpenter E. E. Lin J. Kumbhar A. Sims J. O’Connor, C. J. Nanostructures of gold coated iron core-shell nanoparticles and the nanobands assembled under magnetic field . Eur. Phys. J. D 2001, 16, 289-292.
    [161] Morawski A. M. Winter P. M. Crowder K. C. Caruthers S. D. Fuhrlop R. W. Scott, M. J. Robertson J. D. Abendschein D. R. Lanza G. M. Wickline S. A. Targeted Nanoparticles for Quantitative Imaging of Sparse Molecular Epitopes With MRI. Magn. Reson. Med. 2004, 51, 480-486.
    [162] Shepherd P. G. Popplewell J. Charles S. W. A method of producing ferrofluid with gadolinium particles. J. Phys. D: Appl. Phys. 1970, 3, 1985-1986.
    [163] Xu H. K. Sorensen C. M. Klabunde K. J. Hadjipanayis G. C. Aerosol synthesis of gadolinium iron garnet particles. J. Mater. Res. 1992, 7, 712-716.
    [164] Wei Wu, Quanguo He, Changzhong Jiang, Magnetic Iron Oxide Nanoparticles: Synthesis andSurface Functionalization Strategies, J. Nanoscale Res Lett (2008) 3:397–415
    [165] Alcala, M. D.; Real, C. Synthesis based on the wet impregnation method and characterization of iron and iron oxide-silica nanocomposites. Solid State Ionics 2006, 177, 955-960.
    [166] Gushikem Y. Rosatto S. S. Metal Oxide Thin Films Grafted on Silica Gel Surfaces: Recent Advances on the Analytical Application of these Materials . J. Braz. Chem. Soc. 2001, 12, 695-705.
    [167] Woo K. Hong J. Ahn, J. P. Synthesis and surface modification of hydrophobic magnetite to processible magnetite@silica-propylamine. J. Magn. Magn. Mater. 2005, 293, 177-181.
    [168] Ewijk G. A. Vroege G. J. Philipse A. P. Convenient preparation methods for magnetic colloids. J. Magn. Magn. Mater. 1999, 201, 31-33.
    [169] Bruce I. J. Taylor J. Todd M. Davies M. J. Borioni E. Sangregorio C. Sen T. Synthesis, characterisation and application of silica-magnetite nanocomposites. J. Magn. Magn. Mater. 2004, 284, 145-160.
    [170] Ma D. Guan J. Normandin F. Denommee S. Enright, G.; Veres, T.; Simard, B. Multifunctional nano-architecture for biomedical applications. Chem. Mater. 2006, 18, 1920-1927.
    [171] Yu, J. H.; Lee, C.W.; Im, S. S.; Lee, J. S. Structure and Magnetic Properties of SiO2 coated Fe2O3 nanoparticles ynthesized by chemical vapor condensation process, ReV. AdV. Mater. Sci. 2003, 4, 55-62.
    [172] Tartaj P, Morales M P, Veintemillas-Verdaguer S, et al. The preparation of magnetic nanoparticles for applications in biomedicine. J. Phys. D: Appl. Phys., 2003, 36 (13):R182-R197.
    [173] Yang H H, Zhang S Q, Chen X L, et al. Magnetite-containing spherical silica nanoparticles for biocatalysis and bioseparations. Anal. Chem., 2004, 76 (5):1316-1321.
    [174] Swadeshmukul Santra, Rovelyn Tapec, Nikoleta Theodoropoulou, Jon Dobson, Arthur Hebard, and Weihong Tan, Synthesis and Characterization of Silica-Coated Iron Oxide Nanoparticles in Microemulsion: The Effect of Nonionic Surfactants, Langmuir 2001, 17, 2900-2906
    [175] Albert P. Philipse, Michel P. B. van Bruggen, and Chellapah Pathmamanoharan, Magnetic silica dispersions: preparation and stability of surface-modified silica particles, Langmuir, 10 (1994), 92-99
    [176] Yu Lu, Yadong Yin, Brian T. Mayers, and Younan Xia, Modifying the Surface Properties of Superparamagnetic Iron Oxide Nanoparticles through A Sol-Gel Approach, Nano Lett., 2(2002), 183-186
    [177] Kobayashi Y., Horie M., Konno M., Rodriguez-Gonzalez B., Liz-Marzen L.M., Preparation and properties of silica-coated Cobalt nanoparticles, J. Phys. Chem. B, 107 (2003) 7420-7425
    [178] Xuegang Lu, Gongying Liang, Zhanbo Sun, and Wei Zhang, Ferromagnetic Co/SiO2 core/shellstructured nanoparticles prepared by a novel aqueous solution method, Materials Science and Engineering B 117 (2005) 147–152
    [179] Maria Stjerndahl, Martin Andersson, Holly E. Hall, Daniel M. Pajerowski, Mark W. Meisel, and Randolph S. Duran, Superparamagnetic Fe3O4/SiO2 Nanocomposites: Enabling the Tuning of Both the Iron Oxide Load and the Size of the Nanoparticles, Langmuir 2008, 24, 3532-3536.
    [180] Yang H. H. Zhang, S. Q. Chen X. L. Zhuang Z. X. Xu J. G. Wang X. R. Magnetite-Containing Spherical Silica Nanoparticles for Biocatalysis and Bioseparations Anal. Chem. 2004, 76, 1316.
    [181] Numpon Insin, Joseph B. Tracy, Hakho Lee, John P. Zimmer, Robert M. Westervelt, and Moungi G. Bawendi,Incorporation of Iron Oxide Nanoparticles and Quantum Dots into Silica Microspheres,ACS Nano, 2008, 2 (2), 197-202
    [182] Ulman, A. Formation and Structure of Self-Assembled Monolayers. Chem. ReV. 1996, 96, 1533-1554.
    [183] Liu, Q. Finch, J. A. Egerton, R. A Novel Two-Step Silica-Coating Process for Engineering Magnetic Nanocomposites.Chem. Mater. 1998, 10, 3936-3940.
    [184] Lin, J. Zhou, W.; Kumbhar, A. Fang, J. Carpenter, E. E. O’Connor, C. J. J. Solid State Chem. 2001, 159, 26.
    [185] Lyon, J. L.; Fleming, D. A.; Stone, B.; Schiffer, P.; Willians, M. E. Nano. Lett. 2004, 4, 719.
    [186] Ling Zhang, Yong-Hua Dou, Hong-Chen Gu, Synthesis of Ag–Fe3O4 heterodimeric nanoparticles, Journal of Colloid and Interface Science 297 (2006) 660–664
    [187] Xiong Wen Lou, Chongli Yuan, and Lynden A. Archer, Double-Walled SnO2 Nano-Cocoons with Movable Magnetic Cores, Adv. Mater. 2007, 19, 3328–3332
    [188] Yoshiteru Mizukoshi, Satoshi Seino, Takuya Kinoshita, Takashi Nakagawa, Takao A. Yamamoto, Shuji Tanabe, Selective magnetic separation of sulfur-containing amino acids by sonochemically prepared Au/γ-Fe2O3 composite nanoparticles, Scripta Materialia 54 (2006) 609–613
    [189] Anand Gole, John W. Stone, William R. Gemmill, Hans-Conrad zur Loye, and Catherine J. Murphy, Iron Oxide Coated Gold Nanorods: Synthesis, Characterization, and Magnetic Manipulation, Langmuir 2008, 24, 6232-6237
    [190] Xiaowei Teng and Hong Yang, Synthesis of Face-Centered Tetragonal FePt Nanoparticles and Granular Films from Pt@Fe2O3 Core-Shell Nanoparticles, J. AM. CHEM. SOC. 2003, 125, 14559-14563
    [191] Dravid VP, Host JJ, Teng MH, Hwang BEJ, Johnson DL, Mason TO, et al. Controlled-Size Nanocapsules. Nature 1995; 374: 602-602
    [192] Ping-Zhan Si, Zhi-Dong Zhang, Dian-Yu Geng, Cai-Yin You, Xin-Guo Zhao, Wei-Shan Zhang. Synthesis and characteristics of carbon-coated iron and nickel nanocapsules produced by arcdischarge in ethanol vapor. Carbon 2003; 41: 247-251
    [193] Xiang-Cheng Sun and Nava N. Microstructure and Magnetic Properties of Fe(C) and Fe(O) Nanoparticles. Nano letters 2002; 2 (7): 765-769;
    [194] Wang ZH, Zhang ZD, Choi CJ, Kim BK. Structure and magnetic properties of Fe(C) and Co(C) nanocapsules prepared by chemical vapor condensation. J Alloys Compounds 2003; 361: 289-293
    [195] Hayashi T, Hirono S, Tomita M, Umemura S. Magnetic thin films of cobalt nanocrystals encapsulated in graphite-like carbon. Nature1996; 381: 772-774
    [196] Tsang SC, Chen YK, Harris PJF, Green MLH. A Simple Method of Opening and Filling Carbon Nanotubes. Nature 1994; 372: 159-162
    [197] Everett E Carpenter, Kumblhar A, Joan A Wiemann, Hariharan Srikanth, Jason Wiggins, Weilie Zhou, et al. Synthesis and magnetic properties of gold–iron–gold nanocomposites. Mater Sci Eng A 286 (200): 81-86
    [198] Iijima S. Helical microtubes of graphitic carbon, Nature,1991,354:56-58.
    [199]苏俊敏,张兴祥,碳纳米管填充技术的研究,功能性纺织品及纳米技术应用, 1003-1308 (2007) 02-0052-05
    [200] Miguel A. Correa-Duarte, Marek Grzelczak, Vero′nica Salgueirin?o-Maceira, Alignment of Carbon Nanotubes under Low Magnetic Fields through Attachment of Magnetic Nanoparticles,J. Phys. Chem. B, 2005, 109, 19060-19063
    [201] Garcia III A, Oh S, Engler C R. Celhdase immobilization on Fe304 and characterization. Biotechnol.Bioeng.1989,33:321-326.
    [202] A kgolS, K acar,Y ,D enizliA ,A ricaM Y.H ydrolysiso fsu croseb yin vertaseim mobilized onto novel magnetic polyvinylal cohol micorspheres. FoodChem.2001,74 :281-288.
    [203] Bilkova Z, Slovakova M, Lycka A, Horak D, Lenfeld J, Turkova J, Churacek J. Oriented immobilization of galactose oxidase to bead and magnetic bead cellulose and poly (HEM A- co-EDMA) and magnetic poly (HEMA-co-EDMA) microspheres. J. C hromatogr.B 2002 ,770:25-34.
    [204] Dyal A, Loos K, Noto M, et al. Activity of Candida rugosa lipase immobilize dongammγ-Fe203 magnetic nanoparticles. J. A m.Chem.Soc.2003,125:1684-1685.
    [205] Guo Z, Bai S, Sun Y. Preparation and characterization of immobilized lipase on magnetic hydrophobic microspheres. Enzyme Microb.Technol.2003,32:77 6-782.
    [206] Chen J P, Su D H. Latex particles with thermo-flocculation and magnetic properties for immobilization of a-chymotrypsin. Biotechnol. Prog.2001,17:36 9-375.
    [207] Betancor L, Fuentes M, Dellamora-Ortiz G, Lopez-Gallego F, Hidalgo A, Alonso-Morales N, Mateo C , Guisan JM, F emandez-LafuenteR. Dextranaldehyde coating of glucose oxidaseimmobilized on magnetic nanoparticles preventsitsin activation gas bubbles. J. M ol.C atal. B-E nzym.2005,32:97-101.
    [208] B aharT, C elebiS S. Immobilization of glucoamylase on magnetic poly( styrene) particles.J. Appl. Polym. Sci.1999,72 :69 -73.
    [209] Kondo A, Fukuda H. Preparation of thermo-sensitive magnetic hydrogel microspheres and application to enzyme immobilization. J. Ferment.B ioeng.19 97,4: 33 7-341.
    [210] Varlan A R, Sansen W. Covalent enzyme immobilization on paramagnetic polyacrolein beads. Biosens. Bioelectron.1996,11:443-448.
    [211] RitichB, SpanovaA, O hlashennyyY. Characterization of deoxyribonuclease1 immobilized on magnetic hydrophilic polymer particles.J. Chromatogr.B 2002,774:25-31.
    [212] LiaoM H, Chen D H. Immobilization of yeastal coholde hydrogenase on magnetic nanoparticles for imporving its stability. Biotechnol.Let.2001,23:1723-1727.
    [213] Lei H, Wang W, Chen L L, Li X C, Yi B, Deng L. The preparation and catalytically active Characterization of papain immobilized on magnetic composite micorspheres. Enzyme M icrob.Techno1.2004,35:15-21.
    [214] D Horák, B Rittich, J ?afá?, et al. Benes properties of RNase A immobilized on magnetic poly(2-hydroxyethyl methacrylate) microspheres. J. Biotechnol. Prog., 2001, 17 (3):447-452.
    [215] F Carusom, C Schüler. Enzyme multilayers on colloid particles: Assembly, stability, and enzymatic activity. Langmuir, 2000, 16(24):9595-9603.
    [216] Xiaoli Zhang, Linlin Li, Lu Li, Jia Chen, Guizheng Zou, Zhikun Si, and Wenrui Jin, Ultrasensitive Electrochemical DNA Assay Based on Counting of Single Magnetic Nanobeads by a Combination of DNA Amplification and Enzyme Amplification, Anal. Chem. 2009, 81, 1826–1832
    [217] Saiyed Z M ,Telang S D ,Ramchand C N .Application of magnetic techniques in the field of drug discovery and biomedicine. Biomagn. Res. Technol. 2003,1: 1- 8.
    [218] W idder K J.,M orris R .M .,H oward D .P .P roc.N ad.A cad.Sc i.U SA.1 981,7 8, 57 9 -5 8 1.
    [219] Ltlbbe A .S.,B ergemann C., H uhntW., et a l.C ancerR es. 1996,56,4694-4701.
    [220] Lubbe A .S.,B ergemann C., R iessH., et a l.C ancerR es. 1996,5 6,4 686-4693
    [221] Yu H. Developing an immunomagnetic separation-fluoersent immunoassay(IMS-FIA) for ra pid and high throughput analysis of enviromental water. Anal.Chem.Acta. 1998,376: 77-81.
    [222] Gatto M D L, Yu H, Bruno J C, Goode M T, Miller M, Zulich A W. Sensitive detection of biotoxoids and bacterial spores usingan immunomagnetic electrocheminescence sensor. Biosens. Bioelectron. 1995, 10:501-507.
    [223] Zhao X, Shippy S A. Competitive immunoassay for microliter protein samples with magnetic beads and near-infrared fluorescence detection. Anal. Chem. 2004, 76: 1871-1876
    [224] Katz E, Sheeney-Haj-lchiaL, Buckmann A F, Willner. Dual biosensing by magneto-controlled bioelectrocatalysis.A ngew.C hem.In t.Ed .2002, 41:13 43-1346.
    [225] G raham DL, F erreiraH A, F reitasP P ,C abralJ M S.H ighs ensitivityd etectiono fm olecular rec ogn iti on u s ingm agneticallyl abelledb iomoleculesa ndm agnetoresistives ensors. Biosens. Bioelectron. 2003,1 8:4 83-488.
    [226] Amit Agrawal, Tushar Sathe, Shuming Nie,Single-Bead Immunoassays Using Magnetic Microparticles and Spectral-Shifting Quantum Dots,J. Agric. Food Chem.2007, 55, 3778-3782.
    [227] SafarikI, Sfarikova M, Magnetic techniques for the isolation and purification of pr oteins and peptides, BioMagn.Res.Technol, 2004,2: 7-23.
    [228] Konerackd M, Kopcansky P, Antallk M, Timko M, RamchandC N, Lobo D, Im mobilization of proteins and enzymes to fine magnetic particles, J. Magn. Magn. Mater, 1999,20 1:42 7-43.
    [229] Xue B, Tong X D, Sun Y .Characterization of PVA-based magnetic affinity supported for protein adsorpt ion, Sep. Sci. Technol., 2001, 36( 11):2449-246.
    [230] Hye-Young Park, Mark J. Schadt, Lingyan Wang, I-Im Stephanie Lim, Peter N. Njoki, Fabrication of Magnetic Core@Shell Fe Oxide@Au Nanoparticles for Interfacial Bioactivity and Bio-separation, Langmuir 2007, 23, 9050-9056.
    [231] Taylor J I, Hurst C D, Davies M J, Sachsinger N K, Bruce I J. Application of magnetite and silica-magnetite composites to the isolation of genomic DNA. J. C hromatogr. A 2000, 890: 159-166.
    [232] Campo A D, Sen T, Lellouche J P, Bruce I J. Multifunctional magnetite and silica-magnetite nanoparticles: synthesis, surface activation and aplications in life sciences. J. Magn. Magn. Mater. 2005, 293:33-40.
    [233]何晓晓,王柯敏,谭蔚泓,刘斌,李杜,黄杉生.超顺磁性DNA纳米富集器应用于痕量寡聚核昔酸的富集.高等学校化学学报, 2003, 24 (1): 40-42
    [234] Thangavelu Selvaraju, Jagotamoy Das, Kyungmin Jo, Kiyeon Kwon, Chan-Hwa Huh, Nanocatalyst-Based Assay Using DNA-Conjugated Au Nanoparticles for Electrochemical DNA Detection, Langmuir 2008, 24, 9883-9888.
    [235] J.L. Dormann, D. Fiorani , From pure superparamagnetism to glass collective state inγ-Fe2O3 nanoparticle assemblies, Journal of Magnetism and Magnetic Materials, 1999, 203, 23-27.
    [236] G.C. Hadjipanayis, R.W. Siegel (Eds.), Nanophase Materials: Synthesis, Properties, Application, Kluwer Academic Publishers, Dordrecht, 1994.
    [237] R.C. Ashoori. Electrons in artificial atoms, Nature, 1996, 379 ,413-419.
    [238] T. Hyeon, S.S. Lee, J. Park, Y. Chung, H.B. Na, Synthesis of Highly Crystalline and Monodisperse Maghemite Nanocrystallites without a Size-Selection Process, J. Am. Chem. Soc. 2001, 123 (51) :12798-12801.
    [239] A.O. Caldeira, A.J. Leggett. Influence of Dissipation on Quantum Tunneling in Macroscopic Systems, Phys. Rev. Lett. 1981, 46 (4): 211-214.
    [240] J. Tejada, X.X. Zhang, Li Balcells. Nonthermal viscosity in magnets: Quantum tunneling of the magnetization (invited), J. Appl. Phys. 1993, 73 ,6709.
    [241] L. Zhang, G.C. Papaefthymiou, J.Y. Ying. Synthesis and Properties ofγ-Fe2O3 Nanoclusters within Mesoporous Aluminosilicate Matrices, J. Phys. Chem. B.2001, 105 (31): 7414-7423.
    [242] R L Millen, T Kawaguchi, M C Granger, et al. Giant magnetoresistive sensorsand superparamagnetic nanoparticles: A chip-scale detection strategy for immunosorbent assays, Anal. Chem., 2005, 77 (20): 6581-6587.
    [243] Sun C, Sze R, Zhang M. Folic acid-PEG conjugated superparamagnetic nanoparticles for targeted cellular uptake and detection by MRI., J. Biomed. Mater. Res. A, 2006, 78(3):550-557.
    [244] Halbreich A, Roger J, Pons J N, Biomedical applications of maghemite ferrofluid, Biochim., 1998, 80 (5-6):379-390.
    [245] J.L. Kirschvink, J.L. Gould. Biogenic magnetite as a basis for magnetic field detection in animals, Biosystems. 1981,13 (3) 181-201.
    [246] J Webb, P Westbroek, E W DeJong, Biomineralizatio and biological metal accumulation, Dordrecht:Reidel Publishin Company, 1983,413-422.
    [247] C.Y. Hsu, C.W. Li. Magnetoreception in honeybees(Apismellifera), Science. 1994,265 (5168): 95-96.
    [248]柳艳,陈军,宋磊.纳米材料的表面修饰和表征技术,能源环境保护, 2008, 22(5):14-17
    [249] Kim D K, Mikhaylova M, Zhang Y, et al. Protective coating of superparamagnetic iron oxide nanoparticles. Chem. Mater., 2003, 15(8):1617-1627.
    [250] Godovsky D Y, Varfolomeev A V, Efremova G D, et al.. Magnetic properties of polyvinyl alcohol-based composites containing iron oxide nanoparticles, Adv. Mater. Opt. Electron. 1999, 9 (3), 87-93.
    [251]王建祺,吴文辉,冯大明.电子能谱学(XPS/XAES/UPS)引论.国防工业出版社,1992,519
    [252] A. Taylor, X-ray Metallography, JohnWiley, New York, 1961, p. 678, 686.
    [253] O’Handley R C.. Modern Magnetic Materials: Principles and Applications, J. John Wiley & Sons Press: New York, p768.
    [254] S. M?rup, F. B?dker, P. V. Hendriksen and S. Linderoth, Phys. Rev. B, 1995, 52, 287.
    [255] Jose R. Correa, Dora Canetti, Ruben Castillo, Influence of the precipitation pH of magnetite in the oxidation process to maghemite, Materials Research Bulletin 41 (2006) 703–713
    [256] Shen X, Fang X, Zhou Y, et al. Synthesis and characterization of 3-aminopropyltriethoxysilane-modified superparamagnetic magnetite nanoparticles. Chem.Lett., 2004, 33(11):1468-1469.
    [257] M Yamaura, R L Camilo, L C Sampaio, A Macêdo, M Nakamura, H E Toma. Preparation and characterization of (3-aminopropyl) triethoxysilane-coated magnetite nanoparticles. J. Magn. Magn. Mater., 2004, 279(2-3): 210-217.
    [258] M Yamaura, R L Camilo, M Felinto. Synthesis and performance of organic-coated magnetite particles. J. Alloy. Compd., 2002, 344(1-2): 152-156.
    [259]车剑飞,谢毅哲,杨绪杰,陆路德,汪信.纳米二氧化硅表面接枝的X射线光电子能谱研究.南京理工大学学报(自然科学版), 2005, 29(3): 330-333.
    [260]王建祺,吴文辉,冯大明.电子能谱学(XPS/XAES/UPS)引论.国防工业出版社, 1992, 519.
    [261] Cui Yali , Hui Wenli , Wang Huirong , et al . Preparation and characterization of Fe3O4/ Au composite particles, J . Science in China Series B Chemistry , 2004 , 47(2) : 152-158.
    [262] Zhang Yong , Nathan Kohler , Zhang Miqin. Surface modification of superpara magnetic magnetite nanoparticles and their intracellular uptake, J . Biomaterials , 2002 , 23: 1553-1561.
    [263] A Ishizumi, Y Kanemitsu. Luminescence spectra and dynamics of Mn-doped CdS core-shell nanocrystals. Adv. Mater., 2006, 18 (8): 1083-1085.
    [264] G. Oldfield, T Ung, P Mulvaney. Au@SnO2 core-shell nanocapacitors, J. Adv. Mater., 2000, 12(20): 1519-1522.
    [265] S Zhou, B Varughese, B Eichhorn, et al. Pt–Cu core–shell and alloy nanoparticles for heterogeneous NOx reduction: anomalous stability and reactivity of a core–shell nanostructure, J. Angew. Chem. Int. Ed., 2005, 44: 4539-4543.
    [266] X Teng, H Yang. Synthesis of face-centered tetragonal FePt nanoparticles and granular films from Pt@Fe2O3 core-shell nanoparticles, J. Am. Chem. Soc., 2003, 125 (47): 14559-14563.
    [267] Cunningham, C. H., et al., Positive contrast magnetic resonance imaging of cells labeled with magnetic nanoparticles, J. Magn. Reson. Med. 2005 , 53(5), 999-1005.
    [268] Johannsen, M., et al., Clinical hyperthermia of prostate cancer using magnetic nanoparticles : Presentation of a new interstitial technique, J.Int. J. Hyperthermia , 2005, 21(7), 637-647
    [269] Jurgons, R., et al., Drug loaded magnetic nanoparticles for cancer therapy, J. Phys.: Condens. Matter ,2006, 18(38), S2893-S2902.
    [270] T J Mason, J P Lorima. Applied sonochemistry: Use of power ultrasound in chemistry and processing. 2002, Darmstadt:Wiley-VCH press.
    [271] L H Thompson, L K Doraiswamy. Sonochemistry: Science and engineering, J. Ind. Eng. Chem. Res., 1999, 38 (4): 1215-1249.
    [272] Q Li, H Li, V G Pol, I Bruckental, Y Koltypin, J Calderon-Moreno, I Nowik, A Gedanken. Sonochemical synthesis, structural and magnetic properties of air-stable Fe/Co alloy nanoparticles, J. New J. Chem., 2003, 27, 1194-1199.
    [273] M Sivakumar, A Gedanken, W Zhong, et al. Sonochemical synthesis of nanocrystalline LaFeO3, J. J. Mater. Chem., 2004, 14 (4):764-769.
    [274] S I Nikitenko, Y Koltypin, I Felner, et al. Tailoring the Properties of Fe-Fe3C Nanocrystalline Particles Prepared by Sonochemistry [J]. J. Phys. Chem. B, 2004, 108(23):7620-7626.
    [275]张祥麟,康衡.配位化学,长沙:中南工业大学出版社, 1986, 322-345
    [276] Mikhaylova M, Kim D K, Bobrysheva N, et al. Superparamagnetism of magnetite nanoparticles: Dependence on surface modification, J. Langmuir, 2004, 20 (6):2472-2477.
    [277] J L Lyon, D A Fleming, M B Stone, P Schiffer, M E Williams. Synthesis of Fe oxide core/au shell nanoparticles by iterative hydroxylamine seeding, J . Nano Lett., 2004, 4 (4): 719-723.
    [278] P Gangopadhyay, S Gallet, E Franz, A Persoons, T Verbiest. Novel superparamagnetic core(shell) nanoparticles for magnetic targeted drug delivery and hyperthermia treatment, J. IEEE Trans. Magn., 2005, 41(10): 4194-4196.
    [279] M. Mandal, S. Kundu, S. K. Ghosh, S. Panigrahi, T.K. Sau, S.M. Yusuf and T. Pal, Magnetite nanoparticles with tunable gold or silver shell, J. J. Colloid and Interface Science., 2005, 286, 187-194 .
    [282]杨文玉,崔亚丽,代丽君.陕西师范大学学报(自然科学版). 2003, 31 (2), 71-73
    [280] Cui Yali , Hui Wenli , Wang Huirong , et al . Preparation and characterization of Fe3O4/ Au composite particles, J. Science in China Series B Chemistry, 2004 , 47(2) : 152-158.
    [281] Zhang Yong , Nathan Kohler , Zhang Miqin. Surface modification of superpara magnetic magnetite nanoparticles and their intracellular uptake, J . Biomaterials , 2002 , 23, 1 553-1561.
    [283] S Santra, R Tapec, N Theodoropoulou, et al. Synthesis and Characterization of Silica-Coated Iron Oxide Nanoparticles in Microemulsion: The Effect of Nonionic Surfactants. Langmuir, 2001, 17(10):2900-2906.
    [284] L Wang, J Luo, Q Fan, M Suzuki, I S Suzuki, M H Engelhard, Y Lin, N Kim, J Q Wang, C Zhong. Monodispersed core-shell Fe3O4@Au nanoparticles. J. Phys. Chem. B., 2005, 109(46): 21593-21601.
    [285] Huang X. H. Huang H. Z. Wu N. Z. Hu R. S. Zhu T. Liu Z. F. Surf. Sci. 2000, 459, 183.
    [286] Frens, G.. Controlled nucleation for the regulation of the particle size in monodisperse gold solution, J. Nature Phys, 1973, 241:20-22.
    [287] S Link, M B Mohamed, M A El-Sayed. Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant. J. Phys. Chem. B., 1999, 103 (16): 3073-3077.
    [288] S Link, M A El-Sayed. Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles. J. Phys. Chem. B., 1999, 103 (21): 4212-4217.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700