碳纳米管的有机共价修饰及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳纳米管(CNT)具有优良的力学、电学、热学性能,在理论研究和实际应用方面引起了广泛的关注。为拓展CNT的应用范围,对CNT进行功能化是十分必要的。本论文主要采用有机共价键修饰在多壁碳纳米管(MWNT)上接枝水溶性的聚合物聚乙二醇(PEG),并利用得到的带有官能团的MWNT作为载体或者模板来构建功能化的纳米杂化材料,主要工作如下:
     1.利用酸化的MWNT在二环己基碳二亚胺/4-二甲氨基吡啶(DCC/DMAP)存在的条件下,同PEG发生酯化反应得到了PEG功能化的碳纳米管(MWNT-g-PEG)。利用PEG与α-环糊精(α-CD)之间的包合作用,首次制备了MWNT-g-PEG/a-CD超分子杂化纳米凝胶。通过X射线衍射、核磁、差示扫描量热法、热失重、流变等测试手段对得到的包合物进行了表征。结果表明,由于MWNT的阻碍作用,包合物中EG:α-CD的单元比大于理论值2:1;研究还表明,MWNT-g-PEG/a-CD杂化凝胶的形成取决于两个条件:1)MWNT上的PEG具有足够高的接枝密度,2)PEG链具有足够的长度。流变学特性分析表明,MWNT-g-PEG/a-CD杂化凝胶的强度远远大于PEG/a-CD凝胶的强度,分析原因是在凝胶的形成过程中,MWNT由于强烈的疏水作用会自组装发生聚集,这种聚集作用的结果使MWNT作为凝胶的超级交联点促进了凝胶网络的形成,因而提高了凝胶的强度。并且,MWNT-g-PEG/a-CD杂化凝胶具有触变性和可逆性,使其在药物注射方面具有潜在的应用。热性能的研究表明,MWNT的引入显著改善了凝胶的热稳定性,并使其热分解温度提高了大约100℃,远远高于目前的有关文献报道。
     2.利用MWNT-g-PEG作为介质,在低温下,通过溶胶凝胶法制备了MWNT表面负载花瓣状的氧化锌(ZnO)纳米复合材料。通过X射线衍射、红外波谱、扫描电镜和透射电镜对杂化复合材料进行表征。结果表明,ZnO纳米粒子和MWNT之间结合紧密,ZnO的尺寸比较均一。另外,研究表明,MWNT表面的PEG对ZnO的负载起着重要的作用,它是ZnO原位生长的活性点,推测了其生长机理。
     3.通过原子转移自由基-氮氧自由基偶合的方法(ATNRC)成功制备了MWNT-TEMPO-PEG。首先,通过4-羟基-2,2,6,6-四甲基吡啶氮氧自由基与酸化后MWNT表面的羧基的脱水缩合反应,制备了表面带有氮氧自由基的MWNT (MWNT-TEMPO);另一方面,利用PEG的羟基与2-溴异丁酰溴发生酯化反应得到了末端带有溴原子的PEG (PEG-Br)ATRP引发剂;然后将MWNT-TEMPO和PEG-Br在溴化亚酮/五甲基二乙烯基三胺(CuBr/PMDETA)存在的条件下,进行自由基偶和反应,得到了MWNT-TEMPO-PEG。所得的产物通过红外、核磁、热分析、透射电子显微镜等进行了表征。研究表明,通过ATNRC方法得到MWNT-TEMPO-PEG上的PEG接枝密度为41%,与我们前期做可达54%的MWNT-g-PS的接枝密度相比,降低了很多,分析原因为PEG-Br在ATNRC体系中会发生去质子化而自我终止,从而降低了反应活性。
Due to unique structural and superior properties of carbon nanotubes(CNT), it has been investigated for both in the theoretical understanding and in practical applications. To expand the application of carbon nanotubes, functionalized CNT, including noncovalent modification and covalent modification is necessary.
     In this thesis, Water-soluble Poly(ethylene glycol)(PEG) grafted multi-walled carbon nanotubes (MWNT-g-PEG) was prepared first, and then fabricate functional nanohybrids with as-modified CNT as templates or nano-supporters in order to overcome the existed problems in this area. The main contributions are as follows:
     1. MWNT-g-PEG was synthesized by MWNT containing carboxyl groups (MWNT-COOH) with PEG in the presence of N,N-dicyclohexylcarbodiimide (DCC) and 4-N,N-dimethylaminopyridine (DMAP). We first succeeded in constructing MWNT-g-PEG/a-CD hybrid hydrogels based on the complexes of a-cyclodextrins (a-CD) and PEG. The polypseudorotaxane structures of the as-obtained hydrogels were confirmed by 1HNMR, X-ray diffraction, TGA and DSC analyses. As a result, the stoichiometric ratios of EG:a-CD is higher than the theoretical values 2:1 due to the repulsion of the MWNT. It can therefore be suggested that two conditions must exist for the formation of MWNT-g-PEG/a-CD hybrid hydrogels:1) long enough PEG chains must be available for the threading of a-CD and long enough uncomplexed PEG must exist for physical cross-linking; 2) a high graft density must provide enough physical cross-links. The introduction of MWNT nanoparticles positively affected the strength and viscosity of the hydrogels. More importantly, the hybrid hydrogels also showed a shear thinning effect attributed to the supramolecular physical nature of the supra-cross-links. Moreover, it was observed that a disrupted sol phase could be turned reversibly into a gel after shearing and allowing to stand for a certain period of time. It could be concluded that the gels were thixotropic and reversible, and potentially suitable for use as an injectable drug delivery matrix through fine needles.Thermal analysis showed that the thermal stability of the hybrid hydrogel was substantially improved by up to 100℃higher than that of native hydrogel.
     2. MWNT-g-PEG enclosed by petal-like zinc oxide (ZnO) particles were prepared by sol-gel method at ambient pressure and low temperature (T=70℃). The hybrid nanocomposites were characterized using XRD, FTIR, TEM and SEM. The results obtained exhibited intimate contact between the ZnO nanoparticles and MWNT-g-PEG and ZnO crystallites had a very uniform size distribution of 80-150 nm. It was suggested that the PEG chains on MWNT surface act as the active sites for the in-situ growth of ZnO.
     3. MWNT-TEMPO-PEG was synthesized by atom transfer nitroxide radical coupling chemistry (ATNRC). MWNT with 2,2,6,6-tetramethylpiperidine-l-oxy (MWNT-TEMPO) groups was prepared first by esterification of 4-hydroxy-2,2,6,6-tetramethylpiperidine-l-oxy (HO-TEMPO) and carboxylic acid group on the surface of MWNT, and then PEG with bromide end group (PEG-Br) were obtained by esterification of PEG and ethyl 2-bromoisobutyryl bromide. When the MWNT-TEMPO was mixed with PEG-Br and heated to 90℃in the presence of CuBr/PMDETA, the formed secondary carbon radicals at the PEG chain ends were quickly trapped by the nitroxide radicalson MWNT-TEMPO to form graft copolymer in which the alkoxyamines were at the conjunction points. The product was characterized by FTIR, NMR, TGA, and TEM. Nevertheless, the efficiency of coupling reaction in MWNT-TEMPO/PEG-Br was 41%, which showed the lower coupling efficiency than that of MWNT-TEMPO/PS-Br system of our previous work. Usually, the higher activity for PEG-Br would lead to the easier termination via disproportionation during the ATNRC procedure. It means that once the radical generated from-C(CH3)2Br, it might not be trapped by TEMPO immediately through the ATNRC (ktc), the radicals would prefer to terminate by disproportionation (ktd) instead of forming the dormant radical.
引文
1. Kroto H.W., Heath J.R., O'Brien S.C., Curl R.F. Smalley R.E. C60:Buckminister fullerence[J]. Nature 1985,318:162-163.
    2. Iijima S. Helical microtubes of graphitic carbon[J]. Nature 1991,354:56-58.
    3.成会明著.纳米碳管制备、结构、物性及应用[M].化学工业出版社材料科学与工程出版中心,2002,ISBN 7-5025-3957-3.
    4.朱宏伟,吴德海,徐才录著.碳纳米管[M].机械工业出版社,2003,ISBN 7-111-11363-2.
    5. Dai L., Mau A.W.H. Controlled Synthesis and Modification of Carbon Nanotubes and C60:Carbon Nanostructures for Advanced Polymeric Composite Materials[J]. Adv Mater 2001,13(12-13): 899-913.
    6. Dai H.J. Carbon nanotubes:opportunities and challenges[J]. Surf Sci 2002,500(1-3):218-241.
    7. Popov V.N. Carbon nanotubes:properties and application[J]. Mater Sci Eng R 2004,43(3):61-102.
    8. Wang Z.L., Gao R.P., Poncharal P., etc. Mechanical and electrostatic properties of carbon nanotubes and nanowires[J]. Mater Sci Eng C 2001,16 (1-2):3-10.
    9. Ouyang M., Huang J.L., Lieber C.M., Fundamental Electronic Properties and Applications of Single-Walled Carbon Nanotubes[J]. Acc Chem Res 2002,35(12):1018-1025.
    10.国立秋,赵铁强,董申,钟照华.碳纳米管原子力显微镜针尖及其在生物学研究中的应用[J].高技术通讯,2002,4,36-38.
    11.孔浩.碳纳米管的原位ATRP可控功能化,[博士学位论文],上海交通大学,2004.
    12.李文文.功能化碳纳米管的合成、表征及应用研究,[硕士论文],上海交通大学,2005.
    13. Guo T., Nikolaev P., Rinzler A.G, Tomanek D., Colbert D.T., Smalley R.E. Self-assembly of tubular fullerenes[J]. J Phys Chem 1995,99(27):10694-10697.
    14. Guo T., Nikolaev P., Thess A., Colbert D.T., Smalley R.E. Catalytic growth of single-walled manotubes by laser vaporization[J]. Chem Phys Lett 1995,243(1-2):49-54.
    15. Dai H., Wong W., Lu Y, Fan S., Lieber C.M. Nature 1995,375,769.
    16. Wei B.Q., Zhang Z.J., Ajayan P.M., Ramanath G Growing pillars of densely packed carbon nanotubes on Ni-coated silica[J]. Carbon 2002,40(1):47-51.
    17. Huang J.Y., Yasuda H., Mori H. Highly curved carbon nanostructures produced by ball-milling[J]. Chem. Phys Lett 1999,303(1-2):130-134.
    18. Hata N., Murala K. Very long graphitic nano-tubules synthesized by plasma-decomposition of benzene[J]. Chem Phys Lett 1994,217(4):398-402.
    19. Sen R., Govindara A., Rao C.N.R. Carbon nanotubes by the metallocene route[J]. Chem Phys Lett 1997,267(3-4),276.
    20. Chernozatonskii L.A., Valchuk K.P., Kiselev N.A., Lebedev O.I., Ormont A.B., Zakharov D.N. Synthesis and structure investigations of alloys with fullerene and nanotube inclusions[J]. Carbon. 1997,35(6):749-753.
    21. Journet C., Maser W.K., Bemier P., et al. Large-scale production of single-walled carbon nanotubes by the electric-arc technique[J]. Nature 1997,388:756-758.
    22. Eugene G.G., Thomas W. Mechanism of carbon nanotubes Formation in the arc discharge[J]. Phys Rev B 1995,2(18):2083-2089.
    23. Thess A., Lee R.,Nikolaev P., et al. Crystalline ropes of metallic carbon nanotubes[J]. Science 1996,273:483-487.
    24. Puretzky A.A., Geohegan D.B., Fan X., et al. Dynamics of single-wall carbon Nanotube synthesis by laser vaporization[J]. Appl Phys A 2000,70:153-160.
    25. Scot C.D., Arepalli S., Nikolaev P. Growth mechanisms for single-wall carbon Nanotubes in a laser-ablation process[J]. Appl Phys 2001,72:573-580.
    26. Li W.Z., Xie S.S., Qian L.X., et al. Large-scale synthesis of aligned carbon nanotubes[J]. Science 1996,274(5293):1701-1703.
    27. Cheng H.M., Li F., Su G., et al. Large-scale and low-cost synthesis of single-walled carbon nanotubes by the catalytic pyrolysis of hydrocarbons[J]. Appl Phys Lett 1998,72(25):3282-3284.
    28. Nikolaev P., Bronikowski M.J, Bradley R.K, et al. Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide[J]. Chem Phys Lett 1999,313(2):91-97.
    29. Dittmar S., Morjan R.E., et al. Particle size dependence and model for iron-catalyzed growth of carbon nanotubes by thermal chemical vapor deposition[J]. J Appl Phys 2003,93(7):4185-4190.
    30. Young S.P., Young C.C., Kim K.S.. High yield purification of multiwalled carbon nanotubes by selective oxidation during thermal annealing[J]. Carbon 2001,39(5):655-661.
    31. Amelinckx S., Zhang X.B., Bernaerts D. A formation mechanism for catalytically grown helix-shaped graphite nanotubes[J]. Science 1994,265(5172):635-639.
    32. Gavillet J., Loiseau A., Journet C. Root-growth mechanism for single-wall carbon nanotubes[J]. Phys Rev Lett 2001,87(27):2755-2759.
    33. Al-Saleh M.H., Sundararaj U. A review of vapor grown carbon nanofiber/polymer conductive composites[J]. Carbon 2009,47:2-22.
    34. Bauhofer W., Kovacs J.Z. A review and analysis of electrical percolation in carbon nanotube polymer composites[J]. Compos Sci Technol 2009,69:1486-98.
    35.李弘波,李寿权,陈立新,等.碳纳米管储氢的研究和进展[J].材料科学与工程2002,20(2):294-297.
    36. Chen P., Wu X., Lin J., etal, High H2 uptake by alkali-doped carbon nanotubes under ambient pressure and moderate temperature[J]. Science 1999,285:91-93.
    37.顾冲,高光华,于养信,毛宗强.单壁碳纳米管吸附氢气的计算机模拟[J].高等学校化学学报2001,22(6):958-961.
    38. Liu C., Cheng H.M., Dresselhaus M.S., etal. Science,1999,286:1127-1129.
    39. Islam M.F., Rojas E., Bergeny D.M., Johnson A.T., Yodh A.G. High Weight Fraction Surfactant Solubilization of Single-Wall Carbon Nanotubes in Water[J]. Nano Lett.2003,3:269-273.
    40. Moore V.C., Strano M.S., Haroz E.H., Hauge R.H., Smalley R.E. Individually Suspended Single-Walled Carbon Nanotubes in Various Surfactants[J]. Nano Lett 2003,3:1379-1382.
    41. Matarredona O., Rhoads H., Li Z.R., Harwell J.H., Balzano L., Resasco D.E. Dispersion of Single-Walled Carbon Nanotubes in Aqueous Solutions of the Anionic Surfactant NaDDBS[J]. J Phys ChemB 2003,107:13357-13367.
    42. Gong X.Y., Liu J., Baskaran S., etc. Surfactant-assisted processing of carbon nanotube/polymer composites[J]. Chem Mater 2000,12 (4):1049-1052.
    43. Curran S.A., Ajayan P.M., Blau W.J. A composite from poly (p-phnylenevinylene-co-2, 5-dioctoxy-m-phenylenevinylene)and carbon nanotubes[J]. Adv Mater 1998,10(14):1091-1093.
    44. O'Connel M. J., Boul P., Ericson L.M. Reversible water-solubilization of single-walled carbon nanotubes by polymer wrapping[J]. Chem Phys Lett 2001,342:265-271.
    45. Jurewicz K., Delpeux S., Bertagna V., etc. Supercapacitors from nanotubes/polypyrrole composites[J]. Chem Phys Lett 2001,347(1-3):36-40.
    46. Frackowiak E., Jurewicz K., Szostak K., etc. Nanotubular materials as electrodes for supercapacitors[J]. Fuel Proc Tech 2002,77-78:213-219.
    47. Frackowiak E., Jurewicz K., Delpeux S., etc. Nanotubular materials for supercapacitors[J]. J Pow Sour 2001,97-98:822-825.
    48. Zhang J., Lee J.K., Wu Y. Photoluminescence and electronic interaction of anthracene derivatives adsorbed on sidewalls of single-walled carbon nanotubes[J]. Nano. Lett 2003,3(3),403-407.
    49. Star A., Stoddart J.F. Dispersion and Solubilization of Single-Walled Carbon nanotubes with a Hyperbranched Polymer[J]. Macromolecules 2002,35(19):7516-7520.
    50.Tang B.Z., Xu H.Y. Preparation, Alignment, and Optical Properties of Soluble Poly(phenylacetylene)-Wrapped Carbon Nanotubes[J]. Macromolecules 1999,32(8):2569-2576.
    51. Dalton A.B., Byrne H.J., Coleman J.N., et al. Syn Met,1999,102(0):1176-1177.
    52. Shaffer M.S.P., Windle A.H. Adv Mater 1999,11(0):937-941.
    53.贾志杰,徐才录,梁吉.等.新型碳材料1999,14(2):32-36.
    54. Jia Z.J., Wang Z.Y., Xu C.L., et al. Study on poly(methyl methacrylate)/carbon nanotube composites[J]. Mater Sci Eng A 1999,271(1-2):395-400.
    55. Tasis D., Tagmatarchis N., Bianco A., Prato M. Chemistry of carbon nanotubes[J]. Chem Rev 2006,106:1105-1136.
    56. Hill D.E., Lin Y., Rao A.M., Allard L.F., Sun Y.P. Functionalization of carbon nanotubes with polystyrene[J]. Macromolecules 2002,35:9466-9471.
    57. Lin Y., Zhou B., Fernando K.A.S, Liu P., Sun Y.P. Polymeric carbon nanocomposites from carbon nanotubes functionalized with matrix polymer[J]. Macromolecules 2003,36:7199-7204.
    58. Riggs J.E., Guo Z., Carroll D.L., Sun Y.P. Strong luminescence of solubilized carbon nanotubes[J]. J Am Chem Soc 2000,122:5879-5880.
    59. Zhao B., Hu H., Yu A., Perea D., Haddon R.C. Synthesis and characterization of water soluble single-walled carbon nanotube graft copolymers[J]. J Am Chem Soc 2005,127:8197-8203.
    60. Baskaran D., Mays J.W., Bratcher M.S. Polymer adsorption in the grafting reactions of hydroxyl terminal polymers with multi-walled carbon nanotubes[J]. Polymer 2005,46:5050-5057.
    61. Baskaran D., Dunlap J.R., Mays J.W., Bratcher M.S. Grafting efficiency of hydroxy-terminated poly(methyl methacrylate) with multiwalled carbon nanotubes[J]. Macromol Rapid Commun 2005,26:481-486.
    62. Chen G.X., Kim H.S., Park B.H., Yoon J.S. Controlled functionalization of multiwalled carbon nanotubes with various molecular-weight poly(1-lactic acid)[J]. J Phys Chem B 2005,109: 22237-22243.
    63. Wu C.S., Liao H.T. Study on the preparation and characterization of biodegradable polylactide/multi-walled carbon nanotubes nanocomposites[J]. Polymer 2007,48:4449-4458.
    64. Niu L., Luo Y.L., Li Z.Q. A highly selective chemical gas sensor based on functionalization of multi-walled carbon nanotubes with poly(ethylene glycol)[J]. Sensor Actuat B2007,126:361-67
    65. Niyogi S., Hu H., Hamon M.A., et al. Chromatographic Purification of Soluble Single-walled Carbon Nanombes (s-SWCNTs)[J]. J Am Chem Soc 2001,123 (4):733-734.
    66. Zhao B., Hu H., Niyogi S.. Chromatographic Purification and Properties of Soluble Single-Walled Carbon Nanotube[J]. J Am Chem Soc 2001,123 (47):11673-11677.
    67. Chen J., Hamon M.A., Hu H., Chen Y., Rao A.M., Eklund P.C. Science 1998,282:95.
    68. Riggs J.E., Guo Z., Carroll D.L., etal. Strong Luminescence of Solublized Carbon Naotubes[J]. J Am Chem Soc 2000,122(24):5879-5880.
    69. Riggs J.E., Walker D.B., Carroll D.L., etal. Optical Limiting Properties of Suspended and Solubilized Carbon Nanotubes[J]. J. Phys. Chem. B 2000,104(30):7071-7076.
    70. Czerw R., Guo Z., Ajayan P.M., etal. Organization of Polymers onto Carbon Manoscale Assembly[J]. Nano Lett 2001,1(8):423-427.
    71. Sano M., Kamino A., Okamura J, etec. Self-Organization of PEO-graft-Single-Walled Carbon Nanotubes in Solution and Langmuir-Blodgett Films[J]. Langmuir 2001,17(17):5125-5128.
    72. Negra F.D., Meneghetti M., Menna E. Microwave-assisted synthesis of a soluble singlewall carbon nanotube derivative[J]. Fuller Nanotube Carbon Nanostruct 2003,11:25-34.
    73. Lou X., Detrembleur C., Pagnoulle C., Jerome R., Bacharova V., Kiriy A, et al. Surface modification of multiwalled carbon nanotubes by poly(2-vinylpyridine):dispersion, selective deposition, and decoration of nanotubes[J]. Adv Mater 2004,16:2123-2127.
    74. Lou X., Detrembleur C., Sciannamea V., Pagnoulle C., Jerome R. Grafting of alkoxyamine end-capped (co)polymers onto multi-walled carbon nanotubes[J]. Polymer 2004,45:6097-6102.
    75. Liu Y., Yao Z., Adronov A. Functionalization of single-walled carbon nanotubes with well-defined polymers by radical coupling[J]. Macromolecules 2005,38:1172-1179.
    76. Wang H.C., Li Y., Yang M.J. Sensors for organic vapor detection based on composites of carbon nonotubes functionalized with polymers[J]. Sensor Actuat B 2007,124:360-367.
    77. Wu W., Zhang S., Li Y., Li J., Liu.L, Qin Y., et al. PVK-modified single-walled carbon nanotubes with effective photoinduced electron transfer[J]. Macromolecules 2003,36:6286-6288.
    78. Huang H.M., Liu I.C., Chang C.Y., Tsai H.C., Hsu C.H., Tsiang R.C.C. Preparing a polystyrene-functionalized multiple-walled carbon nanotubes via covalently linking acyl chloride functionalities with living polystyryllithium[J]. J Polym Sci A Polym Chem 2004,42:5802-5810.
    79. Blake R., Gun'ko Y.K., Coleman J., Cadek M., Fonseca A., Nagy J.B., etal. A generic organometallic approach toward ultra-strong carbon nanotube polymer composites [J]. J Am Chem Soc 2004,126:10226-10227.
    80. Xie L., Xu F., Qiu F., Lu H., Yang Y. Single-walled carbon nanotubes functionalized with high bonding density of polymer layers and enhanced mechanical properties of composites[J]. Macromolecules 2007,40:3296-3305.
    81. Bahr J.L, Tour J.M. Highly functionalized carbon nanotubes using in situ generated diazonium compounds[J]. Chem Mater 2001,13:3823-3824.
    82. Qin S.H,Qin D.Q, Ford W.T, Resasco D.E, Herrera J.E. Functionalization of single-walled carbon nanotubeswith polystyrene via grafting to and grafting from methods [J]. Macromolecules 2004,37:752-757.
    83. Wang G., Dong Y., Liu L., Zhao C. Preparation and characterization of polystyrenemodified single-walled carbon nanotube[J]. J Appl Polym Sci 2007,105:1385-1390.
    84. Li H., Cheng F., Duft A.M., Adronov A. Functionalization of single-walled carbon nanotubes with well-defined polystyrene by "click" coupling[J]. J Am Chem Soc 2005,127:14518-14524.
    85. Li H., Adronov A. Water-soluble SWCNTs from sulfonation of nanotube-bound polystyrene[J]. Carbon 2007,45:984-990.
    86. Chen Y., Haddon R.C., Fang S., etc. Chemical attachment of organic functional groups to single-walled carbon nanotube material[J]. J Mater Res 1998,13(9):2423-2431.
    87. Chen J., Hamon M.A., Hu H., etc. Solution Properties of Single-Walled Carbon Nanotubes[J]. Science 1998,282(5386):95-98.
    88. Lee W.H., Kim S.J., Lee W.J., etc. X-ray photoelectron spectroscopic studies of surface modified single-walled carbon nanotube material[J]. Appl Surf Sci 2001,181(1-2):121-127.
    89. Kamaras K., Itkis M.E., Hu H., etc. Covalent Bond Formation to a Carbon Nanotube Metal[J]. Science 2003,301(5369):1501-1501.
    90. Hu H., Zhao B., Hamon M.A. Sidewall functionalization of single-walled carbon nanotubes by addition of dichlorocarbene[J]. J Am Chem Soc 2003,125 (48):14893-14900.
    91. Wu H.L., Yang Y.T., Ma C.C.M., Kuan H.C. Molecular mobility of free radical-functionalized carbon-nanotube/siloxane/poly(urea urethane) nanocomposites[J]. J Polym Sci Part A Polym Chem 2005,43:6084-6094.
    92. Jung Y.C., Sahoo N.G., Cho J.W. Polymeric nanocomposites of polyurethane block copolymers and functionalized multi-walled carbon nanotubes as crosslinkers[J]. Macromol Rapid Commun 2006,27:126-131.
    93. Kuan H.C., Ma C.C.M., Chang W.P., Yuen S.M., Wu H.H., Lee T.M. Synthesis, thermal, mechanical and rheological properties of multiwall carbon nanotube/waterborne polyurethane nanocomposite[J]. Compos Sci Technol 2005,65:1703-1710.
    94.李博,廉永福,施祖进等.单层碳纳米管的化学修饰[J].高等学校化学学报2000,21(11):1633-1635.
    95. Jia Z., Wang Z., Xu C., Liang J., Wei B., Wu D. et al. Study on poly(methyl methacrylate):carbon nanotube composites [J]. Mater Sci Eng A 1999,271:395-400.
    96. Park S.J., Cho M.S., Lim S.T., Choi H.J, Jhon M.S. Synthesis and dispersion characteristics of multi-walled carbon nanotube composites with poly(methyl methacrylate) prepared by in-situ bulk polymerization[J]. Macromol Rapid Commun 2003,24:1070-1073.
    97. Blond D., Barron V., Ruether M., Ryan K.P., Nicolosi V., Blau W.J., et al. Enhancement of modulus, strength, and toughness in poly(methylmethacrylate)-based composites by the incorporation of poly(methylmethacrylate)-functionalised nanotubes[J]. Adv Funct Mater 2006,16:1608-1614.
    98. Liu Y., Tang J., Xin J.H. Fabrication of nanowires with polymer shells using treated carbon nanotube bundles as macro-initiators [J]. Chem Commun 2004,2828-2829.
    99. Guo G.Q., Yang D., Wang C.C., Yang S. "Fishing" polymer brushes on single-walled carbon nanotubes by in-situ free radical polymerization in a poor solvent[J]. Macromolecules 2006,39:9035-9040.
    100. Qin S.H,Qin D.Q, Ford W.T, Herrera J.E, Resasco D.E, Bachilo S.M, et al. Solubilization and purification of single-wall carbon nanotubes in water by in situ radical polymerization of sodium 4-styrenesulfonate[J]. Macromolecules 2004,37:3965-1967.
    101. Du F.,Wu K.,Yang Y., Liu L.,Gan T., Xie X. Synthesis and electrochemical probing of water-soluble poly(sodium 4-styrenesulfonate-co-acrylic acid)-grafted multiwalled carbon nanotubes[J]. Nanotechnology 2008,19,085716 (8 pp.).
    102. Matyjaszewski K., Xia J. Atom transfer radical polymerization[J]. Chem Rev 2001,101(9): 2921-2990.
    103. Kong H., Gao C., Yan D.Y. Functionalization of multiwalled carbon nanotubes by atom transfer radical polymerization and defunctionalization of the products[J]. Macromolecules 2004,37(11): 4022-4030.
    104. Kong H., Gao C., Yan D. Y., Controlled functionalization of multiwalled carbon nanotubes by in situ atom transfer radical polymerization[J]. J Am Chem Soc 2004,126(2):412-413.
    105. Kong H., Gao C., Yan D.Y. Constructing amphiphilic polymer brushes on the convex surfaces of multi-walled carbon nanotubes by in situ atom transfer radical polymerization[J]. J Mater Chem 2004,14(9):1401-1405.
    106. Li W.W., Gao C., Qian H.F., Ren J.C., Yan D.Y. Multiamino-Functionalized Carbon Nanotubes and Their Applications in Loading Quantum Dots and Magnetic Nanoparticles[J]. J Mater Chem 2005,16:1852-1859.
    107. Li W.W., Kong H., Gao C., Yan D.Y. pH-responsive poly(2-diethylaminoethyl methacrylate)-functionalized multiwalled carbon nanotubes[J]. Chinese Sci Bull 2005,50:2276-2280.
    108. Gao C., Li W.W., Jin Y.Z., Kong H. Facile and large-scale synthesis and characterization of carbon nanotube/silver nanocrystal nanohybrids[J]. Nanotechnology 2006,17:2882-2890.
    109. Gao C., Li W.W., Morimoto H., Nagaoka Y., Maekawa T. Magnetic Carbon Nanotubes: Synthesis by Electrostatic Self-Assembly Approach and Application in Biomanipulations[J]. J Phys Chem B 2006,110:7213-7220.
    110. Kong H., Li W.W., Gao C., Yan D.Y., Jin Y.Z. et al. Poly(N-isopropylacrylamide)-Coated Carbon Nanotubes:Temperature-Sensitive Molecular Nanohybrids in Water[J]. Macromolecules 2004,37:6683-6686.
    111. Gao C., Duan C, Jin Y.Z., Armes S.P. Multihydroxy Polymer-Functionalized Carbon Nanotubes: Synthesis, Derivatization, and Metal Loading[J]. Macromolecules 2005,38:8634-8648.
    112. Baskaran D., Mays J.W., Bratcher M.S. Polymer-grafted multi-walled carbon nanotubes through surface-initiated polymerization[J]. Angew Chem Int Ed 2004,43:2138-2142.
    113. Liu M., Yang Y., Zhu T., Liu Z. A general approach to chemical modification of single-walled carbon nanotubes with peroxy organicacids and its application in polymer grafting[J]. J Phys Chem C 2007,111:2379-2385.
    114. Hong C.Y., You Y.Z., Pan C.Y. Synthesis of Water-Soluble Multiwalled Carbon Nanotubes with Grafted Temperature-Responsive Shells By Surface RAFT Polymerization [J]. Chem. Mater.2005, 17(9):2247-2254.
    115. Cui J., Wang W.P., You Y.Z., Liu C., Wang P.. Functionalization of multi-walled carbon nanotubes by reversible addition fragmentation chain-transfer polymerization[J]. Polymer 2004,45:8717-8721.
    116. Xu G., Wu W.T., Wang Y., Pang W., Wang P., Zhu Q., et al. Synthesis and characterization of water-soluble multiwalled carbon nanotubes grafted by a thermoresponsive polymer[J]. Nanotechnology 2006,17:2458-2465.
    117. Wang G.J., Huang S.Z., Wang Y., Liu L., Qiu J., Li Y. Synthesis of water soluble single-walled carbon nanotubes by RAFT polymerization [J]. Polymer 2007,48:728-733.
    118. Xu G., Wu W.T., Wang Y., Pang W., Zhu Q., Wang P. Functionalized carbon nanotubes with polystyrene-block-poly(N-isopropylacrylamide) by in situ RAFT polymerization[J]. Nanotechnology 2007,18:145606/1-7.
    119. Xu G., Wu W.T., Wang Y., Pang W., Zhu Q., Wang P., et al. Constructing polymer brushes on multiwalled carbon nanotubes by in situ reversible addition fragmentation chain transfer polymerization[J]. Polymer 2006,47:5909-5918.
    120. Xu G.,Wang Y., Pang W., Zhu Q,Wang P. Fabrication of multi-walled carbon nanotubeswith polymer shells through surface RAFT polymerization[J]. Polym Int 2007,56:847-852.
    121. You Y.Z., Hong C.Y., Pan C.Y. Directly growing ionic polymers on multi-walled carbon nanotubes via surface RAFT polymerization [J]. Nanotechnology 2006,17:2350-2354.
    122. Hong C.Y., You Y.Z., Pan C.Y. Functionalizedmulti-walled carbon nanotubes with poly(N-(2-hydroxypropyl)methacrylamide) by RAFT polymerization[J]. J Polym Sci A Polym Chem 2006,44:2419-2427.
    123. Hong C.Y., You Y.Z., Pan C.Y. A new approach to functionalize multi-walled carbon nanotubes by the use of functional polymers[J]. Polymer 2006,47:4300-4309.
    124. Datsyuk V., Guerret-Piecourt C., Dagreou S., Billon L., Dupin J.C., Flahaut E, et al. Double walled carbon nanotube/polymer composites via in-situ nitroxidemediated polymerisation of amphiphilic block copolymers[J]. Carbon 2005,43:873-876.
    125. Datsyuk V., Billon L.,Guerret-Piecourt C., Dagreou S., Passade-Boupatt N, Bourrigaud S, et al. In situ nitroxide-mediated polymerized poly(acrylic acid) as a stabilizer/compatibilizer carbon nanotube/polymer composites[J]. J Nanomater 2007,2007,74769 (12pp.).
    126. Zhao X.D., Fan X.H., Chen X.F., Chai C.P., Zhou Q.F. Surface modification of multiwalled carbon nanotubes via nitroxide-mediated radical polymerization[J]. J Polym Sci A Polym Chem 2006,44:4656-4667.
    127. Fan D.Q., He J.P., Tang W., Xu J.T., Yang Y.L. Synthesis of polymer grafted carbon nanotubes by nitroxide mediated radical polymerization in the presence of spin-labeled carbon nanotubes[J]. Eur Polym J 2007,43(1):26-34.
    128. Sui K.Y., Yang C.J., Gao S., Shan X., Xia Y.Z., Zheng Q. A novel route for well-defined polystyrene-grafted multiwalled carbon nanotubes via the radical coupling reaction[J]. J Appl Polym Sci 2009.114:1914-1920.
    129. Spitalskya Z., Tasisb D., Papagelisb K., Galiotis C. Carbon nanotube-polymer composites: Chemistry, processing, mechanical and electrical properties [J]. Prog Polym Sci 2010,35:357-401.
    130.陈经佳,汪朝阳,郑绿茵等.DCC法合成胆甾醇酯[J].浙江化工2005,36(2):17-19.
    131.何洁,马卡迪,吴健.高聚物负载金属卟啉的合成及其光催化亚甲基蓝降解性能[J].化学通报2005,68(10):800.
    132.曾繁涤,李中兵.PVA/CNTs复合物的制备及荧光性能[J].功能材料2004,35:2670-2671.
    133.陈庆春,邓慧宇,马燕明,聚乙二醇在新材料制备中的作用及其机理[J].日用化学工业2002,32(5):35-37.
    134. Easton C. J., Lincoln S. F. Modified Cyclodextrins[M]. Imperial College Press:London,1999.
    135. Behr J. P., The Lock-and-Key Principle[M]. John Wiley and Sons:Chichester, U.K.,1994.
    136. Nepogodiev S. A., Stoddart J. F. Chem. Rev.1998,98:1959-1976.
    137. Uekama K., Hirayama F., Irie T. Chem. Rev.1998,98:2045-2076.
    138. Li J., Li X., Ni X. P., Wang X., Li H. Z,. Leong K. W. Biomaterials 2006,27:4132-4140.
    139. Li J., Loh X.J. Cyclodextrin-based supramolecular architectures:Syntheses, structures, and applications for drug and gene delivery[J]. Adv Drug Delivery Rev.2008,60(9):1000-1017.
    140. Harada A., Li J., Kamachi M. Molecular necklace:A rotaxane containing many threaded a-cyclodextrins[J]. Nature 1992,356(6367),325-327.
    141. Harada A., Li J., Kamachi M. Double-stranded inclusion complexes of cyclodextrin threaded on poly(ethylene glycol)[J]. Nature 1994,370,126-128.
    142. Harada A., Okada M., Li J., Kamachi M. Preparation and Characterization of Inclusion Complexes of Poly(propylene glycol) with a-Cyclodextrins[J]. Macromolecules 1995,28: 8406-8411.
    143. Harada A., Kawaguchi Y, Nishiyama T., Kamachi M., Macromol Rapid Commun 1997,18,535.
    144. Kawaguchi Y., Nishiyama T., Kamachi M., Harada A. Complex Formation of Poly(ε-caprolactone) with Cyclodextrins[J]. Macromolecules 2000,33,4472-4477.
    145. Harada A., Nishiyama T., Kawaguchi Y., Okada M., Kamachi M. Preparation and Characterization of Inclusion Complexes of Aliphatic Polyesters with Cyclodextrins[J]. Macromolecules 1997,30(23):7115-7118.
    146. Nostro P.L., Lopes J.R., Cardelli C. Formation of Cyclodextrin-Based Polypseudorotaxanes: Solvent Effect and Kinetic Study[J]. Langumir 2001,17:4610-4615.
    147. Li J., Ni X., Zhou Z., Lenong K.W. Preparation and Characterization of polypseudorotaxanes Based on Block-Selected Inclusion Complexation between Poly(propylene oxide)-Poly(ethylene oxide)-Poly(propylene oxide) Triblock Copolymers and a-Cyclodextrin[J]. J Am Chem Soc 2003, 125:1788-1795.
    148. Lee S.C., Choi H.S., Ooya T., Yui N., Block-Selective Polypseudorotaxane Formation in PEI-b-PEG-b-PEI Copolymers via pH Variation[J]. Macromolecules 2004,37(20):7464-7468.
    149.Choi H. S., Lee S. C., Yamamoto K., Yui N. Block-Selective Movement of a-Cyclodextrins in Polyrotaxanes of PEI-b-PEG-b-PEI Copolymer[J]. Macromolecules 2005,38(23):9878-9881.
    150. Sui K.Y., Shan X., Gao S., Xia Y.Z., Zheng Q., Xie D. Dual-Responsive Supramolecular Inclusion Complexes of Block Copolymer Poly(ethylene glycol)-block-Poly[(2-dimethylamino) ethyl methacrylate] with a-Cyclodextrin[J]. J Polym Sci Part A:polym chem 2010,48,2143-2153.
    151. Li J., Li X., Zhou Z.H., Ni X.P., Leong W.K. Formation of Supramolecular Hydrogels Induced by' Inclusion Complexation between Pluronics and a-Cyclodextrin[J]. Macromolecules 2001,34: 7236-7237.
    150. Zhao S.P, Zhang L.M. Supramolecular Hydrogels Induced Rapidly by Inclusion Complexation of Poly(ε-caprolactone)-Poly(Ethylene Glycol)-Poly(e-caprolactone) Block Copolymers with a-Cyclodextrin in Aqueous Solutions[J]. J Phys Chem B 2006,110:12225-12229.
    153. Jiao H, Goh S.H, Valiyaveettil S. Inclusion Complexes of Single-C60-End-Capped Poly(ethylene oxide) with Cyclodextrins[J]. Macromolecules 2002,35:1399-1402.
    154. Guo M.Y, Jiang M, Pispas S, Zhou C.X. Supramolecular Hydrogels Made of End-Functionalized Low-Molecular-Weight PEG and a-Cyclodextrin and Their Hybridization with SiO2 Nanoparticles through Host-Guest Interaction[J]. Macromolecules 2008,41:9744-9749.
    155.Wang Z.M., Chen Y.M. Supramolecular Hydrogels Hybridized with Single-Walled Carbon Nanotubes[J]. Macromolecules 2007,40(9):3402-3407.
    156. He L.H, Huang J, Chen Y.M, Liu L.P. Inclusion Complexation between Comblike PEO Grafted Polymers and a-Cyclodextrin[J]. Macromolecules 2005,38:3351-3355
    157. Huang J, Li Z.Y, Xu X.W, Ren Y, Huang J.L. Preparation of Novel Poly(ethylene oxide-co-glycidol)-graft-Poly(ε-caprolactone) Copolymers and Inclusion Complexation of the Grafted Chains with a-Cyclodextrin[J]. J Polym Sci Part A:polym chem 2006,44:3684-3691.
    158. Hunt M.A, Tonelli A.E, and Balik C.M. Effect of Guest Hydrophobicity on Water Sorption Behavior of Oligomer/a-Cyclodextrinlnclusion Complexes[J]. J Phys Chem B 2007,111: 3853-3858.
    159. Peet J, Rusa C.C., Hunt M.A., Tonelli A.E., Balik C.M. Solid-State Complexation of Poly(Ethylene Glycol) with a-Cyclodextrin[J]. Macromolecules 2005,38:537-541.
    160. Cristian C. Rusa., Alan E. Tonelli. Polymer/Polymer Inclusion Compounds as a Novel Approach To Obtaining a PLLA/PCL Intimately Compatible Blend[J]. Macromolecules 2000,33:5321-5324
    161. Zhao S.P., Zhang L.M., Ma D., Yang C., Yan L. Fabrication of Novel Supramolecular Hydrogels with High Mechanical Strength and Adjustable Thermosensitivity[J]. J Phys Chem B 2006,110: 16503-16507
    162. Li J., Li X., Ni X., Wang X.. Li H., Leong K.W. Biomaterials 2006,27:4132-4140.
    163. Yu H.T., Quan X., Chen S., Zhao H.M. TiO2 Multiwalled Carbon Nanotube Heterojunction Arrays and Their Charge Separation Capability[J]. J Phys Chem C 2007,111:12987-12991.
    164. Shin H. S., Jang Y.S., Lee Y., Jung Y., Kim S., Choi H.C. Photoinduced Self-Assembly of TiO2 and SiO2 Nanoparticles on Sidewalls of Single-Walled Carbon Nanotubes[J]. Adv Mater 2007,19: 2873-2876.
    165. Liu B., Zeng H.C. Carbon Nanotubes Supported Mesoporous Mesocrystals of Anatase TiO2[J]. Chem Mater 2008,20:2711-2718.
    166. Ashoka S., Nagaraju G., Tharamani C.N., Chandrappa G.T. Ethylene glycol assisted hydrothermal synthesis of flower like ZnO architectures [J]. Mater Lett 2009,63 (11):873-876.
    167. Pan C.F., Zhu J. The syntheses, properties and applications of Si, ZnO, metal, and heterojunction nanowires[J]. J Mater Chem 2009,19:869-884.
    168. Kumar S., Kim Y.J., Koo B.H., Gautam S., Chae K.H., Kumar R., Lee C.G. Room temperature ferromagnetism in chemically synthesized ZnO rods[J]. Mater Lett 2009,63(2):194-196.
    169. ZhaoW., Song X.Y., Yin Z.L., Fan C.H., Chen GZ., Sun S.X. Self-assembly of ZnO nanosheets into nanoflowers at room temperature[J]. Mater Res Bull 2008,43(11):3171-3176.
    170. Ho Y.M., Liu J.W., Qi J.L., Zheng W.T. Spectroscopic investigation on carbon nanotubes coated with ZnO nanoparticles[J]. J Phys D:Appl Phys 2008,41:065308 (6pp).
    171. Ho Y.M., Zheng W.T., Li Y.A., Liu J.W., Qi J.L. Field emission properties of hybrid carbon nanotube-ZnO nanoparticles[J]. J Phys Chem C 2008,112 (48):17702-17708.
    172. Zhang R.X., Fan L.Z., Fang Y.P., Yang S.H. Electrochemical route to the preparation of highly dispersed composites of ZnO/carbon nanotubes with significantly enhanced electrochemiluminescence from ZnO[J]. J Mater Chem 2008,18:4964-4970.
    173. Chrissanthopoulos A., Baskoutas S., Bouropoulos N., Dracopoulos V., Tasis D., Yannopoulos S.N. Novel ZnO nanostructures grown on carbon nanotubes by thermal evaporation[J]. Thin Solid Films 2007,515 (24):8524-8528.
    174. Yan X.B., Tay B.K., Yang Y, Po W.Y.K. Fabrication of three-dimensional ZnO-Carbon Nanotube (CNT) hybrids using self-assembled CNT micropatterns as framework[J]. J Phys Chem C 2007,111(46):17254-17259.
    175. Kim H., Park H.H., Jeon H., Chang H. J., Chang Y., Park H.H. Incorporation of carbon nanotube into direct-patternable ZnO thin film formed by photochemical solution deposition[J]. Ceramics International 2009,35(1):131-135.
    176. Yan X.B., Tay B.K., Miele P. Field emission from ordered carbon nanotube-ZnO heterojunction arrays[J]. Carbon 2008,46(5):753-758.
    177. Huang C.S., Yeh C.Y., Chang Y.H., Hsieh Y.M., Ku C.Y., Lai Q.T. Field emission properties of CNT-ZnO composite materials[J]. Diamond Relat Mater 2009,18:452-456.
    178. Duan J.X., Huang X.T., Wang E.K. PEG-assisted synthesis of ZnO nanotubes[J]. Mater Lett 2006,60 (15):1918-1921.
    179. Hou X.M., Zhou F., Yu B., Liu W.M. PEG-mediated synthesis of ZnO nanostructures at room temperature[J]. Mater Lett 2007,61(11-12):2551-2555.
    180. Liu Z.F., Li J.W.,Ya J., Xin Y, Jin Z.G. Mechanism and characteristics of porous ZnO films by sol-gel method with PEG template[J]. Mater Lett 2008,62 (8-9):1190-1193.
    181.Yi Z., Tong Z., Wang L.J., Wang R., Fu W.Y., Yang H.B. Synthesis and ethanol sensing properties of self-assembled monocrystalline ZnO nanorod bundles by poly(ethylene glycol)-assisted hydrothermal process[J]. J Phys Chem C 2009,113 (9):3442-3448.
    182. Hou X.M., Zhou F., Liu W.M. A facile low-cost synthesis of ZnO nanorods via a solid-state reaction at low temperature[J]. Mater Lett 2006,60(29-30):3786-3788.
    183. Ren Y., Wang GW, Huang J.L. Preparation of liquid-core nanocapsules from poly[(ethylene oxide-co-glycidol)] with multiple hydrophobic linoleates at an oil-water interface and its encapsulation of Pyrene[J]. Biomacromolecules.2007,8 (6):1873-1880.
    184.Wu H.X., Tong R., Qiu X.Q., Yang H.F., Lin Y.H., Cai R.F., Qian S.X. Functionalization of multiwalled carbon nanotubes with polystyrene under atom transfer radical polymerization conditions[J]. Carbon 2007,45(1):152-159.
    185. Gao C., Muthukrishnan S., Li W.W., Yuan J.Y., Xu Y.Y., Muller A.H.E. Linear and Hyperbranched Glycopolymer-Functionalized Carbon Nanotubes:Synthesis, Kinetics, and Characterization[J]. Macromolecules 2007,40(6):1803-1815.
    186. Qin S.H., Qin D.Q., Ford W.T., Resasco D.E., Herrera J.E. Polymer Brushes on Single-Walled Carbon Nanotubes by Atom Transfer Radical Polymerization of n-Butyl Methacrylate[J]. J Am Chem Soc 2004,126(1):170-176.
    187. Viswanathan G., Chakrapani N., Yang H., Wei B., Chung H., Cho K., Ryu C.Y., Ajayan P.M. Single-Step in Situ Synthesis of Polymer-Grafted Single-Wall Nanotube Composites[J]. J Am Chem Soc 2003,125(31):9258-9259.
    188. Liu I., Huang H., Chang C., Tsai H., Hsu C., Tsiang R.C. Preparing a Styrenic Polymer Composite Containing Well-Dispersed Carbon Nanotubes:Anionic Polymerization of a Nanotube-Bound p-Methylstyrene[J]. Macromolecules.2004,37(2):283-287.
    189. Wu W., Zhang S., Li Y., Li J., Liu L., Qin Y., Guo Z.X., Dai L., Ye C., Zhu D. PVK-Modified Single-Walled Carbon Nanotubes with Effective Photoinduced Electron Transfer[J]. Macromolecules 2003,36(17):6286-6288.
    190. Liu Y.Q., Adronov A. Preparation and Utilization of Catalyst-Functionalized Single-Walled Carbon Nanotubes for Ring-Opening Metathesis Polymerization[J]. Macromolecules.2004, 37(13):4755-4760.
    191. Feng J.T., Cai W., Sui J.H., et al. Poly(1-lactide) brushes on magnetic multiwalled carbon nanotubes by in-situ ring-opening polymerization [J]. Polymer.2008,49(23):4989-4994.
    192. Buffa F., Hu H., Resasco D.E. Side-Wall Functionalization of Single-Walled Carbon Nanotubes with 4-Hydroxymethylaniline Followed by Polymerization of s-Caprolactone[J]. Macromolecules 2005,38(20):8258-8263.
    193. Zeng H., Gao C., Yan D. Poly(-caprolactone)-functionalized carbon nanotubes and their biodegradation properties [J]. Adv Funct Mater 2006,16:812-818.
    194. Fu Q., Lin W.C., Huang J.L. A New Strategy for Preparation of Graft Copolymers via "Graft onto" by Atom Transfer Nitroxide Radical Coupling Chemistry:Preparation of Poly(4-glycidyloxy-2,2,6,6-tetramethylpiperidine-l-oxyl-co-ethylene oxide)-graft-polystyrene and Poly(tert-butyl acrylate)[J]. Macromolecules 2008,41:2381-2387.
    195.Wang G.W., Zhang Y.N., Huang J.L. Effects of Br Connected Groups on Atom Transfer Nitroxide Radical Coupling Reaction and Its Application in the Synthesis of Comb-Like Block Copolymers[J]. J Polym Sci Part A:polym chem,2010,48:1633-1640.
    196. Liu Y.L., Chang Y.H., Liang M. Poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) multi-bonded carbon nanotube (CNT):Preparation and formation of PPO/CNT nanocomposites[J]. Polymer. 2008,49:5405-5409.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700