金、铂粒子的组装及其电催化特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米材料具有不同于本体材料的物理和化学特性以及良好的生物兼容性等,已经广泛地应用于信息存储、医学诊疗、催化以及传感分析等领域。研究纳米材料自组装不仅可以从微观上解释纳米微粒之间的相互作用机理,实现纳米微粒组装的可控性,而且能够通过研究获得的纳米微粒的组装体发现某些新的性质,从而促进纳米材料的推广和应用。本文研究了金、铂纳米微粒的自组装行为及某些组装体的电催化性能,具体内容如下:
     1.金纳米粒子自组装。以2-巯基乙胺为偶联剂,通过控制偶联剂浓度、搅拌速率、反应时间、超声强度及盐浓度等因素,将3.5 nm的金纳米粒子组装成具有不同微观结构的组装体,如:球状、环状及两瓣状等,并初步分析了其组装机理,丰富了纳米微粒的组装结构。
     2.铂纳米粒子原位自组装。用乙二醇作为还原剂和溶剂,在溶液中将~3.5 nm的铂粒子原位组装成较大粒径的纳米粒子组装体。由于实验过程中没有加入保护剂,保持了粒子表面的活性,有效地提高了铂催化剂对甲醇氧化的催化效率和抗毒化能力
     3.金、铂纳米微粒二维复合薄膜组装。在金纳米粒子单层膜基底上,采用欠电位沉积与置换反应相结合的方法,制备了Pt/Au二维复合纳米结构,并通过层层组装的方法,制备了以Pt/Au为结构单元的(Pt/Au)n型多层复合组装体。其中,通过调节欠电位沉积的次数,控制铂纳米层的数目,进而得到Ptm/Au及(Ptm/Au)k纳米结构组装体。将以上所制备的复合薄膜应用于甲醇的电催化氧化发现,薄膜的催化性能及抗毒化能力主要受其结构影响。金与铂的接触面越多,其催化性能及抗毒化能力就越好。在制备的所有复合薄膜中,(Pt/Au)3结构的效果是最好的,且其抗毒化能力比商业催化剂Pt/C提高了69%。
Nanometer materials have been widely used in various fields due to their unique physicochemical properties and good biocompatibility, such as information storage, medical diagnosis, catalysis and sensing. Researches on self-assembly of nanometer materials can not only reveal the interaction mechanisms between nanoparticles to further control the process of nanoparticle self-assembly, but also make for discovering new properties of nanoparticle assemblies. All these studies are necessary for the development and application of nanometer materials. This thesis involves self-assembly of gold, platinum nanoparticles and electro-catalytic properties of some assemblies. The main research contents are as follows:
     1. Self-assembly of gold nanoparticles.2-mercaptoethylamine serving as coupling agents was added into 3.5-nm Au colloidal solution to fabricate Au nanoparticle assemblies with different nanostructures, such as spherical, annular and valvular, expanding the structure patterns of Au nanoparticle assemblies. The formation of these nanostructures depended on coupling agents concentration, stirring speed, reaction time, ultrasonic intensity and salt concentration. Additionaly, the assembly mechanism was also simply discussed.
     2. In-situ self-assembly of platinum nanoparticles. Platinum nanoaprticle assemblies were assembled via the self-aggregation of~3.5 nm Pt nanoparticles directly prepared in the polyol process. The assembling process does not involve any linker reagent. Thus, the as-prepared Pt nanoparticle assemblies showed satisfactory electro-catalytic activity for methanol oxidation, which is reasonably attributed to the high activity of Pt nanoparticle surface.
     3. Assembly of gold and platinum nanoparticles into two-dimensional composite structures. Au nanoparticle monolayer prepared at n-butanol/water interface was used as a substrate, Pt nanoparticles was modified onto Au nanoparticle monolayer by combining under-potential deposition and redox replacement, forming two-dimensional Pt/Au composite film. What's more, (Pt/Au)n multilayer composite structures were also prepared via layer-by-layer assembly of Pt/Au units. The thickness of platinum layers in Pt/Au composite film can be controlled by repeating under-potential deposition and redox replacement procedures. Thus, Ptm/Au and (Ptm/Au)k multilayer composite films were also fabricated. All as-prepared composite films were used as anode catalysts for methanol electro-oxidation. The results showed that the catalytic efficiency and stability are closely related to the structures of catalyst films. The more interface between Au and Pt nanoparticles in catalyst films are, the better their catalytic efficiency and stability are. The structure of (Pt/Au)3 exhibits the best catalytic efficiency among all films, and its poison-resistant capability is 169% of that of commercial Pt/C catalyst.
引文
[1]Sheppard L M. Aluminum Nitride-a Versatile But Challenging Material. American Ceramic Society Bulletin,1990,69(11):1801-1812
    [2]白春礼.纳米科技及其发展前景.科学通报,2001,46(2):89-92
    [3]刘焕彬,陈小泉.纳米科学与技术导论.北京:化学工业出版社,2006:34-38
    [4]陈红军.纳米材料的合成、组装以及在电化学与SERS中的应用:[中国科学院长春应用化学研究所博士论文].长春:中国科学院长春应用化学研究所,2007:1-10
    [5]Wang Z L. Handbook of Nanophase and Nanostructured Materials. Beijing: Tsinghua University Press and Kluwer Academic/Plenum Publishers,2002: 23-27
    [6]张德阳.纳米生物材料学.北京:化学工业出版社,2005:4-5
    [7]张立德.纳米材料和纳米结构.北京:科学出版社,2001:12-20
    [8]Klabunde K J.纳米材料化学.陈建峰.北京:化学工业出版社,2004:79-85
    [9]卢柯,周飞.纳米晶体材料的研究现状.金属学报,1997,23(1):99-106
    [10]王广厚,韩民.纳米微晶材料的结构和性质.物理学进展,1990,10(3):248-289
    [11]顾宁,付德刚,张海黔等.纳米技术与应用.北京:人民邮电出版社,2002:38-44
    [12]Sanchez A, Abbet S, Heiz U, et al. When Gold Is Not Noble:Nanoscale Gold Catalysts. The Journal of Physical Chemistry A,1999,103(48):9573-9578
    [13]Whitesides G M, Mathias J P, Seto C T. Molecular Self-assembly and Nanochemistry:a Chemical Strategy for. the Synthesis of Nanostructures. Science,1991,254(5036):1312-1319
    [14]Whitesides G M. Self-Assembling Materials. Scientific American,1995,273(3): 114-117
    [15]宋心琦.分子计算机离我们有多远.国外科技动态,2000,(8):7-10
    [16]李彦,施祖进,周锡煌等.纳米团簇的超分子自组装.化学进展,1999,19(2):148-154
    [17]Murray C B, Kagan C R, Bawendi M G. Self-organization of CdSe Nanocrystallites into Three-Dimensional Quantum Dot Superlattices. Science, 1995,270(5240):1335-1338
    [18]Hickey S G, Riley D J. Photoelectrochemical Studies of CdS Nanoparticle-modified Electrodes. The Journal of Physical Chemistry B,1999, 103(22):4599-4602
    [19]Yan L, Zhao X M, Whitesides G M. Patterning a Preformed, Reactive SAM Using Microcontact Printing. Journal of the American Chemistry Society,1998, 120(24):6179-6180
    [20]Blaaderen A V, Ruel R, Wiltzius P. Template-directed Colloidal Crystallization. Nature,1997,385(6614):321-324
    [21]Jorgensen T, Hansen T K, Becher J. Tetrathiafulvalenes As Building-Blocks in Supramolecular Chemistry. Chemical Society Reviews,1994,23(1):41-51
    [22]Remskar M, Mrzel A, Jesih A, et al. Metal-Alloyed NbS2 Nanotubes Synthesized by the Self-Assembly of Nanoparticles. Advanced Materials,2002,14(9): 680-684
    [23]Shevchenko E V, Talapin D V, Rogach A L, et al. Colloidal Synthesis and Self-Assembly of CoPt3 Nanocrystals. Journal of the American Chemical Society, 2002,124(38):11480-11485
    [24]Tripp S L, Pusztay S V, Ribbe A E, et al. Self-Assembly of Cobalt Nanoparticle Rings. Journal of the American Chemical Society,2002,124(27):7914-7915
    [25]Thomas K G, Kamat P V. Making Gold Nanoparticles Glow:Enhanced Emission from a Surface-Bound Fluoroprobev. Journal of the American Chemical Society, 2000,122(11):2655-2656
    [26]Xu P, Yanagi H. Fluorescence Patterning in Dye-Doped Sol-Gel Films by Generation of Gold Nanoparticles. Chemistry of Materials,1999,11(10): 2626-2628
    [27]Sharma J, Chhabra R, Liu Y, et al. DNA Templated Self-Assembly of Two-Dimensional and Periodical Gold Nanoparticle Arrays. Angewandte Chemie International Edition,2006,45(5):730-735
    [28]Correa-Duarte M A, Perez-Juste J, Sanchez-Iglesias A, et al. Aligning Au Nanorods by Using Carbon Nanotubes as Templates. Angewandte Chemie International Edition,2005,44(28):4375-4378
    [29]Zhang Y X, Zeng H C. Template-Free Parallel One-Dimensional Assembly of Gold Nanoparticles. The Journal of Physical Chemistry B,2006,110(34): 16812-16815
    [30]Maye M M, Lou Y B, Zhong C J. Core-Shell Gold Nanoparticle Assembly as Novel Electrocatalyst of CO Oxidation. Langmuir,2000,16(19):7520-7523
    [31]Baldrich E, Laczka O, Del Campo F J, et al. Gold Immuno-Functionalisation via Self-Assembled Monolayers:Study of Critical Parameters and Comparative Performance for Protein and Bacteria Detection. Journal of Immunological Methods,2008,336(2):203-212
    [32]Abdelrahman A I, Mohammad A M, El-Deab M S, et al. Bisthiol-Assisted Multilayers' Self-Assembly of Gold Nanoparticles:Synthesis, Characterization, Size Control and Electrocatalytic Applications. Macromolecular Symposia,2008, 270(1):74-81
    [33]Shukla A K, Ravikumar M K, Gandhi K S. Direct Methanol Fuel Cells for Vehicular Applications. Journal of Solid State Electrochemistry,1998,2(2): 117-122
    [34]衣宝廉.燃料电池-原理、技术、应用.北京:化学工业出版社,2003:161-162
    [35]Steele B C H, Heinzel. Materials for Fuel-Cell Technologies. Nature,2001, 414(6861):345-352
    [36]Liu H S, Song C J, Zhang L, et al. A Review of Anode Catalysis in the Direct Methanol Fuel Cell. Journal of Power Sources,2006,155(2):95-110
    [37]Winter M, Brodd R J. What Are Batteries, Fuel Cells, and Supercapacitors? Chemical Reviews,2004,104(10):4245-4270
    [38]Liu J G,Sun G Q, Zhao F L, et al. Study of Sintered Stainless Steel Fiber Felt as Gas Diffusion Backing in Air-Breathing DMFC. Power Sources,2004,133(2): 175-180
    [39]Page T, Johnson R, Hormes J, et al. A Study of Methanol Electro-Oxidation Reactions in Carbon Membrane Electrodes and Structural Properties of Pt Alloy Electro-Catalysts by EXAFS. Electroanalytical Chemistry,2000,485(1):34-41
    [40]周卫江,周振华,李文震等.直接甲醇燃料电池阳极催化剂研究进展.化学通报,2003,66(4):228-234
    [41]陈胜洲,董新法,林维明.直接甲醇燃料电池阳极电催化剂材料的研究.化工新型材料,2002,30(10):17-20
    [42]Arico A S, Baglio V, Modica E, et al. Performance of DMFC Anodes with Ultra-Low Pt Loading. Electrochemistry Communications,2004,6(2):164-169
    [43]Guo S J, Zhai J F, Fang Y X, et al. Nanoelectrocatalyst Based on High-Density Au/Pt Hybrid Nanoparticles Supported on a Silica Nanosphere. Chemistry-An Asian Journal,2008,3(7):1156-1162
    [44]Zhao D, Xu B Q. Enhancement of Pt Utilization in Electrocatalysts by Using Gold Nanoparticles. Angewandte Chemie International Edition,2006,45(30): 4955-4959
    [45]Khalid M, Wasio N, Chase T, et al. In Situ Generation of Two-Dimensional Au-Pt Core-Shell Nanoparticle Assemblies. Nanoscale Research Letters,2010, 5(1):61-67
    [46]Du Y, Xu J J, Chen H Y. Ultrathin Platinum Film Covered High-Surface-Area Nanoporous Gold for Methanol Electro-Oxidation. Electrochemistry Communication,2009,11(8):1717-1720
    [47]Wang J J, Yin G P, Wang G J, et al. A Novel Pt/Au/C Cathode Catalyst for Direct Methanol Fuel Cells with Simultaneous Methanol Tolerance and Oxygen Promotion. Electrochemistry Communication,2008,10(6):831-834
    [48]Markovic N M, Ross P N. Surface Science Studies of Model Fuel Cell Electrocatalysts. Surface Science Reports,2002,45(4-6):117-229
    [49]Liu R X, Smotkin E S. Array Membrane Electrode Assemblies for High Throughput Screening of Direct Methanol Fuel Cell Anode Catalysts. Journal of Electroanalytical Chemistry,2002,535(1-2):49-55
    [50]Kennedy B J, Hamnett A. Oxide Formation and Reactivity for Methanol Oxidation on Platinised Carbon Anodes. Journal of Electroanalytical Chemistry, 1990,283(1-2):271-285
    [51]Gasteiger H A, Markovicn N, Ross Jr P N, et al. Electro-Oxidation of Small Organic Molecules on Well-Characterized Pt-Ru Alloys. Electrochimca Acta, 1994,39(11-12):1825-1832
    [52]Iwasita T, Nart F C. Bulk Effects in External Reflection IR Spectroscopy:The Interpretation of Adsorption Data for Ionic Species. Journal of Electroanalytical Chemistry,1990,295(1-2):215-224Kua J, Goddard Ⅲ W A. Oxidation of Methanol on 2nd and 3rd Row Group Ⅷ Transition Metals(Pt, Ir, Os, Pd, Rh, and Ru):Applications to Direct Methanol Fuel Cells. Journal of the American Chemistry Society,1999,121(47):10938-10941
    [54]文纲要,张颖.甲醇阳极电氧化催化剂的研究.电化学,1998,4(1):73-78
    [55]Arico A S, Creti P, Giordano N, et al. Chemical and Morphological Characterization of a Direct Methanol Fuel Cell Based on a Quaternary Pt-Ru-Sn-W/C Anode. Journal of Applied Electrochemistry,1996,26(9): 959-967
    [56]刘长鹏,杨辉,邢巍等.铂、钌共修饰的氧化钛电极对甲醇的电催化氧化.应用化学,2001,18(7):517-520
    [57]Chu D, Jiang R Z. Novel Electrocatalysts for Direct Methanol Fuel Cells. Solid State Ionics,2002,148(3-4):591-599
    [58]Raghuveer V, Viswanathan B. Can La2-xSrxCuO4 Be Used as Anodes for Direct Methanol Fuel Cells?. Fuel,2002,81(17):2191-2197
    [59]Burda C, Chen X B, Narayanan R, et al. Chemistry and Properties of Nanocrystals of Different Shapes. Chemical Review,2005,105(4):1025-1102
    [60]Ozbay E. Plasmonics:Merging Photonics and Electronics at Nanoscale Dimensions. Science,2006,311(5758):189-193
    [61]Jana N R, Gearheart L, Murphy C J. Wet Chemical Synthesis of High Aspect Ratio Cylindrical Gold Nanorods. The Journal of Physical Chemistry B,2001, 105(19):4065-4067
    [62]Gole A, Murphy C J. Seed-Mediated Synthesis of Gold Nanorods:Role of the Size and Nature of the Seed. Chemistry of Materials,2004,16(19):3633-3640
    [63]Li X H, Li Y C, Tan Y W, et al. Self-Assembly of Gold Nanoparticles Prepared with 3,4-Ethylenedioxythiophene as Reductant. The Journal of Physical Chemistry B,2004,108(17):5192-5199
    [64]Goodenough J B, Hamnett A, Kennedy B J, et al. Porous Carbon Anodes for the Direct Methanol Fuel Cell-I. The Role of the Reduction Method for Carbon Supported Platinum Electrodes. Electrochimica Acta,1990,35(1):199-207
    [65]Petrow H G, Allen R J. Finely Particulated Colloidal Platinum Compound and Sol for Producing the Same, and Method of Preparation of Fuel Cell Electrodes and the Like Employing the Same. United States Patent.4044193,1977-08-23
    [66]Choi K H, Kim H S, Lee T H. Electrode Fabrication for Proton Exchange Membrane Fuel Cells by Pulse Electrodeposition. Journal of Power Sources, 1998,75(2):230-235
    [67]Li Y J, Huang W J, Sun S G. A Universal Approach for the Self-Assembly of Hydrophilic Nanoparticles into Ordered Monolayer Films at a Toluene/Water Interface. Angewandte Chemie International Edition,2006,45(16):2537-2539
    [68]Bonet F, Delmas V, Grugeon S, et al. Synthesis of Monodisperse Au, Pt, Pd, Ru and Ir Nanoparticles in Ethylene Glycol. NanoStructured Materials,1999,11(8): 1277-1284
    [69]Tekaia-Elhsissen K, Bonet F, Silvert P Y, et al. Finely Divided Platinum-Gold Alloy Powders Prepared in Ethylene Glycol. Journal of Alloys and Compounds, 1999,292(1-2):96-99
    [70]Frelink T, Visscher W, Veen J A R. Particle Size Effect of Carbon-Supported Platinum Catalysts for the Electrooxidation of Methanol. Journal of Electroanalytical Chemistry,1995,382(1-2):65-72
    [71]Biegler T, Rand D A J, Woods R. Limiting Oxygen Coverage on Platinized Platinum; Relevance to Determination of Real Platinum Area by Hydrogen Adsorption. Journal of Electroanalytical Chemistry,1971,29(2):269-277
    [72]Iwasita T, Hoster H, John-Anacker A, et al. Methanol Oxidation on PtRu Electrodes. Influence of Surface Structure and Pt-Ru Atom Distribution. Langmuir,1999,16(2):522-529
    [73]Liu Z, Reed D, Kwon G, et al. Pt3Sn Nanoparticles with Controlled Size: High-Temperature Synthesis and Room-Temperature Catalytic Activation for Electrochemical Methanol Oxidation. The Journal of Physical Chemistry C,2007, 111(38):14223-14229
    [74]Zhou S G, McIlwrath K, Jackson G, et al. Enhanced CO Tolerance for Hydrogen Activation in Au-Pt Dendritic Heteroaggregate Nanostructures. Journal of the American Chemical Society,2006,128(6):1780-1781
    [75]Mott D, Luo J, Njoki P N, et al. Synergistic Activity of Gold-Platinum Alloy Nanoparticle Catalysts. Catalysis Today,2007,122(3-4):378-385
    [76]Zeng J H, Yang J, Lee J Y, et al. Preparation of Carbon-Supported Core-Shell Au-Pt Nanoparticles for Methanol Oxidation Reaction:The Promotional Effect of the Au Core. The Journal of Physical Chemistry B,2006,110(48): 24606-24611
    [77]Zhang J L, Vukmirovic M B, Sasak K, et al. Mixed-Metal Pt Monolayer Electrocatalysts for Enhanced Oxygen Reduction Kinetics. Journal of the American Chemical Society,2005,127(36):12480-12481
    [78]Zhang J L, Vukmirovic M B, Xu Y, et al. Controlling the Catalytic Activity of Platinum-Monolayer Electrocatalysts for Oxygen Reduction with Different Substrates. Angewandte Chemie International Edition,2005,44(14):2132-2135
    [79]Du B C, Tong Y Y. A Coverage-Dependent Study of Pt Spontaneously Deposited onto Au and Ru Surfaces:Direct Experimental Evidence of the Ensemble Effect for Methanol Electro-Oxidation on Pt. The Journal of Physical Chemistry B, 2005,109(38):17775-17780
    [80]Hammer B, Morikawa Y, Norskov J K. CO Chemisorption at Metal Surfaces and Overlayers. Physical Review Letters,1996,76(12):2141-2144
    [81]Hammer B, Norskov J K. Advances in Catalysis. San Diego:Academic Press, 2000:Vol 45
    [82]Aramata A, Bockris J O M, Conway B E, et al. Modern Aspects of Electrochemistry. New York:Plenum Press,1997:31
    [83]Park S, Yang P, Corredor P, et al. Transition Metal-Coated Nanoparticle Films: Vibrational Characterization with Surface-Enhanced Raman Scattering. Journal of the American Chemical Society,2002,124(11):2428-2429
    [84]Tang H, Chen J H, Wang M Y, et al. Controlled Synthesis of Platinum Catalysts on Au Nanoparticles and Their Electrocatalytic Property for Methanol Oxidation. Applied Catalysis A,2004,275(1-2):43-48
    [85]Shin T Y, Yoo S H, Park S. Gold Nanotubes with a Nanoporous Wall:Their Ultrathin Platinum Coating and Superior Electrocatalytic Activity toward Methanol Oxidation. Chemistry of Materials,2008,20(17):5682-5686
    [86]Liu P P, Ge X B, Wang R Y, et al. Facile Fabrication of Ultrathin Pt Overlayers onto Nanoporous Metal Membranes via Repeated Cu UPD and in Situ Redox Replacement Reaction. Langmuir,2009,25(1):561-567
    [87]Ge X, Wang R, Liu P, et al. Platinum-Decorated Nanoporous Gold Leaf for Methanol Electrooxidation. Chemistry of Materials,2007,19(24):5827-5829
    [88]Park O S, Lee K S, Choi J H, et al. Surface Structure of Pt-Modified Au Nanoparticles and Electrocatalytic Activity in Formic Acid Electro-Oxidation. The Journal of Physical Chemistry C,2007,111(51):19126-19133
    [89]Kumar S, Zou S Z. Electrooxidation of Carbon Monoxide and Methanol on Platinum-Overlayer-Coated Gold Nanoparticles:Effects of Film Thickness. Langmuir; 2007,23(13):7365-7371
    [90]Patra S, Das J, Yang H. Selective Deposition of Pt on Au Nanoparticles Using Hydrogen Presorbed into Au Nanoparticles During NaBH4 Treatment. Electrochimica Acta,2009,54(12):3441-3445
    [91]Huang M, Jin Y, Jiang H, et al. Designed Nanostructured Pt Film for Electrocatalytic Activities by Underpotential Deposition Combined Chemical Replacement Techniques. The Journal of Physical Chemistry B,2005,109(32): 15264-15271
    [92]Liu C, Li Y J, Wang M H, et al. Rapid Fabrication of Large-Area Nanoparticle Monolayer Films via Water-Induced Interfacial Assembly. Nanotechnology, 2009,20(6):065604
    [93]Wang M H, Li Y J, Xie Z X, et al. Fabrication of Large-Scale One-Dimensional Au Nanochain and Nanowire Networks by Interfacial Self-Assembly. Materials Chemistry and Physics,2010,119(1-2):153-157
    [94]Wang M H, Hu J W, Li Y J, et al. Au Nanoparticle Monolayers:Preparation, Structural Conversion and Their Surface-Enhanced Raman Scattering Effects. Nanotechnology,2010,21(14):145608
    [95]Li Y J, Liu C, Yang M H, et al. Large-Scale Self-Assembly of Hydrophilic Gold Nanoparticles at Oil/Water Interface and Their Electro-Oxidation for Nitric Oxide in Solution. Journal of Electroanalytical Chemistry,2008,622(1): 103-108
    [96]Frens G. Controlled Nucleation for the Regulation of the Particle Size in Monodisperse Gold Suspensions. Nature Physical Science,1973,241:20-22
    [97]Park S, Yang P X, Corredor P, et al. Transition Metal-Coated Nanoparticle Films: Vibrational Characterization with Surface-Enhanced Raman Scattering. Journal of the American Chemical Society,2002,124(11):2428-2429
    [98]Kolb D M. Physical and Electrochemical Properties of Metal Monolayers on Metallic Substrates. Advances in Electrochemistry and Electrochemical Engineering,1978,11:125-271
    [99]Mrozek M F, Xie Y, Weaver M J. Surface-Enhanced Raman Scattering on Uniform Platinum-Group Overlayers:Preparation by Redox Replacement of Underpotential-Deposited Metals on Gold. Analytical Chemistry,2001,73(24): 5953-5960
    [100]Brankovic S R, Wang J X, Adzic R R. Metal Monolayer Deposition by Replacement of Metal Adlayers on Electrode Surfaces. Surface Science,2001. 474(1-3):L173-L179
    [101]Maillard F, Eikerling M, Cherstiouk O V, et al. Size Effects on Reactivity of Pt Nanoparticles in CO Monolayer Oxidation:The Role of Surface Mobility. Faraday Discussions,2004,125:357-377
    [102]Mayrhofer K J J, Arenz M, Blizanac B B, et al. CO Surface Electrochemistry on Pt-Nanoparticles:A Selective Review. Electrochimica Acta,2005,50(25-26): 5144-5154
    [103]Arenz M, Mayrhofer K J J, Stamenkovic V, et al. The Effect of the Particle Size on the Kinetics of CO Electrooxidation on High Surface Area Pt Catalysts. Journal of the American Chemical Society,2005,127(18):6819-6829
    [104]Chang S C, Ho Y, Weaver M J. Applications of Real-Time Infrared Spectroscopy to Electrocatalysis at Bimetallic Surfaces:I. Electrooxidation of Formic Acid and Methanol on Bismuth-Modified Pt(111) and Pt(100). Surface Science,1992, 265(1-3):81-94
    [105]Park S, Xie Y, Weaver M J. Electrocatalytic Pathways on Carbon-Supported Platinum Nanoparticles:Comparison of Particle-Size-Dependent Rates of Methanol, Formic acid, and Formaldehyde Electrooxidation. Langmuir,2002, 18(15):5792-5798
    [106]Zhang J, Lima F H B, Shao M H, et al. Platinum Monolayer on Nonnoble Metal-Noble Metal Core-Shell Nanoparticle Electrocatalysts for O2 Reduction. The Journal of Physical Chemistry B,2005,109(48):22701-22704
    [107]Zhang J, Mo Y, Vukmirovic M B, et al. Platinum Monolayer Electrocatalysts for O2 Reduction:Pt Monolayer on Pd(111) and on Carbon-Supported Pd Nanoparticles. The Journal of Physical Chemistry B,2004,108(30): 10955-10964
    [108]Liu Z, Ling X Y, Su X, et al. Carbon-Supported Pt and PtRu Nanoparticles as Catalysts for a Direct Methanol Fuel Cell. The Journal of Physical Chemistry B, 2004,108(24):8234-8240

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700