多功能木霉对纤维素和农药的降解特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
木霉菌(Trichoderma spp.)是一类普遍存在并具有重要经济意义的生防益菌,多年来,木霉菌以其高效、安全、不易引起病原菌抗药性的特点,在以可持续发展为宗旨的生物防治中发挥了重要作用,已作为生防菌剂在美国、印度、瑞典等国家商品化生产,我国近年来也有此类产品问世,其生产方法大多采用固体培养法,以玉米粉、麸皮等农副产品为培养基质,以获得货架期较长的分生孢子。在生产中如何降低生产成本是加速木霉菌实用化进程的关键。
     我国是一个农业大国,每年产生的秸秆剩余物数量巨大,而被利用的量却很少。部分农民采取了简单焚烧或随意堆积处理,不但浪费了宝贵的自然资源,还污染了大气环境,对人类健康造成了危害。由于木霉在工业上是一种优良的纤维素酶产生菌,对部分农药亦有一定的降解作用,如果能够利用秸秆为原料生产木霉制剂,且在利用木霉制剂防治病害的同时,使农作物中的农药残留得到降解,这将对农业的可持续发展及人类健康具有重要意义,为此本文展开了以下工作:
     1、以本实验室筛选的具有一定生物防治效果的木霉为出发菌株,通过木霉在以纤维素为唯一碳源的CMC培养基、刚果红培养基和滤纸条液体培养基检测生长直径、透明圈和生长程度等指标,筛选出9株能够分解利用纤维素的优势木霉菌株,并研究了其Cx酶活性、滤纸酶活(FPA)和产还原糖能力,筛选出3株降解纤维素最强的木霉菌J15、J16、J18。以农业上常用的高效氯氰菊酯、毒死蜱和吡虫啉3种杀虫剂为唯一碳源制成培养基,考察3种木霉在农药平板培养基上的生长情况,并分别测定其对3种农药72h的降解率。结合各菌株的纤维素降解能力,最终确定J16木霉菌为降解纤维素能力较强,农药降解率最高的目标菌株,经形态学观察和分子生物学分析,将其鉴定为脐胞木霉( Trichoderma brevicompactum)。经检索,目前国内未见有此种的相关报道。
     2、对脐胞木霉(Trichoderma brevicompactum)的生物防治特性、利用秸秆生产木霉孢子制剂时不同因素对产孢量的影响进行了研究。结果如下:平板对峙结果表明脐胞木霉(Trichoderma brevicompactum)对萝卜枯萎病菌(Fusarium oxysporum f.sp.)、西瓜枯萎病菌(F. oxysporum f. sp. niveum)、棉花枯萎病菌(F.oxysporum f. sp. vasinfectum)、小麦赤霉病菌(F. graminearum)、黄瓜枯萎病菌(F. oxysporum f. sp. cucumerinum)等病原微生物具有较强的抑制作用,抑制率分别为56.6%;81.2%;65.6%;53.5%;70.6%;用单因素和正交试验法,确定脐胞木霉(Trichoderma brevicompactum)产孢的最优条件为:秸秆:麸皮=2:1;含水量为40%;接种量为12%;温度为28℃;培养时间为9d。
     3、脐胞木霉(Trichoderma brevicompactum)在以农药为唯一碳源的液体培养基中培养7d,分别测定培养液中高效氯氰菊酯、毒死蜱和吡虫啉的残余量,可得3种农药的降解率分别为90.43%、86.71%、78.81%。为进一步验证脐孢木霉( Trichoderma brevicompactum)在农业生产中对高效氯氰菊酯和毒死蜱的降解效果,将脐胞木霉(Trichoderma brevicompactum)制成孢子制剂;选择大棚温室中的油菜为供试植物,在喷洒农药12h后喷施木霉孢子制剂,分别在1、5、11、14、17d进行定时取样,用气相色谱检测油菜中的农药残留,结果显示,随着时间的延长,农药降解率逐渐升高,高效氯氰菊酯和毒死蜱的降解率分别提高了45.54%、72.58%。
Trichoderma are well known as biocontrol agents, used worldwide against different plant pathogenic fungi. Trichoderma spp. is free-living fungi that are common in soil and root ecosystems. It has played an important role in controlling plant pathogens for its efficiency, safety, and no-existence pathogens resistance. Some Trichoderma biocontrol agents have been commercialized in the United States, India, Sweden and other countries. It also produced in China in recent years. Corn flour and wheat bran were used as solid culture medium to produce Trichoderma conidia. How to reduce production cost is the key process of accelerating practical utilization of Trichoderma.
     China is a large agricultural country, the quantity of straw residues is huge, but its utilization is little. Burning or abandoning them not only a waste of valuable natural resources, but also polluted the atmosphere and is harmful to human health. It is known that Trichoderma spp. can produce cellulase and degrade some pesticides. It will be of great significance to agricultural if we could use straw materials as solide to produce Trichoderma biological control agents and use it to degrade pesticide. The main conclusions of this paper are as follows:
     1. A multi-functional Trichoderma stain J16 was selected which having a certain ability of biological control, degrading cellulose and degrading pesticide .It indentified as Trichoderma brevicompactum by morphological and rDNA-ITS sequence analysis. It is the first report of this genus in China.
     2. Trichoderma brevicompactum had a strong antagonist on pathogenic microorganisms such as Fusarium oxysporum f.sp, F. oxysporum f. sp. niveum, F.oxysporum f. sp. vasinfectum, F. graminearum, F. oxysporum f. sp. cucumerinum, which ihibitory rates were 56.6%; 81.2%; 65.6%; 53.5%; 70.6% respectively. Different factors on sporulation when using straw as the nutrientsubstance was further studied. The optimal conditions of spore production were determined by single-factor method and orthogonal experimentation. straw: wheat = 2:1, 40% of water content, 12% of inoculum, 28℃, culture time is 9 days.
     3. Under laboratory conditions, when Trichoderma brevicompactum were cultured with pesticides (beta-cypermethrin, chlorpyrifos and imidacloprid) as the single source of carbon for 7 days. The three kinds of pesticide degradation rates were 90.43%, 86.71% and 78.81% respectively.To research the degradation effects of Trichoderma brevicompactum on beta-cypermethrin and chlorpyrifos in practical applications, the biocontrol agent of the Trichoderma brevicompactum was applied in the rapes (Brassica campestris L.) in the greenhouse, the degradation rates of Trichoderma brevicompactum against insecticides (beta-cypermethrin in synthetic pyrethroids and chlorpyrifos in organophosphate pesticides) were determined by GC-FID. The degradation rates were 45.54% and 72.58% at the 17 days respectively.
引文
[1]张瑞萍.纤维素酶的滤纸酶活和CMC酶活的测定[J].印染助剂. 2002, 19(005): 51-53.
    [2] Breuil C, Chan M, Gilbert M, et al. Influence of [beta]-glucosidase on the filter paper activity and hydrolysis of lignocellulosic substrates [J]. Bioresource Technology. 1992, 39(2): 139-142.
    [3] Irwin D C, Spezio M, Walker L P, et al. Activity studies of eight purified cellulases: specificity, synergism, and binding domain effects [J]. Biotechnology and bioengineering. 2004, 42(8): 1002-1013.
    [4] Germaine G R, Schachtele C F, Chludzinski A M. Rapid filter paper assay for the dextransucrase activity from Streptococcus mutans [J]. Journal of Dental Research. 1974, 53(6): 1355.
    [5]华小梅,江希流.我国农药环境污染与危害的特点及控制对策[J].环境科学研究. 2000, 13(003): 40-43.
    [6]杜克久.农药与环境的可持续发展[J].自然辩证法通讯. 1999(003): 32-37.
    [7]邱小燕.农药污染与生态环境保护[J].现代农业科学. 2008: 53-54.
    [8]程亮,郭青云.有机农药污染的植物根际修复研究进展[J].青海科技. 2008: 34-37.
    [9]郭荣君,李世东,章力建.土壤农药污染与生物修复研究进展[J].中国生物防治. 2005, 21(3): 129-135.
    [10]郭荣君,李世东,章力建.土壤农药污染与生物修复研究进展[J].中国生物防治. 2005, 21(3): 129-135.
    [11]李顺鹏,蒋建东.农药污染土壤的微生物修复研究进展[J].土壤. 2004, 36(6): 577-583.
    [12]方玲.降解有机氯农药的微生物菌株分离筛选及应用效果[J].应用生态学报. 2000, 11(002): 249-252.
    [13]程国锋,李顺鹏,沈标.微生物降解蔬菜残留农药研究[J].应用与环境生物学报. 1998, 4(001): 81-84.
    [14] Tu C M. Influence of five pyrethroid insecticides on microbial populations and activities in soil [J]. Microbial Ecology. 1980, 5(4): 321-327.
    [15]韩鲁佳,闫巧娟.中国农作物秸秆资源及其利用现状[J].农业工程学报. 2002, 18(003): 87-91.
    [16]石磊,赵由才,柴晓利.我国农作物秸秆的综合利用技术进展[J].中国沼气. 2005, 23(002): 11-14.
    [17] Li-Xiang L, Cheng-Zhen W U, Wei H, et al. Advances in comprehensive utilization of crop straw [J] Subtropical Agriculture Research. 2006, 1.
    [18] Edwards R,úri M, Huld T A, et al. GIS-based assessment of cereal straw energy resource in the European Union[C]. 2005.
    [19] Lujia H, Qiaojuan Y, Xiangyang L, et al. Straw Resources and Their Utilization in China [J]. Transactions of the Chinese Society of Agricultural Engineering. 2002, 3.
    [20]郭庭双,李晓芳.如何申请国家级秸秆养牛(养羊)示范县[J].黄牛杂志. 1995, 21(001): 31-32.
    [21] Zeng X, Ma Y, Ma L. Utilization of straw in biomass energy in China [J]. Renewable and sustainable energy reviews. 2007, 11(5): 976-987.
    [22]封莉,刘俊峰,冯晓静.秸秆生物质资源利用途径及相应技术[J].农机化研究. 2004(006): 193-195.
    [23]江永红,宇振荣,马永良.秸秆还田对农田生态系统及作物生长的影响[J].土壤通报. 2001, 32(005): 209-213.
    [24] Bationo A, Mokwunye A U. Role of manures and crop residue in alleviating soil fertility constraints to crop production: With special reference to the Sahelian and Sudanian zones of West Africa [J]. Nutrient Cycling in Agroecosystems. 1991, 29(1): 117-125.
    [25]马光庭.生态有机肥与农业可持续发展[J]. Chinese Journal of Eco-Agricuhure. 2004, 1: 12.
    [26]陈文新.土壤和环境微生物学[J].北京农业大学出版社. 1990.
    [27] Chen W P, Anderson A W. Extraction of hemicellulose from ryegrass straw for the production of glucose isomerase and use of the resulting straw residue for animal feed [J]. Biotechnology and Bioengineering. 2004, 22(3): 519-531.
    [28] Dietrichs H H, Sinner M, Puls J. Potential of steaming hardwoods and straw for feed and food production[J]. Name: Holzforschung. 1978.
    [29] Chaturvedi M L, Singh U B, Ranjhan S K. Effect of feeding water-soaked and dry wheatstraw on feed intake, digestibility of nutrients and VFA production in growing zebu and buffalo calves[J]. The Journal of Agricultural Science. 2009, 80(03): 393-397.
    [30] Kristensen E F, Kristensen J K. Development and test of small-scale batch-fired straw boilers in Denmark [J]. Biomass and Bioenergy. 2004, 26(6): 561-569.
    [31]胡夏明,朱学明.秸秆气化系统经济效益评价[J].中国农机化. 2001(005): 37-38.
    [32] Claassen P, Van Lier J B, Lopez Contreras A M, et al. Utilisation of biomass for the supply of energy carriers[J]. Applied microbiology and biotechnology. 1999, 52(6): 741-755.
    [33] Warren R. Microbial hydrolysis of polysaccharides [J]. Annual Reviews in Microbiology. 1996, 50(1): 183-212.
    [34]王建.利用分光光度法测定纤维素酶中Cx酶活性[J].河南农业科学. 2000, 10: 31-32.
    [35]杨传强,龙德树.纤维素酶的活性测定及其影响因素[J].天津纺织工学院学报. 1999, 18(004): 31-35.
    [36] Kim J O, Park S R, Lim W J, et al. Cloning and characterization of thermostable endoglucanase (Cel8Y) from the hyperthermophilic Aquifex aeolicus VF5 [J]. Biochemical and Biophysical Research Communications. 2000, 279(2): 420-426.
    [37] Wood B E, Ingram L O. Ethanol production from cellobiose, amorphous cellulose, and crystalline cellulose by recombinant Klebsiella oxytoca containing chromosomally integrated Zymomonas mobilis genes for ethanol production and plasmids expressing thermostable cellulase genes from Clostridium thermocellum. [J]. Applied and environmental microbiology. 1992, 58(7): 2103.
    [38] Dias F, Goyal A, Gilbert H J, et al. The N-terminal family 22 carbohydrate-binding module of xylanase 10B of Clostridium themocellum is not a thermostabilizing domain[J]. FEMS microbiology letters. 2006, 238(1): 71-78.
    [39] Zhou S, Ingram L O. Synergistic hydrolysis of carboxymethyl cellulose and acid-swollen cellulose by two endoglucanases (CelZ and CelY) from Erwinia chrysanthemi [J]. Journal of bacteriology. 2000, 182(20): 5676.
    [40] Li X. Streptomyces cellulolyticus sp. Nov., a new cellulolytic member of the genus Streptomyces [J]. International Journal of Systematic and Evolutionary Microbiology. 1997, 47(2): 443.
    [41]倪艳华,李忠阳.食品农药污染现状及监督管理对策[J].中国卫生监督杂志. 2005, 12(001): 58-60.
    [42] Schulz R, Peall S. Effectiveness of a constructed wetland for retention of nonpoint-source pesticide pollution in the Lourens River catchment, South Africa [J]. Environ. Sci. Technol. 2001, 35(2): 422-426.
    [43] Konstantinou I K, Hela D G, Albanis T A. The status of pesticide pollution in surface waters (rivers and lakes) of Greece. Part I. Review on occurrence and levels [J]. Environmental Pollution. 2006, 141(3): 555-570.
    [44] Holland H T, Coppage D L, Butler P A. Use of fish brain acetylcholinesterase to monitor pollution by organophosphorus pesticides [J]. Bulletin of Environmental Contamination and Toxicology. 1967, 2(3): 156-162.
    [45] Shen G, Lu Y, Wang M, et al. Status and fuzzy comprehensive assessment of combined heavy metal and organo-chlorine pesticide pollution in the Taihu Lake region of China [J]. Journal of environmental management. 2005, 76(4): 355-362.
    [46] Qiu X, Zhu T, Yao B, et al. Contribution of dicofol to the current DDT pollution in China [J]. Environmental science & technology. 2005, 39(12): 4385-4390.
    [47] Yonghua Y, Jian Y, Xiaomei H. EFFECT OF PESTICIDE POLLUTION AGAINST FUNCTIONAL MICROBIAL DIVERSITY IN SOIL [J]. Journal of Microbiology. 2000, 2.
    [48] Li Y, Zhang J. Agricultural diffuse pollution from fertilisers and pesticides in China [J]. Water Science & Technology. 1999, 39(3): 25-32.
    [49]宁达.日本多氯联苯污染及防治措施[J].全球科技经济瞭望. 2002, 4.
    [50]孛慧. 20世纪最可怕的一次化学灾祸——印度博帕尔毒气泄漏事故[J].广东安全生产. 2004(007): 40-41.
    [51]司德平,刘中惠.浅谈光学增透膜[J].物理通报. 2001, 2(2).
    [52]赵其国.现代生态农业与农业安全[J].科技与经济. 2004, 17(001): 58-64.
    [53]刘爱红,张琳.农药残留与食品安全[J].安徽农业科学. 2007, 35(013): 4017-4018.
    [54]顾晓军,田素芬.农药的负面效应:过去,现状及展望[J].福建农业大学学报. 2001.
    [55]张中一,施正香,周清.农用化学品对生态环境和人类健康的影响及其对策[J].中国农业大学学报. 2003, 8(002): 73-77.
    [56]岳瑞生.关于就某些持久性有机污染物采取国际行动的斯德哥尔摩公约[J].世界环境. 2001(001): 24-28.
    [57]史雅娟,吕永龙,任鸿昌.持久性有机污染物研究的国际发展动态[J].世界科技研究与发展. 2003, 25(002): 73-78.
    [58]任仁.斯德哥尔摩公约[J].大学化学. 2003, 18(003): 37-41.
    [59] Lallas P L. The Stockholm Convention on persistent organic pollutants [J]. American Journal of International Law. 2001, 95(3): 692-708.
    [60] Karlaganis G, Marioni R, Sieber I, et al. The elaboration of the‘Stockholm convention’on persistent organic pollutants (POPs): a negotiation process fraught with obstacles and opportunities[J]. Environmental Science and Pollution Research. 2001, 8(3): 216-221.
    [61] Godduhn A, Duffy L K. Multi-generation health risks of persistent organic pollution in the far north: use of the precautionary approach in the Stockholm Convention [J]. Environmental science & policy. 2003, 6(4): 341-353.
    [62]方晓航,仇荣亮.农药在土壤环境中的行为研究[J].土壤与环境. 2002, 11(001): 94-97.
    [63]张振玲,刘永霞.化学农药对人体健康的影响[J].上海预防医学. 2003, 15(008): 383-384.
    [64] Margni M, Rossier D, Crettaz P, et al. Life cycle impact assessment of pesticides on human health and ecosystems[J]. Agriculture, Ecosystems & Environment. 2002, 93(1-3): 379-392.
    [65] Antle J M, Pingali P L. Pesticides, productivity, and farmer health: A Philippine case study [J]. American Journal of Agricultural Economics. 1994, 76(3): 418.
    [66] Tilman D, Fargione J, Wolff B, et al. Forecasting agriculturally driven global environmental change [J]. Science. 2001, 292(5515): 281.
    [67] Horrigan L, Lawrence R S, Walker P. How sustainable agriculture can address the environmental and human health harms of industrial agriculture. [J]. Environmental Health Perspectives. 2002, 110(5): 445.
    [68]李艳,张有林,王宏.农药残留降解方法研究[J].食品研究与开发. 2004, 25(006): 31-33.
    [69]虞云龙,樊德方.农药微生物降解的研究现状与发展策略[J].环境科学进展. 1996, 4(003): 28-36.
    [70]朱忠林,龚瑞忠,韩志华.农药对鸟类的毒性及其安全性评价[J].农村生态环境. 2003, 19(003): 53-57.
    [71] Volmer D A. Investigation of photochemical behavior of pesticides in a photolysis reactor coupled on-line with a liquid chromatography-electrospray ionization tandem mass spectrometry system:: Application to trace and confirmatory analyses in food samples[J]. Journal of Chromatography A. 1998, 794(1-2): 129-146.
    [72]李勇,魏益民,张波.近红外水分稳健分析模型研究[J].光谱学与光谱分析. 2005, 25(012): 1963-1967.
    [73] Edwards A W. Biodegradable pesticide delivery system [Z]. Google Patents, 1999.
    [74] Gerstl Z, Nye P H, Yaron B. Diffusion of a Biodegradable Pesticide: II. As Affected by Microbial Decomposition [J]. Soil Science Society of America Journal. 1979, 43(5): 843.
    [75] Metcalf R L, Kapoor I P, Hirwe A S. Biodegradable analogues of DDT [J]. Bulletin of the World Health Organization. 1971, 44(1-2-3): 363.
    [76]刘凌,崔广柏,郝振纯.多氯联苯在土壤水环境中生物降解过程规律研究[J].水利学报. 2000, 6: 6-13.
    [77]王伟东,牛俊玲,崔宗均.农药的微生物降解综述[J].黑龙江八一农垦大学学报. 2005, 17(002): 18-22.
    [78] Fogarty A M, Tuovinen O H. Microbiological degradation of pesticides in yard waste composting. [J]. Microbiology and Molecular Biology Reviews. 1991, 55(2): 225.
    [79] Karns J S, Muldoon M T, Mulbry W W, et al. U seof Microorganisms and Microbial Systems in the Degradation of Pesticides[J].
    [80] Felsot A, Racke K, Hamilton D. Disposal and degradation of pesticide waste [J]. Reviews of environmental contamination and toxicology. 2003: 123-200.
    [81] Horvath R S. Microbial co-metabolism and the degradation of organic compounds in nature. [J]. Microbiology and Molecular Biology Reviews. 1972, 36(2): 146.
    [82] Kullman S W, Matsumura F. Metabolic pathways utilized by Phanerochaete chrysosporium for degradation of the cyclodiene pesticide endosulfan [J]. Applied and environmental microbiology. 1996, 62(2): 593.
    [83] Burrows H D, Canle L. Reaction pathways and mechanisms of photodegradation of pesticides [J]. Journal of Photochemistry and Photobiology B: Biology. 2002, 67(2): 71-108.
    [84]王圣惠,张深,闰艳春.生真菌很可能增强了植物的SOD活性调节能[J]. BIOTECHNOLOGY. 2006.
    [85]徐汉虹,安玉兴.生物农药的发展动态与趋势展望[J].农药科学与管理. 2001, 22(001): 32-34.
    [86]桂永珠,池景良,胡永兰.生物农药的研究应用现状及前景[J].微生物学杂志. 2001, 21(002): 48-49.
    [87] Sjoblad R D, Mcclintock J T, Engler R. Toxicological considerations for protein components of biological pesticide products[J]. Regulatory Toxicology and Pharmacology. 1992, 15(1): 3-9.
    [88]黄强,吴祥为,花日茂.农药毒死蜱环境污染微生物修复研究进展[J].安徽农业科学. 2008, 36(022): 9682-9683.
    [89]王永杰,李顺鹏,沈标.有机磷农药广谱活性降解菌的分离及其生理特性研究[J].南京农业大学学报. 1999, 22(2): 42-45.
    [90]王永杰,李顺鹏,沈标.有机磷农药乐果降解菌的分离及其活性研究[J].南京农业大学学报. 2001, 24(002): 71-74.
    [91] Relyea R A. Predator cues and pesticides: a double dose of danger for amphibians [J]. Ecological Applications. 2003, 13(6): 1515-1521.
    [92] Thompson H M. Interactions between pesticides; a review of reported effects and their implications for wildlife risk assessment [J]. Ecotoxicology. 1996, 5(2): 59-81.
    [93] Bonnemain H, Dive D. Studies on synergistic toxic effects of copper and dithiocarbamate pesticides with the ciliate protozoan Colpidium campylum (Stokes) [J]. Ecotoxicology and environmental safety. 1990, 19(3): 320-326.
    [94]仪美芹,王开运.微生物降解农药的研究进展[J].山东农业大学学报:自然科学版. 2002, 33(004): 519-524.
    [95]杨小红,李俊,葛诚.微生物降解农药的研究新进展[J].微生物学通报. 2003, 30(006): 93-96.
    [96]刘云焕,陈东海.微生物降解有机磷农药的研究进展[J].北方环境. 2005, 30(001): 22-24.
    [97]虞云龙,樊德方.农药微生物降解的研究现状与发展策略[J].环境科学进展. 1996, 4(003): 28-36.
    [98]石成春,郭养浩,刘用凯.环境微生物降解有机磷农药研究进展[J].上海环境科学. 2003, 22(012): 863-867.
    [99]王兆守,李顺鹏.拟除虫菊酯类农药微生物降解研究进展[J].土壤. 2005, 37(006): 577-580.
    [100] Karns J S, Muldoon M T, Mulbry W W, et al. U seof Microorganisms and Microbial Systems in the Degradation of Pesticides[J].
    [101] Fogarty a M, Tuovinen O H. Microbiological degradation of pesticides in yard waste composting. [J]. Microbiology and Molecular Biology Reviews. 1991, 55(2): 225.
    [102] Yarden O, Aharonson N, Katan J. Accelerated microbial degradation of methyl benzimidazol-2-ylcarbamate in soil and its control[J]. Soil Biology and Biochemistry. 1987, 19(6): 735-739.
    [103] Mulbry W, Kearney P C. Degradation of pesticides by micro-organisms and the potential for genetic manipulation [J]. Crop Protection. 1991, 10(5): 334-346.
    [104]沈东升,方程冉.土壤中降解甲磺隆除草剂的微生物的分离与筛选[J].上海交通大学学报:农业科学版. 2002, 20(003): 186-189.
    [105]温雪松,李颖,李婧.降解除草剂阿特拉津的藤黄微球菌AD3菌株的分离,鉴定和降解特性研究[J].环境科学学报. 2005, 25(008): 1066-1070.
    [106] Wilson R G. Accelerated degradation of thiocarbamate herbicides in soil with prior thiocarbamate herbicide exposure [J]. Weed Science. 1984, 32(2): 264-268.
    [107] El Fantroussi S, Verschuere L, Verstraete W, et al. Effect of phenylurea herbicides on soil microbial communities estimated by analysis of 16S rRNA gene fingerprints and community-level physiological profiles[J]. Applied and Environmental Microbiology. 1999, 65(3): 982.
    [108] Ludwig P, Gunkel W, Hühnerfuss H. Chromatographic separation of the enantiomers of marine pollutants. Part 5: Enantioselective degradation of phenoxycarboxylic acid herbicides by marine microorganisms [J]. Chemosphere. 1992, 24(10): 1423-1429.
    [109] Braunschweig G. Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440 [J]. Environmental microbiology. 2002, 4(12): 799-808.
    [110]宋颖琦,刘睿倩.纤维素降解菌的筛选及其降解特性的研究[J].哈尔滨工业大学学报.2002, 34(002): 197-200.
    [111]王宜磊,邓振旭.透明圈法快速筛选半纤维素分解菌[J].生物技术. 2000, 10(001): 37-39.
    [112]史玉英,沈其荣,娄无忌.纤维素分解菌群的分离和筛选[J].南京农业大学学报. 1996, 19(3): 56-59.
    [113] Robert C, Bernalier-Donadille A. The cellulolytic microflora of the human colon: evidence of microcrystalline cellulose-degrading bacteria in methane-excreting subjects [J]. FEMS microbiology ecology. 2006, 46(1): 81-89.
    [114]王建.利用分光光度法测定纤维素酶中Cx酶活性[J].河南农业科学. 2000, 10: 31-32.
    [115]赵凯,许鹏举,谷广烨. 3, 5-二硝基水杨酸比色法测定还原糖含量的研究[J].食品科学. 2008, 29(008): 534-536.
    [116] Shaffer P A, Hartmann A F. The iodometric determination of copper and its use in sugar analysis. II. Methods for the determination of reducing sugars in blood, urine, milk, and other solutions [J]. Journal of Biological Chemistry. 1921, 45(2): 365.
    [117] Brons C, Olieman C. Study of the high-performance liquid chromatographic separation of reducing sugars, applied to the determination of lactose in milk[J]. Journal of Chromatography A. 1983, 259: 79-86.
    [118] Ting S V. Fruit Juice Assay, Rapid Colormetric Methods for Simultaneous Determination of Total Reducing Sugars and Fructose in Citrus Juices[J]. Journal of Agricultural and Food Chemistry. 1956, 4(3): 263-266.
    [119] Sandra P, Frank T. Multi-residue screening of pesticides in vegetables, fruits and baby food by stir bar sorptive extraction-thermal desorption-capillary gas chromatography-mass spectrometry[J]. Journal of Chromatography A. 2003, 1000(1-2): 299-309.
    [120]丁海涛,李顺鹏.拟除虫菊酯类农药残留降解菌的筛选及其生理特性研究[J].土壤学报. 2003, 40(001): 123-129.
    [121]王永杰,李顺鹏,沈标.有机磷农药乐果降解菌的分离及其活性研究[J].南京农业大学学报. 2001, 24(002): 71-74.
    [122]郑永良,刘德立,刘世旺.甲胺磷农药降解菌的筛选鉴定及其降解效能研究[J].华中师范大学学报:自然科学版. 2007, 41(001): 95-98.
    [123] Liska I, Brouwer E R, Ostheimer A, et al. Rapid screening of a large group of polar pesticides in river water by on-line trace enrichment and column liquid chromatography[J]. International Journal of Environmental Analytical Chemistry. 1992, 47(4): 267-291.
    [124] Nogueira J, Sandra T, Sandra P. Multiresidue screening of neutral pesticides in water samples by high performance liquid chromatography-electrospray mass spectrometry[J]. Analytica Chimica Acta. 2004, 505(2): 209-215.
    [125]郑善良.微生物学基础[M].化学工业出版社, 1992.
    [126]魏景超.真菌鉴定手册[M].上海科学技术出版社, 1979.
    [127] Oilman J C. A manual of soil fungi [J]. Soil Science. 1945, 59(6): 482.
    [128] Ajello L. Laboratory manual for medical mycology[M]. For sale by the Superintendent of Documents, US Govt. Print. Off., Washington, 1963.
    [129] Bell A. Dung fungi: an illustrated guide to coprophilous fungi in New Zealand [M]. Lubrecht & Cramer Ltd, 1983.
    [130] Larone D H. Medically important fungi: a guide to identification[M]. Amer Society for Microbiology, 2002.
    [131]刘少华,陆金萍,朱瑞良.一种快速简便的植物病原真菌基因组DNA提取方法[J].植物病理学报. 2005, 35(004): 362-365.
    [132]张莉莉,张苓花.利用氯化苄提取真菌基因组DNA及其分子生物学分析[J].大连轻工业学院学报. 2000, 19(001): 36-39.
    [133]朱衡,瞿峰.利用氯化苄提取适于分子生物学分析的真菌DNA[J].真菌学报. 1994, 13(001): 34-40.
    [134]李梅云,刘开启.烟草黑胫病木霉生防菌株的筛选[J].中国烟草科学. 2001, 22(002): 43-46.
    [135]田连生,王伟华.木霉对尖镰孢菌的拮抗机制及生防效果研究[J].植物保护. 2001, 27(004): 47-48.
    [136]郭润芳,高克祥.木霉菌在植病生物防治中的应用[J].河北林果研究. 2001, 16(003): 294-298.
    [137]庄敬华,高增贵,刘限.不同发酵条件对木霉产孢类型的影响[J].中国生物防治. 2005, 21(001): 37-40.
    [138]叶茂,戴良英,罗宽.毛竹枯梢病菌产孢条件的研究[J].湖南农业大学学报. 2000,26(1): 15-17.
    [139] Friesen W T, Anderson R A. Effects of sporulation conditions and cation-exchange treatment on the thermal resistance of Bacillus stearothermophilus spores [J]. Can. J. Pharm. Sci. 1974, 9: 50-53.
    [140] Brian P W, Hemming H G. Some nutritional conditions affecting spore production by Trichoderma viride Pers. ex Fries [J]. Transactions of the British Mycological Society. 1950, 33(1-2): 132-141.
    [141] Agosin E, Volpe D, Mun Oz G, et al. Effect of culture conditions on spore shelf life of the biocontrol agent Trichoderma harzianum[J]. World Journal of Microbiology and Biotechnology. 1997, 13(2): 225-232.
    [142]程国锋,李顺鹏,沈标.微生物降解蔬菜残留农药研究[J].应用与环境生物学报. 1998, 4(001): 81-84.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700