施肥对红壤土壤微生物群落结构及其磷素转化功能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤微生物在土壤营养元素(N、P等)转化中起着重要作用。探讨红壤土壤磷素转化主要功能微生物种群及其磷素转化的作用机理,可为促进红壤土壤磷素微生物转化和提高土壤磷素作物有效性提供理论基础。本研究选择位于湖南桃源的红壤旱地和稻田施肥田间定位试验,研究了几种施肥方式对土壤可培养细菌和真菌、土壤微生物生物量磷以及土壤微生物植酸酶基因多样性的影响。结果表明,(1)在旱地土壤中,施NPK+稻草(NPK+Str)土壤可培养真菌数量和微生物生物量磷比不施肥(CK)分别增加68.4%-167.0%和230.7%-344.5%,比施NPK (NPK)处理分别增加38.5%-46.1%和161.1%-202.8%,而CK、NPK和NPK+Str处理土壤可培养细菌基本相同;(2)稻田土壤中,施NPK+稻草+绿肥(NPK+Str+GM)处理土壤可培养真菌和细菌数量及微生物生物量磷分别比CK增加53.7%-112.3%、140.3%-374.1%和33.9%-115.3%,比NPK处理分别增加45.1%-144.6%、366.5%-410.9%和21.4%-75.0%,土壤可培养细菌数量的增加幅度明显大于可培养真菌;(3)施NPK肥和NPK+Str处理的旱地土壤有效磷含量分别比CK提高93.1%-100.1%和81.9%-116.5%,稻田土壤有效磷含量分别比CK提高2-3倍和4-6倍,同时,土壤pH值却比CK显著降低;(4)通过对不同施肥处理土壤微生物植酸酶基因多样性的分析,结果表明单施化肥处理土壤微生物植酸酶基因多样性明显低于化肥配施绿肥和覆盖稻草处理。由此推断,(i)施加稻草后旱地土壤微生物生物量磷增加,且主要来源于土壤真菌;(ii)施稻草和紫云英对稻田土壤中微生物生物量磷含量的提高可能主要来源于土壤细菌;(iii)添加稻草和绿肥可提高土壤磷素有效性,但施肥红壤旱地和稻田土壤pH值降低;(vi)长期单施化肥会降低稻田土壤微生物植酸酶基因多样性,而施化肥的同时添加稻草可有效缓解这种情况。
Soil microorganisms play an important role in the transformation of soil organic matter and soil nutrients (such as N, P, S, ect.). Researches on the mechanisms of soil phosphorus transformation and the functional microorganisms which involving in the soil phosphorus transformation can provide a theory reference for the effective usage and management of phosphorus in red soils. Responses of culturable microbial diversity and the amount of microbial biomass P (MB-P) in upland and paddy soils and the diversity of soil microbial phytase gene in paddy soils with various fertilization practices (inorganic and organic fertilizer) were investigated using a series of long-term field trials in Hunan, China. Results indicated that combined application of rice straw and chemical fertilizers (NPK+Str) significantly increased the amount of culturable fungi and MB-P in treatment of NPK+Str by 68.4%~167.0% and 230.7%~344.5% respectively compared to CK,38.5%~46.1% and 161.1%~202.8% respectively compared to NPK in upland soils, whereas there's no significant dfference of culturable bacteria was observed among the treatment of CK、NPK and NPK+Str in upland soils, it suggested that fungi possibly played a key role in the phosphorus transformation in upland soils amended with rice straw. However, combined application of rice straw and chemical fertilizers with addition of astragalus (NPK+Str+GM) significantly increased the amount of culturable fungi, bacteria and MB-P significantly by 53.7%~112.3%,140.3%~374.1% and 33.9%~115.3% respectively compared to CK, 45.1%~144.6%.366.5%~410.9% and 21.4%~75.0% respectively compared to NPK in paddy soils, especially, the enhancement level of culturable bacteria was much higher than that of fungi, in compared with the treatment of CK and NPK. Consequently, this study demonstrated that bacteria and fungi likely play different roles of the information of microbial biomass P in upland and paddy soils, that is bacteria may contribute to the enhancement of MB-P which application of rice straw and organic green manure (astragalus) in paddy soils, however, fungi only play a major role in upland soil with the application of rice straw.
     Application of NPK fertilizer, rice straw and astragalus could increase the amount of Olsen-P by 2~3 times in upland and 4~6 times in paddy soils, meanwhile, the soil pH showed a significant decrease. The results suggested that the phosphorus transformation may be related to the decrease of soil pH. The long-term application of only NPK fertilizers had a potential to reduce the diversity of soil microbial phytase, however, application of NPK fertilizer amend with rice straw and astragalus could avoid the soil degradation to some extend.
引文
[1]邵宗臣,赵美芝.土壤中积累态磷活化动力学的研究Ⅰ.有机质的影响[J].土壤学报,2002,39(3):318-325
    [2]赵小蓉,林启美.微生物解磷的研究进展[J].土壤肥料,2001,5(3):7-11
    [3]孙波,张桃林,赵其国.南方红壤丘陵地区土壤养分贫瘠化的综合评价[J].土壤,1995,27(3):119-128
    [4]沈善敏.中国土壤肥力[M].北京:中国农业出版社,1998,80-83
    [5]鲁如坤.植物营养与施肥原理[J].北京:农业出版社,2000,201-202
    [6]黄昌勇.土壤学[M].北京:中国农业出版社,2000,199-203
    [7]Grayston SJ, Campbell CD, Bardgett RD, et al. Assessing shifts in microbial community structure across a range of grasslands of differing management intensity using CLPP, PLFA and community DNA techniques[J]. Applied Soil Ecology,2004,25:63~84
    [8]Perez-de-Mora A, Burgos P, Madejon E, et al. Microbial community structure and function in a soil contaminated by heavy metals:effects of plant growth and different amendments[J]. Soil Biology and Biochemistry,2006,14:123~126
    [9]祖元刚等.喜树替代紫茎泽兰过程中根际微生物群落结构特征[J].中国科学C辑:生命科学,2006,36(5):459-467
    [10]李阜棣,胡正嘉.微生物学(第5版)[M].北京:中国农业出版社,2000,228
    [11]陈华癸,李阜棣,陈文新.土壤微生物学[M].上海:上海科学技术出版社,1979,225-228
    [12]钟传青,黄为一.不同种类解磷微生物的溶磷效果及其磷酸酶活性的变化[J].土壤学报,2005,42(2):286-294
    [13]Illmer P, Barbato A, Schinner F, et al. Solubilization of hardly-soluble A1PO4 with P-solubilizing microorganisms[J]. Soil Biology and Biochemistry,1995,27, 265~270
    [14]He ZL, Zhu J. Transformation kinetics and potential availability of specifically-sorbed phosphate in soils[J]. Nutrient Cycling in Agroecosystems, 1998,51:209~215
    [15]黄敏,肖和艾,黄巧云,等.有机物料对水旱轮作红壤磷素微生物转化的影响[J].土壤学报,2004,41(4):584-589
    [16]Wu J, Huang M, Xiao HA, et al. Dynamics in microbial immobilization and transformations of phosphorus in highly weathered substropical soil following organic amendments[J]. Plant and Soil,2007,290:333~342
    [17]Mendoza RE, Paganie A. Influence of phosphorus nutrition on mycorrhizal growth response and morphology of mycorrhizae in Lantus tenui[J]. Journal of Plant Nutrition,1997,20(6):625~639
    [18]李淑敏,李隆,张福锁.丛枝菌根真菌和根瘤菌对蚕豆吸收磷和氮的促进作 用[J].中国农业大学学报,2004,9(1):11-15
    [19]Kucey RMN, Janzen HH, Langgett ME. Microbially mediated increases in plant-available phosphorus[J]. Advances in Agonomy.1989,42:199~228
    [20]Asea PEA, Kucey RM, Sterart JWB. Inorganic phosphate-solubization by two Penicillium species in solution culture and soil[J]. Soil Biology and Biochemistry,1988,20(4):459~464
    [21]肖和艾,龚惠群,谭云峰.江南丘陵红壤中解磷菌株的筛选试验初报[J].农业现代化研究,1994,15(6):369-371
    [22]Perez E, Sulbaran M, Ball MM. et al. Isolation and characterization of mineral phosphate-solubilizing bacteria naturally colonizing a limonitic crust in the south-eastern Venezuelan region[J]. Soil Biology and Biochemistry,2007,39: 932-946
    [23]Barroso CB, Nahas E. The status of soil phosphate fractions and the ability of fungi to dissolve hardly soluble phosphates[J]. Applied Soil Ecology,2005,29: 73~83
    [24]宋炜,袁丽娜,肖琳,等.太湖沉积物中解磷细菌分布及其与碱性磷酸酶活性的关系[J].环境科学,2007,28(10):2355-2360
    [25]Edwards KA, McCulloch J, Kershaw GP, et al. Soil microbial and nutrient dynamics in a wet Arctic sedge meadow in late winter and early spring[J]. Soil Biology and Biochemistry,2006,38:2843~2851
    [26]Olivira CA, Alves VMC, Marriel IE, et al. Phosphate solubilizing microorganisms isolated from rhizosphere of maize cultivated in an oxisol of the Brazilian Cerrado Biome[J]. Soil Biology and Bichemistry,2009,41(9):1782~ 1787
    [27]Wang GH, Jin J, Xu MN, et al. Inoculation with phosphate-solubilizing fungi diversifies the bacterial community in rhizospheres of maize and soybean[J]. Pedosphere,2007,17(2):191~199
    [28]鲁如坤.土壤磷素[J].土壤学报,1980,1:47-49
    [29]吴金水,肖和艾,陈桂秋,等.旱地土壤微生物磷测定方法研究[J].土壤学报,2003,40(1):77-78
    [30]Chen YP, Rekha PD, Arun AB, et al. Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities[J]. Applied Soil Ecology,2006,34:33~41
    [31]黄敏,肖和艾,童成立,等.稻田土壤微生物磷变化对土壤有机碳和磷素的响应[J].中国农业科学,2004,37(9):1400-1406
    [32]Guo F, Yost RS, Hue NV et al. Changes in phosphorus fractions in soils under intensive plant growth[J]. Soil Science Society of America Journal,2000,64: 1681~1689
    [33]Nwoke OC, Vanlauwe B, Diels J, et al. Assessment of labile phosphorus fractions and adsorption characteristics in relation to soil properties of West African savanna soils[J]. Agriculture, Ecosystems and Environment,2003,100: 285-294
    [34]Hilda R, Reynaldo F. Phosphate solubilizing bacteria and their role in plant growth promotion[J]. Biotechnology Advance,1999,19:319~359
    [35]Feng K, Lu HM, Sheng HJ, et al. Effect of organic ligands on biological availability of inorganic phosphorus in soil[J]. Pedosphere,2004,14(1):96~101
    [36]Chen YP, Rekha PD, Arun AB, et al. Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities[J]. Applied Soil Ecology,2006,34(1):33~41
    [37]林启美,王华,赵小蓉,等.一些细菌和真菌的解磷能力及其机理初探[J].微生物学报,2001,28(2):26-29
    [38]Hameeda B, Harish KRY, Rupela OP, et al. Effect of carbon substrates on rock phosphate solubilization by bacteria from composts and macrofauna[J]. Current Microbiology,2006,53:298~302
    [39]Lin TF, Huang HI, Shen FT, et al. The protons of gluconic acid are the major factor responsible for the dissolution of tricalcium phosphate by Burkholderia cepacia CC-A174[J]. Bioresource Technology,2006,97:957~960
    [40]Kim YH, Bae B, Choung YK. Optimization of biological phosphorus removal from contaminated sediment with phosphate-solubilizing microorganisms [J]. Journal of Bioscience and Bioengineering,2005,99(1):23~29
    [41]Illmer P, Schinner F. Solubilization of inorganic calcium phosphates-solubilization mechanisms[J]. Soil Biology and Biochemistry,1995, 27(3):257~263.
    [42]Lin TF, Huang HI, Shen FT, et al. The protons of gluconic acid are the major factor responsible for the dissolution of tricalcium phosphate by Burkholderia cepacia CC-A174[J]. Bioresource Technology,2006,97:957~960.
    [43]杜春梅,金术超,平文祥,等.几株侧芽胞杆菌解磷能力的研究[J].生物技术,2005,15(3):64-67.
    [44]叶国平,梁锦锋.解磷细菌(PBS)解磷机理及应用研究进展[J].安徽农学通报,2007,13(9):53-54.
    [45]Cheng GC, He ZL, Wang YJ. Impact of pH on microbial biomass carbon and microbial biomass phosphorus in red soils[J]. Pedosphere,2004,14 (2):171~ 176
    [46]孙彩霞,陈利军,武志杰.Bt杀虫晶体蛋白的土壤残留及其对土壤磷酸酶活性的影响[J].土壤学报,2004,41(5):761-765
    [47]Greaves MP. The hydrolysis of phosphates by Aerobacter acrogene[J]. Biochimica Biophysica Acta,1967,132:412~418
    [48]Vaughan D. The degradation of nucleie acids by Cytophaga johnsonii[J]. Journal Applied Bacteriology,1970,33:380~389
    [49]Tao GC, Tian SJ, Cai MY, et al. Phosphate-solubilizing and-mineralizing abilities of bacteria isolated from soils[J]. Pedosphere,2008,18(4):515~523
    [50]Yadav RS, Tarafdar JC. Phytase and phosphatase producing fungi in acid and semi-acid soil and their efficiency in hydrolyzing different organic P compounds[J]. Soil Biology and Biochemistry,2003,35:1~7
    [51]Turner BL, Driessen JP, Haygarth PM, et al. Potential contribution of lysed bacterial cells to phosphorus solubilisation in two rewetted Australian pasture soils[J]. Soil Biology and Biochemistry,2003,35:187~189
    [52]Fransson AM, David L. Phosphatase activity does not limit the microbial use of low molecular weight organic-P substrates in soil[J]. Soil Biology and Biochemistry,2007,39:1213~1217
    [53]张宝贵,李贵桐.土壤生物在土壤磷有效化中的作用[J].土壤学报,1998,35(1):104-111
    [54]Asea PEA, Kucey RM, Sterart JWB. Inorganic phosphate-solubization by two Penicillium species in solution culture and soil[J]. Soil Biology Biochemistry, 1988,20(4):459~464
    [55]Tsubota G. Phosphate reduction in the paddy field[J]. Soil and Plant Food,1959, 5:10~15
    [56]Reyes I, Bernier L, Simard RR, et al. Effect of nitrogen source on the solubilization of different inorganic phosphates by an isolate of Penicillium rugulosum and two UV-induced mutants[J]. Microbiology Ecology,1999,28: 281~290
    [57]Wanner BL, McSharry R. Phosphate controlled gene expression in E. coli K12 using Mudl-directed LacZ Fusions[J]. Journal of Molecular Biology,1982,158: 347~363
    [58]Torriani A, Ludtka D. The pho-regulon of E. coli K12[A]. In:Schacchtes et al (eds.). The Molecular Biology of Bacterial Growth[C]. Jones and Bariett,1985, 224~242
    [59]Wanner BL. Overlapping and separate controls on the phosphate regulon in E. coli K12[J]. Journal of Molelular Biology,1983,166:283~308
    [60]Reilly TJ, Baron GS, Nano F, et al. Characterization and sequencing of a respiratory burst-inhibiting acid phosphatase from Francisella tularensis[J]. Biology and Chemistry,1996,271:10973~10983.
    [61]Deng S, Elkins JG, Da LH, et al. Cloning and characterization of a second acid phosphatase from Sinorhizobium meliloti strain 104A14[J]. Arch Microbiology, 2001,176:255~263.
    [62]Richardson AE, Hadobas PA, Hayes JE. Extracellular secretion of Aspergillus phytase from Arabidopsis roots enables plants to obtain phosphorous from phytate[J]. Plant,2001,25:641~649
    [63]Lei XG, Stahl CH. Biotechnological development of effective phytases for mineral nutrition and environmental protection[J]. Applied Microbiology Biotechnology,2001,57:474-481.
    [64]Tye AJ, Siu FK, Leung TY, et al. Molecular cloning and the biochemical characterization of two novel phytases from Bacillus subtilis 168 and Bacillus licheniformis[J]. Applied Microbiology and Biotechnology,2002,59:190~197
    [65]Hirani TA, Suzuki I, Murata N, et al. Characterization of a two-component signal transduction system involved in the induction of alkaline phosphatase under phosphate-limiting conditions in Synechocystis sop. PCC 6803 [J]. Plant Molecular Biology,2001,45:133~144
    [66]Hoffer SM, van Uden N, Tommassen J. Expression of the pho-regulon interferes with induction of the uhp T gene in E.coli K-12[J]. Archives of Microbiology, 2001,176:370~376
    [67]Schwoppe C, Winkler HH, Neuhaus HE. Connection of transport and sensing by UhpC, the sensor for external glucose-6-phosphate in E.coli[J]. European Journal of Biochemistry,2003,270:1450~1457
    [68]Yuan ZC, Zaheer R, Morton R, et al. Genome prediction of PhoB regulated promoters in Sinorhizobium meliloti and twelve Proteobacteria[J]. Nucleic Acids Research,2006,34(9):2686~2697
    [69]黄伟,黄欠如,胡锋,等.红壤溶磷菌的筛选及溶磷能力的比较[J].生态与农村环境学报,2006,22(3):37-40.
    [70]林启美,赵小蓉,孙焱鑫,等.四种不同生态系统的土壤解磷细菌的数量及种群分布[J].土壤与环境,2000,9(1):34-37.
    [71]万璐,康丽华,廖宝文,等.红树林根际解磷菌分离、培养及解磷能力的研究[J].林业科学研究,2004,17(1):89-94.
    [72]赵小蓉,林启美,孙焱鑫,等.细菌解磷能力测定方法的研究[J].微生物学通报,2001,28(1):1-4.
    [73]谢林花,吕家珑,张一平.长期不同施肥对石灰性土壤微生物磷及磷酸酶的影响[J].生态学杂志,2004,23(4):65-68.
    [74]吴金水,林启美,黄巧云,肖和艾.土壤微生物生物量测定方法及其应用[M].北京:气象出版社,2006,3-6
    [75]Murphy J, Riley J P. A modified single solution method for the determination of phosphate in natural waters[J]. Analysis Chemistry Acta,1962,27:31~36
    [76]Wu J, Z L He, W X Wei. Quantifying microbial biomass phosphorus in acid soils[J]. Biology and Fertilizer of Soils.2000,32:500~507
    [77]颜慧,钟文辉,李忠佩,等.长期施肥对红壤水稻土磷脂脂肪酸特性和酶活性的影响[J].土壤通报,2008,(1):71-75
    [78]赵小蓉,林启美.纤维素分解菌对不同纤维素类物质的分解作用[J].微生物学杂志,2000,9(3):12-14
    [79]刘淑霞,王鸿斌,赵兰坡.几种纤维素分解菌在有机质转化中的作用[J].农业环境科学学,2008,27(3):991-99
    [80]罗永藩.我国少耕与免耕技术推广应用情况与发展前景[J].耕作与栽培,1991,(2):1-7
    [81]沈玉琥.秸秆覆盖的农田效应[J].干旱地区农业研究,1998,16(1):45-50
    [82]徐新宇,张玉梅,向华,等.秸秆覆盖的微生物效应及其应用研究[J].中国农业科学,1985,50:42-48.
    [83]周晓梅,赵丹红.松嫩平原不同生境土壤细菌数量的季节动态及与环境因子的相关分析[J].吉林师范大学学报,2007,2:28-30
    [84]罗安程,Subedi TB,章永松等.有机肥对水稻根际土壤中微生物和酶活性的影响[J].植物营养与肥料学报,1999,5(4):321-327.
    [85]苏涛,司美茹,马宗琪.不同土地利用方式对根际土壤微生物数量的影响[J].农业环境科学学报,2006,25(增刊):136-139
    [86]Shaw K. Studies on nitrogen and carbon transformation in soil[M]. Ph. D. University of London,1958.
    [87]Brookes P C, Powlson D S, Jenkinson D S. Phosphorus the in soil microbial biomass[J]. Soil Biology and Biochemistry,1984,16(2):169~175
    [88]He Z L, Wu J, O'Donnel A G, Syers J K. Seasonal responses in microbial biomass carbon, phosphorus and sulphur in soils under pasture[J]. Biology and Fertility of Soils,1997,24:421~428
    [89]Wu J S, Huang M, Xiao H A, et al. Dynamics in microbial immobilization and transformations of phosphorus in highly weathered subtropical soil following organic amendments[J]. Pland and Soil,2007,290:333~342
    [90]陈安磊,王凯荣,谢小立.施肥制度与养分循环对稻田土壤微生物生物量氮磷的影响[J].农业环境科学学报,2005,24(6):1094-1099
    [91]高云超,朱文珊,陈文新.秆覆盖免耕土壤微生物生物量与养分转化的研究[J].中国农业科学,1994,27(6):41-49
    [92]Porteous LA, Armstrong JL, Seidler RJ, Watrud LS. An effective method to extract DNA from environmental samples for polymerase chain reaction amplification and DNA fingerprint analysis[J]. Curr. Microbiol,1994,29:301~ 307.
    [93]Zhou JZ, Bruns MA, Tieje JM. DNA recovery from soils of diverse composition[J]. Applied and Environmental Microbiology,1996,62(2):316 322
    [94]Huoqing Huang, Pengjun Shi, Yaru Wang, et al. Diversity of beta-propeller phytase genes in the intestinal contents of grass carp provides insight into the release of major phosphorus from phytase in Nature[J]. Applied and Environmental microbiology,2009,75(6):1508~1516
    [95]孟庆杰,许艳丽,李春杰,等.不同施肥/土地利用方式对黑土细菌多样性的影响[J].大豆科学,2008,27(3):480-485
    [96]Sarathchandra SU, Chani A, Yeates CW, et al. Effect of nitrogen and phosphate fertilizers on microbial and nematode diversity in pasture soils[J]. Soil Biology and Biochemistry,2001,33:953~964

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700