丝蛋白及其复合材料的制备
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蚕丝因具有特殊的光泽、透气性好、吸湿性强、手感好及高强度等优点而一直应用于纺织领域。丝蛋白主要来源于家蚕茧丝,具有良好的生物相容性和可调整的生物降解性能,目前已经被广泛地应用于组织工程领域。
     本文采用定向冷冻法(冰模板法)结合冷冻干燥法制备了孔洞具有一定方向性的丝蛋白多孔支架,由于在定向冷冻过程中冰的剪切力和体积膨胀效应未能引起丝蛋白的构象变化,因此使用甲醇进行后继处理使其不溶于水。我们采用了扫描电镜、流变、拉曼光谱和压缩测试等方法,考察了丝蛋白原液在不同pH值和初始浓度的情况下对定向支架的成因、内部形貌及力学性能的影响。结果表明,当溶液的pH值为4.4,浓度由低到高时,所制备的丝蛋白支架内部将分别出现纤维状结构、轴向片层状和梭状多孔结构。特别是由初始浓度为15%(及以上)的丝蛋白溶液定向冷冻得到的支架,在压缩试验中表现出较好的力学性能,其轴向压缩模量和屈服应力分别达122.6 MPa和6.9 MPa,满足了进一步应用的基本需求。
     自然界中软体动物的壳和脊椎动物的骨骼及牙齿等生物矿物由于其优异的机械性能日益成为材料学研究的热点。脊椎动物的骨骼是由有机的胶原蛋白和无机的羟基磷灰石复合而成。作为动物骨的主要无机成分,羟基磷灰石具有良好的生物相容性和生物活性和较好的力学强度,但是由于缺乏足够的韧性使其的医用价值受到一定的限制。而作为有机物的丝蛋白材料具有可靠的力学性能和生物相容性,在某种程度上可以弥补羟基磷灰石的缺点。因此,结合两者的优点,所制备的羟基磷灰石/丝蛋白复合材料有可能在骨修复领域中具有一定的实际意义。
     由于羟基磷灰石微溶于纯水,因此使用传统的机械共混的方法一般不能使羟基磷灰石和丝蛋白混合均匀(羟基磷灰石趋向于形成大块的聚集体)。考虑到丝蛋白链段中含有天冬氨酸等酸性氨基酸能够诱导无机矿物的沉积,在本文中,我们改进了共混的步骤,将羟基磷灰石先分散在再生丝蛋白的水溶液中,采用动态光散射对所制得的白色乳状液体进行分析的结果表明,与羟基磷灰石水溶液相比,丝蛋白溶液中无机物颗粒分散得比较均匀,粒径也较小。在得到了分散性良好的羟基磷灰石和丝蛋白复合支架材料的基础上,我们对其性能进行了初步的研究,发现多孔复合材料中均匀分散于丝蛋白基质相约2.5%左右的羟基磷灰石颗粒对于材料的压缩模量及屈服强度均有一定的贡献,材料的模量由纯丝蛋白的6.8 MPa提高到了35.9 MPa,屈服强度由0.58 MPa提高到了0.93 MPa。
     此外,采用高浓度再生丝蛋白溶液浓缩方法,获得了浓度为8-20 wt%的再生丝蛋白浓溶液。通过与无机物离子溶液的共混,同时利用正丁醇调控丝蛋白溶液的构象并结合低温冷冻,制备了无机物含量较高的再生丝蛋白/磷酸钙(主要为透钙磷石晶型)多孔复合材料,并且支架中无机物晶体的形貌随其含量而发生变化;同时,样品的模量和屈服强度随着样品中无机物含量的增多而增大。在丝蛋白浓度为10%,加入的氯化钙和磷酸氢二钠浓度为0.20 mol/L,丝蛋白溶液与正丁醇体积为1:1时,多孔材料的模量可达40.1 MPa,屈服强度为0.58 MPa。
Natural animal silks, mainly from Bombyx mori silkworm, have been in practically used by human beings for centuries because of its unique luster, fineness, and mechanical properties. In recent years, extensive studies have been carried on the biomedical application of regenerated silk fibroin (RSF), which is the main component of silk protein.
     In the present work, the directional freezing followed by freeze-drying techniques was used to successfully prepare RSF scaffolds with ordered porous morphology and considerable mechanical properties. In order to investigate pH and concentration effect of the initial RSF solution on the morphology and mechanical properties of the scaffold, various techniques including the scanning electron microscopy (SEM), rheology, Raman spectroscopy and mechanical test were employed. The results show that the morphology of the scaffold changes from fibrils to lamellar structures and then to cellular structures as the initial concentration of RSF solution (at pH 4.4) increases. The RSF scaffolds made by the 15 wt% of RSF aqueous solution or above show good mechanical properties, which beard axial compression modulus of 122.6 MPa and the yield strength of 6.9 MPa, receptively. This would make the directional RSF scaffolds possible for further applications.
     The biomaterials, such as shell of mollusk, bone and teeth of vertebrate, are well-known for their outstanding mechanical properties, which have been the popular field of material science. The bone of vertebrate is a composite consociated of collagen and hydroxyapatite (HAP). As he main component of bones and teeth, HAP has potential applications in the replacement of hard tissues in medical field due to its bioactivity and biocompatibility, however, it also has drawbacks such as fragile and brittle. Therefore, after combination of HAP with silk protein, the mechanical properties of the composite may be greatly improved. The porous RSF/HAP hybrid scaffold can be used to heal bone defects.
     Since the suspension of HAP is limited in the water, the traditional method to mix HAP and RSF would result in the congeries of HAP in the solution and than in the obtained material. Considering the Asp and Glu residue which contains side group of -COO- in silk fibroin, it is expected that the silk fibroin would combine with Ca2+ to induce the deposition of mineral. Therefore, a new method for preparation of RSF/HAP hybrid material was developed in our experiments recently. We modified the mixed procedure of HAP and RSF solution and found that the suspension of HAP particles in the solution was much better than that in water, by the DLS. The morphology of the material was observed by SEM. It showed that the HAP was well dispersed and 2.5% of HAP is more than enough to provide a good contribution to the compression performances of the hybrid materials. The hybrid materials beard compression modulus of 35.9 MPa and yield stress of 0.93 MPa, while the pure RSF scaffold showed 6.8 MPa and 0.58 MPa, respectively.
     Moreover, RSF/calcium phosphate composite scaffold was fabricated by integrating conformational transition of regenerated silk fibroin with inorganic ions and n-butanol. After characterization on the morphology of the composite, the crystallization of calcium phosphate (mainly dicalcium phosphate dehydrate) as well as its different shapes were further discussed, and some of the mechanical properties of the products obtained were measured. The study on the hybrid materials showed that the compression modulus and yield stress of the composite were proportion to the amounts of the mineral. The hybrid scaffold represented compression modulus of 40.1 MPa and yield stress of 0.58 MPa, when the concentration of RSF solution was 10%, the concentration of CaCl2 and Na2HPO4 solutions were 0.20 mol/L, and the volume ratio of RSF and n-butanol was 1:1.
引文
[I]Shao, Z. Z., Vollrath, F. Materials:Surprising strength of silkworm silk. Nature 2002; 418 (6899):741-741.
    [2]Asakura, T., Yao, J. M., Yamane, T., Umemura, K., Ultrich, A. S. Heterogeneous structure of silk fibers from Bombyx mori resolved by C-13 solid-state NMR spectroscopy. Journal of the American Chemical Society 2002; 124 (30):8794-8795.
    [3]Jin, H. J., Kaplan, D. L. Mechanism of silk processing in insects and spiders. Nature 2003; 424 (6952):1057-1061.
    [4]Yamane, T., Umemura, K., Nakazawa, Y, Asakura, T. Molecular dynamics simulation of conformational change of poly(Ala-Gly) from silk I to silk II in relation to fiber formation mechanism of Bombyx mori silk fibroin. Macromolecules 2003; 36 (18):6766-6772.
    [5]Zhou, C. Z., Confalonieri, F., Jacquet, M., Perasso, R., Li, Z. G., Janin, J. Silk fibroin:Structural implications of a remarkable amino acid sequence. Proteins-Structure Function and Genetics 2001; 44 (2):119-122.
    [6]Hardy, J. G., Romer, L. M., Scheibel, T. R. Polymeric materials based on silk proteins. Polymer 2008; 49 (20):4309-4327.
    [7]Omenetto, F. G., KapLan, D. L. A new route for silk. Nature Photonics 2008; 2 (11):641-643.
    [8]Inouye, K., Kurokawa, M., Nishikawa, S., Tsukada, M. Use of Bombyx mori silk fibroin as a substratum for cultivation of animal cells. Journal of Biochemical and Biophysical Methods 1998; 37 (3):159-164.
    [9]Liu, Y C., Liu, H. Y, Qian, J. H., Deng, J. Q., Yu, T. Y. Regenerated silk fibroin membrane as immobilization matrix for peroxidase and fabrication of a sensor for hydrogen-peroxide utilizing methylene-blue as electron shuttle. Analytica Chimica Acta 1995; 316 (1):65-72.
    [10]Li, C. M., Vepari, C., Jin, H. J., Kim, H. J., Kaplan, D. L. Electrospun silk-BMP-2 scaffolds for bone tissue engineering. Biomaterials 2006; 27 (16): 3115-3124.
    [11]Yeo, J. H., Lee, K. G., Lee, Y. W., Kim, S. Y Simple preparation and characteristics of silk fibroin microsphere. European Polymer Journal 2003; 39 (6):1195-1199.
    [12]Altman, G. H., Diaz, F., Jakuba, C., Calabro, T., Horan, R. L., Chen, J. S. Silk-based biomaterials. Biomaterials 2003; 24 (3):401-416.
    [13]Hakimi, O., Knight, D. P., Vollrath, F., Vadgama, P. Spider and mulberry silkworm silks as compatible biomaterials. Composites Part B-Engineering 2007; 38 (3):324-337.
    [14]Ohgo, K., Bagusat, F., Asakura, T., Scheler, U. Investigation of structural transition of regenerated silk fibroin aqueous solution by Rheo-NMR Spectroscopy. Journal of the American Chemical Society 2008; 130 (12): 4182-4186.
    [15]Ye, H. M., Peng, M., Xu, J., Guo, B. H., Chen, Q., Yun, T. L. Conformation transition and molecular mobility of isolated poly(ethylene oxide) chains confined in urea nanochannels. Polymer 2007; 48 (25):7364-7373.
    [16]Vepari, C., Kaplan, D. L. Silk as a biomaterial. Progress in Polymer Science 2007; 32:991-1007.
    [17]Akai, H. The Structure and Ultrastructure of the Silk Gland. Experientia 1983; 39 (5):443-449.
    [18]Baker, D. A surprising simplicity to protein folding. Nature 2000; 405 (6782): 39-42.
    [19]Komatsu, K. Polymeric Materials Encyclopedia 1996:7711-7721.
    [20]Magoshi, J., Magoshi, Y., Nakamura, S. Mechanism of Fiber Formation of Silkworm, in Silk Polymers:Materials Science and Biotechnology.1994; 544: 292-310.
    [21]Thiel, B. L., Kunkel, D. D., Viney, C. Mechanism of Fiber Formation of Silkworm, in Silk Polymers:Materials Science and Biotechnology. Biopolymers 1994; 34 (8):1089-1097.
    [22]Liu, Y, Shao, Z. Z., Sun, Y, Yu, T. The structure and properties of silk fibroin. Chinese polymer bulletin 1998; 3:17-23.
    [23]Liu, Y. C., Yu, T. Y, Yao, H. Y., Yang, F. J. PIXE analysis of silk. Journal of Applied Polymer Science 1997; 66 (2):405-408.
    [24]Magoshi, J., Magoshi, Y., Nakamura, S. Biospinning (silk fiber formation, multiple spinning mechanisms). Polymeric Materials Encyclopedia, Salamone, JC, Ed CRC:1996; 1:667-679.
    [25]ExPASy, Expert Protein Analysis System:P05790;P07856.
    [26]Chevillard, M., Couble, P., Prudhomme, J. C. Complete Nucleotide-Sequence of the Gene Encoding the Bombyx-Mori Silk Protein-P25 and Predicted Amino-Acid-Sequence of the Protein. Nucleic Acids Research 1986; 14 (15): 6341-6342.
    [27]Mita, K., Ichimura, S., James, T. C. Highly Repetitive Structure and Its Organization of the Silk Fibroin Gene. Journal of Molecular Evolution 1994; 38 (6):583-592.
    [28]Tanaka, K., Inoue, S., Mizuno, S. Hydrophobic interaction of P25, containing Asn-linked oligosaccharide chains, with the H-L complex of silk fibroin produced by Bombyx mori. Insect Biochemistry and Molecular Biology 1999; 29 (3):269-276.
    [29]Tanaka, K., Kajiyama, N., Ishikura, K., Waga, S., Kikuchi, A., Ohtomo, K. Determination of the site of disulfide linkage between heavy and light chains of silk fibroin produced by Bombyx mori. Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology.1999; 1432 (1): 92-103.
    [30]Zhou, C. Z., Confalonieri, F., Medina, N., Zivanovic, Y., Esnault, C., Yang, T. Fine organization of Bombyx mori fibroin heavy chain gene. Nucleic Acids Research 2000; 28 (12):2413-2419.
    [31]Ohshoma, Y., Suzuki, Y. Proceeding National Acadamic Science of USA,1977, 74(5363).
    [32]Shen, Y., Johnson, M. A., Martin, D. C. Microstructural characterization of Bombyx mori silk fibers. Macromolecules 1998; 31 (25):8857-8864.
    [33]Kobayashi, M., Tanaka, T., Inoue, S., Tsuda, H., Magoshi, Y., Magoshi, J. Structure and dynamics of liquid silk studied by pulse NMR. Abstracts of Papers of the American Chemical Society 2002; 223:C107-C107.
    [34]Tsukada, M., Freddi, G., Gotoh, Y., Kasai, N. Physical and chemical-properties of tussah silk fibroin films. Journal of polymer science part b-polymer physics 1994; 32 (8):1407-1412.
    [35]Yao, J. R. Synthesis and Characterization of Silk-Protein like Polymers and their Blends with Silk Fibroin. PhD Dissertation,2003:1-102.
    [36]Asakura, T., Murakami, T. Nmr of Silk Fibroin .4. Temperature-Induced and Urea-Induced Helix-Coil Transitions of the -(Ala)N-Sequence in Philosamia-Cynthia-Ricini Silk Fibroin Protein Monitored by C-13 Nmr-Spectroscopy. Macromolecules 1985; 18 (12):2614-2619.
    [37]Chen, X., Shao, Z. Z., Marinkovic, N. S., Miller, L. M., Zhou, P., Chance, M. R. Conformation transition kinetics of regenerated Bombyx mori silk fibroin membrane monitored by time-resolved FTIR spectroscopy. Biophysical Chemistry 2001; 89 (1):25-34.
    [38]Magoshi, J., Magoshi, Y., Becker, M. A., Kato, M., Han, Z., Tanaka, T. Crystallization of silk fibroin from solution. Thermochimica Acta 2000; 352: 165-169.
    [39]Matsumoto, A., Chen, J., Collette, A. L., Kim, U. J., Altman, G. H., Cebe, P. Mechanisms of silk fibroin sol-gel transitions. Journal of Physical Chemistry B 2006; 110 (43):21630-21638.
    [40]Rossle, M., Panine, P., Urban, V. S., Riekel, C. Structural evolution of regenerated silk fibroin under shear: Combined wide- and small-angle x-ray scattering experiments using synchrotron radiation. Biopolymers 2004; 74 (4): 316-327.
    [41]Yao, J. M., Nakazawa, Y., Asakura, T. Structures of Bombyx mori and Samia cynthia ricini silk fibroins studied with solid-state NMR. Biomacromolecules 2004; 5 (3):680-688.
    [42]Zhou, L., Chen, X., Shao, Z. Z., Huang, Y. F., Knight, D. P. Effect of metallic ions on silk formation the mulberry silkworm, Bombyx mori. Journal of Physical Chemistry B 2005; 109 (35):16937-16945.
    [43]Zong, X. H., Zhou, P., Shao, Z. Z., Chen, S. M., Chen, X., Hu, B. W. Effect of pH and copper(II) on the conformation transitions of silk fibroin based on EPR, NMR, and Raman spectroscopy. Biochemistry 2004; 43 (38):11932-11941.
    [44]Chen, X., Shao, Z. Z., Knight, D. P., Vollrath, F. Conformation transition kinetics of Bombyx mori silk protein. Proteins-Structure Function and Bioinformatics 2007; 68 (1):223-231.
    [45]Kaplan, D. L., Adams, W. W., Viney, C., Farmer, B. L. e. Silk Polymers: Materials Science and Biotechnology. ACS Books:Washington,1994; Vol. Symposium Series 544, p 1-370.
    [46]Hossain, K. S., Ochi, A., Ooyama, E., Magoshi, J., Nemoto, N. Dynamic light scattering of native silk fibroin solution extracted from different parts of the middle division of the silk gland of the Bombyx mori silkworm. Biomacromolecules 2003; 4 (2):350-359.
    [47]Termonia, Y. Molecular Modeling of Spider Silk Elasticity. Macromolecules 1994; 27 (25):7378-7381.
    [48]Marsh, R. E., Corey, R. B., Pauling, L. The Structure of Tussah Silk Fibroin (with a Note on the Structure of Beta-Poly-L-Alanine). Acta Crystallographica 1955; 8 (11):710-715.
    [49]Warwicker, J. O. Comparative Studies of Fibroins.2. Crystal Structures of Various Fibroins. Journal of Molecular Biology 1960; 2 (6):350-&.
    [50]Asakura, T., Yang, M. Y., Kawase, T., Nakazawa, Y. C-13 solid-state NMR study of structural heterogeneity in peptides containing both polyalanine and repeated GGA sequences as a local structural model of Nephila clavipes dragline silk (Spidroin 1). Macromolecules 2005; 38 (8):3356-3363.
    [51]Asakura, T., Yao, J. M. C-13 CP/MAS NMR study on structural heterogeneity in Bombyx mori silk fiber and their generation by stretching. Protein Science 2002; 11 (11):2706-2713.
    [52]Sonoyama, M., Nakano, T. Infrared rheo-optics of Bombyx mori fibroin film by dynamic step-scan FT-IR spectroscopy combined with digital signal processing. Applied Spectroscopy 2000; 54 (7):968-973.
    [53]Monti, P., Taddei, P., Freddi, G., Asakura, T., Tsukada, M. Raman spectroscopic characterization of Bombyx mori silk fibroin:Raman spectrum of Silk Ⅰ. Journal of Raman Spectroscopy 2001; 32 (2):103-107.
    [54]Lowenstam, H. A. Minerals formed by organisms Science (Washington, D. C., 1883-),1981.211:1126-1131.
    [55]OuYang, J. M. Template Controll of biomineralization and its bio-inspired application. Chemical Industry Press: Beijing 2006.
    [56]Mann, S. Biomineralization: Principles and Concepts in Bioinorganic Materials Chemistry. Oxford University Press Inc:Oxford, Great Britain 2001.
    [57]Currey, J. D. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences.1984; 304:509-518.
    [58]Weiner, S., Addadi, L. Design strategies in mineralized biological materials. Journal of Materials Chemistry 1997; 7 (5):689-702.
    [59]Weiner, S., Traub, W., Parker, S. B. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences.1984; 304 (1121):425-434.
    [60]Jackson, A. P., Vincent, J. F. V., Turner, R. M. Proceedings of the Royal Society of London. Series B, Biological Sciences.234 1988:415-440.
    [61]Li, X. D., Chang, W. C., Chao, Y. J., Wang, R. Z., Chang, M. Nanoscale structural and mechanical characterization of a natural nanocomposite material: The shell of red abalone. Nano Letters 2004; 4 (4):613-617.
    [62]Rubner, M. Materials science:Synthetic sea shell. Nature 2003; 423 (6943): 925-926.
    [63]Cheng, C., Yang, Y. H., Chen, X., Shao, Z. Z. Templating effect of silk fibers in the oriented deposition of aragonite. Chemical Communications 2008; (43): 5511-5513.
    [64]Ito, M., Hidaka, Y, Nakajima, M., Yagasaki, H., Kafrawy, A. H. Effect of hydroxyapatite content on physical properties and connective tissue reactions to a chitosan-hydroxyapatite composite membrane. Journal of Biomedical Materials Research 1999; 45 (3):204-208.
    [65]Rho, J. Y., Kuhn-Spearing, L., Zioupos, P. Mechanical properties and the hierarchical structure of bone. Medical Engineering & Physics 1998; 20 (2): 92-102.
    [66]Mann, S., Webb, J., Williams, R. J. P. Biomineralization:chemical and biochemical perspectives. VCH:.1989.
    [67]Horvath, A. L. Solubility of structurally complicated materials:I. Wood. Journal of Physical and Chemical Reference Data 2006; 35 (1):77-92.
    [68]Amjad, Z. Calcium Phosphates in Biological and Industrial Systems. Kluwer Academic Publishers 1998.
    [69]LeGeros, R. Z., Brown, P. W., Constantz, B. CRC Press, Boca Raton:FL. 1994.
    [70]Yamaguchi, I., Tokuchi, K., Fukuzaki, H., Koyama, Y, Takakuda, K., Monma, H. Preparation and microstructure analysis of chitosan/hydroxyapatite nanocomposites. Journal of Biomedical Materials Research 2001; 55 (1): 20-27.
    [71]Chang, M. C., Ikoma, T., Kikuchi, M., Tanaka, J. Preparation of a porous hydroxyapatite/collagen nanocomposite using glutaraldehyde as a crosslinkage agent. Journal of Materials Science Letters 2001; 20 (13):1199-1201.
    [72]Doi, Y., Shibutani, T., Moriwaki, Y., Kajimoto, T., Iwayama, Y. Sintered carbonate apatites as bioresorbable bone substitutes. Journal of Biomedical Materials Research 1998; 39 (4):603-610.
    [73]Furuzono, T., Taguchi, T., Kishida, A., Akashi, M., Tamada, Y. Preparation and characterization of apatite deposited on silk fabric using an alternate soaking process. Journal of Biomedical Materials Research 2000; 50 (3):344-352.
    [74]Tamada, Y., Furuzono, T., Taguchi, T., Kishida, A., Akashi, M. Ca-adsorption and apatite deposition on silk fabrics modified with phosphate polymer chains. Journal of Biomaterials Science-Polymer Edition 1999; 10 (7):787-793.
    [75]Nemoto, R., Nakamura, S., Isobe, T., Senna, M. Direct synthesis of hydroxyapatite-silk fibroin nano-composite sol via a mechanochemical route. Journal of Sol-Gel Science and Technology 2001; 21 (1-2):7-12.
    [76]Wang, L., Nemoto, R., Senna, M. Effects of alkali pretreatment of silk fibroin on microstructure and properties of hydroxyapatite-silk fibroin nanocomposite. Journal of Materials Science-Materials in Medicine 2004; 15 (3):261-265.
    [77]Wang, L., Nemoto, R., Senna, M. Three-dimensional porous network structure developed in hydroxyapatite-based nanocomposites containing enzyme pretreated silk fibroin. Journal of Nanoparticle Research 2004; 6 (1):91-98.
    [78]Wang, L., Nemoto, R., Senna, M. Changes in microstructure and physico-chemical properties of hydroxyapatite-silk fibroin nanocomposite with varying silk fibroin content. Journal of the European Ceramic Society 2004; 24 (9):2707-2715.
    [79]Nemoto, R., Wang, L., Aoshima, M., Senna, M., Ikoma, T., Tanaka, J. Increasing the crystallinity of hydroxyapatite nanoparticles in composites containing bioaffinitive organic polymers by mechanical stressing. Journal of the American Ceramic Society 2004; 87 (6):1014-1017.
    [80]Wang, L., Nemoto, R., Senna, M. Microstructure and chemical states of hydroxyapatite/silk fibroin nanocomposites synthesized via a wet-mechanochemical route. Journal of Nanoparticle Research 2002; 4 (6): 535-540.
    [81]Nemoto, R., Wang, L., Ikoma, T., Tanaka, J., Senna, M. Preferential alignment of hydroxyapatite crystallites in nanocomposites with chemically disintegrated silk fibroin. Journal of Nanoparticle Research 2004; 6 (2-3):259-265.
    [82]Kim, H. J., Kim, U. J., Kim, H. S., Li, C. M., Wada, M., Leisk, G. G. Bone tissue engineering with premineralized silk scaffolds. Bone 2008; 42 (6): 1226-1234.
    [83]Meinel, L., Hofmann, S., Karageorgiou, V., Kirker-Head, C., McCool, J., Gronowicz, G. The inflammatory responses to silk films in vitro and in vivo. Biomaterials 2005; 26 (2):147-155.
    [84]Meinel, L., Karageorgiou, V., Fajardo, R., Snyder, B., Shinde-Patil, V., Zichner, L. Bone tissue engineering using human mesenchymal stem cells:Effects of scaffold material and medium flow. Annals of Biomedical Engineering 2004; 32(1):112-122.
    [85]Meinel, L., Karageorgiou, V., Hofmann, S., Fajardo, R., Snyder, B., Li, C. M. Engineering bone-like tissue in vitro using human bone marrow stem cells and silk scaffolds. Journal of Biomedical Materials Research Part A 2004; 71A (1): 25-34.
    [86]Weiner, S., Traub, W. X-Ray-Diffraction Study of the Insoluble Organic Matrix of Mollusk Shells. Febs Letters 1980; 111 (2):311-316.
    [87]Weiner, S., Traub, W. Macromolecules in Mollusk Shells and Their Functions in Biomineralization. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences 1984; 304 (1121):425-&.
    [88]Weiner, S., Talmon, Y., Traub, W. Electron-Diffraction of Mollusk Shell Organic Matrices and Their Relationship to the Mineral Phase. International Journal of Biological Macromolecules 1983; 5 (6):325-328.
    [89]Cheng, C., Shao, Z. Z., Vollrath, F. Silk fibroin-regulated crystallization of calcium carbonate. Advanced Functional Materials 2008; 18 (15):2172-2179.
    [90]Matsumoto, M., Saito, S., Ohmine, I. Molecular dynamics simulation of the ice nucleation and growth process leading to water freezing. Nature 2002; 416 (6879):409-413.
    [91]Darder, M., Aranda, P., Ruiz-Hitzky, E. Bionanocomposites:A new concept of ecological, bioinspired, and functional hybrid materials. Advanced Materials 2007; 19 (10):1309-1319.
    [92]Deville, S., Saiz, E., Nalla, R. K., Tomsia, A. P. Freezing as a path to build complex composites. Science 2006; 311 (5760):515-518.
    [93]Mukai, S. R., Nishihara, H., Tamon, H. Formation of monolithic silica gel microhoneycombs (SMHs) using pseudosteady state growth of microstructural ice crystals. Chemical Communications 2004; (7):874-875.
    [94]Zhang, H., Cooper, A. I. Aligned porous structures by directional freezing. Advanced Materials 2007; 19 (11):1529-1533.
    [95]Zhang, H. F., Hussain, I., Brust, M., Butler, M. F., Rannard, S. P., Cooper, A. I. Aligned two- and three-dimensional structures by directional freezing of polymers and nanoparticles. Nature Materials 2005; 4 (10):787-793.
    [96]Nishihara, H., Mukai, S. R., Yamashita, D., Tamon, H. Ordered macroporous silica by ice templating. Chemistry of Materials 2005; 17 (3):683-689.
    [97]del Real, R. P., Wolke, J. G. C., Vallet-Regi, M., Jansen, J. A. A new method to produce macropores in calcium phosphate cements. Biomaterials 2002; 23 (17):3673-3680.
    [98]Mallick, K. K. Freeze Casting of Porous Bioactive Glass and Bioceramics. Journal of the American Ceramic Society 2009; 92 (1):S85-S94.
    [99]Gutierrez, M. C., Jobbagy, M., Rapun, N., Ferrer, M. L., del Monte, F. A biocompatible bottom-up route for the preparation of hierarchical biohybrid materials. Advanced Materials 2006; 18 (9):1137-1140.
    [1]Zhang, H., Cooper, A. I. Aligned porous structures by directional freezing. Advanced Materials 2007; 19 (11):1529-1533.
    [2]Zhang, H. F., Hussain, I., Brust, M., Butler, M. F., Rannard, S. P., Cooper, A. I. Aligned two- and three-dimensional structures by directional freezing of polymers and nanoparticles. Nature Materials 2005; 4 (10):787-793.
    [3]Matsumoto, M., Saito, S., Ohmine, I. Molecular dynamics simulation of the ice nucleation and growth process leading to water freezing. Nature 2002; 416 (6879):409-413.
    [4]Darder, M., Aranda, P., Ruiz-Hitzky, E. Bionanocomposites:A new concept of ecological, bioinspired, and functional hybrid materials. Advanced Materials 2007; 19 (10):1309-1319.
    [5]Deville, S., Saiz, E., Nalla, R. K., Tomsia, A. P. Freezing as a path to build complex composites. Science 2006; 311 (5760):515-518.
    [6]Mukai, S. R., Nishihara, H., Tamon, H. Formation of monolithic silica gel microhoneycombs (SMHs) using pseudosteady state growth of microstructural ice crystals. Chemical Communications 2004; (7):874-875.
    [7]Nishihara, H., Mukai, S. R., Yamashita, D., Tamon, H. Ordered macroporous silica by ice templating. Chemistry of Materials 2005; 17 (3):683-689.
    [8]del Real, R. P., Wolke, J. G. C., Vallet-Regi, M., Jansen, J. A. A new method to produce macropores in calcium phosphate cements. Biomaterials 2002; 23 (17):3673-3680.
    [9]Gutierrez, M. C., Jobbagy, M., Rapun, N., Ferrer, M. L., del Monte, F. A biocompatible bottom-up route for the preparation of hierarchical biohybrid materials. Advanced Materials 2006; 18 (9):1137-1140.
    [10]Mallick, K. K. Freeze casting of porous bioactive glass and bioceramics. Journal of the American Ceramic Society 2009; 92 (1):S85-S94.
    [11]Recknor, J. B., Recknor, J. C., Sakaguchi, D. S., Mallapragadaa, S. K. Oriented astroglial cell growth on micropatterned polystyrene substrates. Biomaterials 2004; 25 (14):2753-2767.
    [12]Yim, E. K. F., Reano, R. M., Pang, S. W., Yee, A. F., Chen, C. S., Leong, K. W. Nanopattern-induced changes in morphology and motility of smooth muscle cells. Biomaterials 2005; 26 (26):5405-5413.
    [13]Altman, G. H., Diaz, F., Jakuba, C., Calabro, T., Horan, R. L., Chen, J. S. et al. Silk-based biomaterials. Biomaterials 2003; 24 (3):401-416.
    [14]Kim, H. J., Kim, U. J., Kim, H. S., Li, C. M., Wada, M., Leisk, G. G. et al. Bone tissue engineering with premineralized silk scaffolds. Bone 2008; 42 (6): 1226-1234.
    [15]Lawrence, B. D., Marchant, J. K., Pindrus, M. A., Omenetto, F. G., Kaplan, D. L. Silk film biomaterials for cornea tissue engineering. Biomaterials 2009; 30 (7):1299-1308.
    [16]Zhou, G. Q., Shao, Z. Z., Knight, D. P., Yan, J. P., Chen, X. Silk Fibers Extruded Artificially from Aqueous solutions of regenerated bombyx mori silk fibroin are tougher than their natural counterparts. Advanced Materials 2009; 21 (3):366-370.
    [17]Yang, Y.-H. S. Z.-Z. C. X. Influence of pH value on the structure of regenerated bombyx mori silk fibroin in aqueous solution by optical spectroscopy. Acta Chim. Sinica 2006; 64 (16),1730-1736
    [18]Foo, C. W. P., Bini, E., Hensman, J., Knight, D. P., Lewis, R. V., Kaplan, D. L. Role of pH and charge on silk protein assembly in insects and spiders. Applied Physics a-Materials Science & Processing 2006; 82 (2):223-233.
    [19]Monti, P., Freddi, G, Bertoluzza, A., Kasai, N., Tsukada, M. Raman spectroscopic studies of silk fibroin from Bombyx mori. Journal of Raman Spectroscopy 1998; 29 (4):297-304.
    [20]Monti, P., Taddei, P., Freddi, G., Asakura, T., Tsukada, M. Raman spectroscopic characterization of Bombyx mori silk fibroin:Raman spectrum of Silk I. Journal of Raman Spectroscopy 2001; 32 (2):103-107.
    [21]Liu, G., Zhao, D. C., Tomsia, A. P., Minor, A. M., Song, X. Y., Saiz, E. Three-dimensional biomimetic mineralization of dense hydrogel templates. Journal of the American Chemical Society 2009; 131 (29):9937-+.
    [22]Wang, W., Itoh, S., Konno, K., Kikkawa, T., Ichinose, S., Sakai, K. et al. Effects of Schwann cell alignment along the oriented electrospun chitosan nanofibers on nerve regeneration. J Biomed Mater Res Part A 2009; 91A (4): 994-1005.
    [1]倪礼忠,陈麒,复合材料科学与工程.2000,北京:科学出版社.
    [2]D.赫尔,张双寅,郑维平,蔡良武(译),复合材料导论.1989,北京:中国建筑工业出版社.
    [3]Addadi, L., Joester, D., Nudelman, F., Weiner, S. Mollusk shell formation:A source of new concepts for understanding biomineralization processes. Chemistry-a European Journal 2006; 12 (4):981-987.
    [4]李世普,生物医用材料导论.2000,武汉:武汉工业大学出版社.
    [5]Suzuki, O., Kamakura, S., Katagiri, T. Surface chemistry and biological responses to synthetic octacalcium phosphate. Journal of Biomedical Materials Research Part B-Applied Biomaterials 2006; 77B (1):201-212.
    [6]Zhan, J. H., Tseng, Y. H., Chan, J. C. C., Mou, C. Y. Biomimetic formation of hydroxyapatite nanorods by a single-crystal-to-single-crystal transformation. Advanced Functional Materials 2005; 15 (12):2005-2010.
    [7]Cerroni, L., Filocamo, R., Fabbri, M., Piconi, C., Caropreso, S., Condo, S. G. Growth of osteoblast-like cells on porous hydroxyapatite ceramics: an in vitro study. Biomolecular Engineering 2002; 19 (2-6):119-124.
    [8]Spivak, J. M., Hasharoni, A. Use of hydroxyapatite in spine surgery. European Spine Journal 2001; 10:S197-S204.
    [9]Ito, M., Hidaka, Y., Nakajima, M., Yagasaki, H., Kafrawy, A. H. Effect of hydroxyapatite content on physical properties and connective tissue reactions to a chitosan-hydroxyapatite composite membrane. Journal of Biomedical Materials Research 1999; 45 (3):204-208.
    [10]Yamaguchi, I., Tokuchi, K., Fukuzaki, H., Koyama, Y, Takakuda, K., Monma, H. Preparation and microstructure analysis of chitosan/hydroxyapatite nanocomposites. Journal of Biomedical Materials Research 2001; 55 (1): 20-27.
    [11]Chang, M. C., Ikoma, T., Kikuchi, M., Tanaka, J. Preparation of a porous hydroxyapatite/collagen nanocomposite using glutaraldehyde as a crosslinkage agent. Journal of Materials Science Letters 2001; 20 (13):1199-1201.
    [12]Doi, Y., Shibutani, T., Moriwaki, Y., Kajimoto, T., Iwayama, Y. Sintered carbonate apatites as bioresorbable bone substitutes. Journal of Biomedical Materials Research 1998; 39 (4):603-610.
    [13]Furuzono, T., Taguchi, T., Kishida, A., Akashi, M., Tamada, Y. Preparation and characterization of apatite deposited on silk fabric using an alternate soaking process. Journal of Biomedical Materials Research 2000; 50 (3):344-352.
    [14]Itoh, S., Kikuchi, M., Takakuda, K., Koyama, Y., Matsumoto, H. N., Ichinose, S. The biocompatibility and osteoconductive activity of a novel hydroxyapatite/collagen composite biomaterial, and its function as a carrier of rhBMP-2. Journal of Biomedical Materials Research 2001; 54 (3):445-453.
    [15]邵正中,曹正兵,陈新,周平,姚晋荣,丝蛋白海绵状三维多孔材料制备方法.2005:中华人民共和国.
    [16]Zhou, G. Q., Shao, Z. Z., Knight, D. P., Yan, J. P., Chen, X. Silk Fibers Extruded Artificially from Aqueous Solutions of Regenerated Bombyx mori Silk Fibroin are Tougher than their Natural Counterparts. Advanced Materials 2009; 21 (3):366-370.
    [17]Lin, F., Li, Y. C., Jin, J., Cai, Y. R., Wei, K. M., Yao, J. M. Deposition behavior and properties of silk fibroin scaffolds soaked in simulated body fluid. Materials Chemistry and Physics 2008; 111 (1):92-97.
    [18]Zhou, L., Chen, X., Shao, Z. Z., Huang, Y. F., Knight, D. P. Effect of metallic ions on silk formation the mulberry silkworm, Bombyx mori. Journal of Physical Chemistry B 2005; 109 (35):16937-16945.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700