高血流在大鼠肺动脉高压形成中的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:本实验通过建立左肺切除、皮下注射野百合碱、左肺切除合并皮下注射野百合碱三种大鼠肺动脉高压模型,并设立对照组,以探讨细胞凋亡异常在大鼠肺动脉高压形成中的作用,并通过三组模型之间对比以明确高血流在促使细胞凋亡异常发生中的作用,从而探讨高血流在大鼠肺动脉高压形成中的作用
     方法:将60只250-350克雄性wistar大鼠随机分成4组,分别行左肺切除术(PE组),皮下注射野百合碱(MCT组),左肺切除合并皮下注射野百合碱(PE+MCT组),并设立对照组(对照组),每组15例。检测平均肺动脉压力(mPAP)、右心指数RV/(LV+S)重量比值、肺小动脉中膜厚度百分比(WT% )、无肌性动脉肌化程度,并取肺组织行免疫组织化学法检测bcl-2和Survivin基因的表达情况。运用SPSS13.0统计软件进行数据分析。
     结果:模型制作35天后,行右心导管检查显示:实验组大鼠与对照组相比,肺动脉压力不同程度升高,且PE+MCT组较MCT组和PE组升高明显;行纤维染色后观察肺组织结构:实验组大鼠肺组织血管内膜较对照组有不同程度的增厚,PE+MCT组较MCT组和PE组增厚明显,且肺动脉内壁新生内膜形成;行免疫组织化学检测Bcl-2和Survivin,PE组、MCT组、PE+MCT组肺组织血管外膜及血管周围细胞不同程度阳性表达,且PE+MCT组强于MCT组和PE组,结果有统计学意义。
     结论:三种方法均有效建立了肺动脉高压大鼠模型,且PE+MCT组形成了重度肺动脉高压大鼠模型;在PE+MCT肺动脉高压大鼠模型的肺组织中,Bcl-2和Survivin表达增强,使肺组织细胞凋亡减少,血管壁细胞堆积,参与肺血管结构重塑。另外,PE组肺动脉高压大鼠模型的肺组织中,Bcl-2和Survivin亦有明显表达,高血流可作为独立因素诱发这一过程,是肺动脉高压形成的充分条件。
Objective--Impaired apoptosis of cells is associated with sever pulmonary artery hypertension which develop concentric-laminar intimal fibrosis and plexiform lesions. The aim of the present study was to observed the impaired apoptosis of cells in pneumonectomy (PE), monocrotaline (MCT), PE,+MCT pulmonary artery hypertension (PAH) animal model respectively and analyze the different between them to characterise the effects of increased pulmonary flow induced by left pneumonectomy in the PAH rat model .
     Methods--Male wistar rat develop four group to develop to (1)PE PAH model, (2)MCT PAH model,(3)PE+MCT PAH model, and (4)control. We study the hemodynamics ,the microanatomy of lung of the model. In addition we assessed apoptosis-related markers in vascular and perivascular cells in lung samples from those models.
     Results--The rats of PE, MCT and MCT+PE had a higher mean PAP than the rats of control; PE,MCT and MCT+PE all showed a comparably increased mean percentage wall thickness and abnormal extension of muscle into distal pulmonary arteries, These values were markedly increased compared with control rat (P<0.01); The antiapoptotic marker Bcl-2 and Survivin was expressed in the cells around pulmonary artery of PE,MCT and MCT+PE group and never expressed in control group.
     Conclusions: PE+MCT PHT model is strongly associated with impaired cell apoptosis , these cell may be fibroblast. Increased pulmonary blood flow and monocrotaline-induced could result in impaired apoptosis of these cells respectively. High-flow may attribute to sever pulmonary hypertension as a independent factor rather than only a requirement.
引文
1. Schermuly RT, Kreisselmeier KP, Ghofrani HA, et al. Chronic sildenafil treatment inhibits monocrotaline-induced pulmonary hypertension in rats. Am J Respir Crit Care Med 2004; 169: 39-45.
    2. Macchia A, Marchioli R, Marfisi R,et al. A meta-analysis of trials of pulmonary hypertension: a clinical condition looking for drugs and research methodology. Am Heart J. 2007,153: 1037-1047.
    3. Clozel M, Hess P, Rey M, et al. Bosentan, sildenafil, and their combination in the monocrotaline model of pulmonary hypertension in rats. Exp Biol Med.2006, 231: 967-973,
    4. Phillips PG, Long L, Wilkins MR, et al. cAMP phosphodiesterase inhibitors potentiate effects of prostacyclin analogs in hypoxic pulmonary vascular remodeling. Am J Physiol Lung Cell Mol Physiol.2005,288: L103–L115.
    5. Schermuly RT, Kreisselmeier KP, Ghofrani HA, et al. Chronic sildenafil treatment inhibits monocrotaline-induced pulmonary hypertension in rats. Am J Respir Crit Care Med.2004,169: 39-45.
    6. Sebkhi A, Strange JW, Phillips SC,et al. Phosphodiesterase type 5 as a target for the treatment of hypoxia-induced pulmonary hypertension. Circulation, Jul 2003, 107: 3230 - 3235
    7. Okada K, Tanaka Y, Bernstein M, et al. Pulmonary hemodynamics modify the rat pulmonary artery response to injury: a neointimal model ofpulmonary hypertension. Am J Pathol. 1997,151:1019-1025.
    8. Taraseviciene-Stewart L, Kasahara Y, Alger L, et al. Inhibition of the VEGF receptor 2 combined with chronic hypoxia causes cell death-dependent pulmonary endothelial cell proliferation and severe pulmonary hypertension The FASEB Journal.2001,15:427-438
    9. Greenway S, van Suylen RJ, Du Marchie Sarvaas G, et al. S100a4/mts1 produces murine pulmonary artery changes resembling plexogenic arteriopathy and is increased in human plexogenic arteriopathy. Am J Pathol.2004,164:253-262.
    10. Ivy DD, Mcmurtry IF, Colvin K,et al. Development of Occlusive Neointimal Lesions in Distal Pulmonary Arteries of Endothelin B Receptor-Deficient Rats:A New Model of Severe Pulmonary Arterial Hypertension Circulation 2005,111;2988-2996
    11. Spiekerkoetter E, Alvira CM, Kim YM, et al. Reactivation ofγhv68 induces neointimal lesions in pulmonary arteries of s100a4/mts1-overexpressing mice in association with degradation of elastin. Am J Physiol Lung Cell Mol Physiol. 2008,294:L276-289.
    1. A Rendas, S Lennox ,L Reid . Aorta-pulmonary shunts in growing pigs. Functional and structural assessment of the changes in the pulmonary circulation [J]. The Journal of Thoracic and Cardiovascular Surgery, Vol 77, 109-118
    2. Reddy VM, Meyrick B, Wong J, et al.In utero placement of aortopulmonary shunts. A model of postnatal pulmonary hypertension with increased pulmonary blood flow in lambs[J]. Circulation 92: 606-613, 1995.
    3. Fasules JW, Tryka F, Chipman CW,et al. Pulmonary hypertension and arterial changes in calves with a systemic-to-left pulmonary artery connection [J] J Appl Physiol, Aug 1994; 77: 867-875.
    4. Michel RP, Hakim TS, Hanson RE, et al. Distribution of lung vascular resistance after chronic systemic-to-pulmonary shunts[J]. Am J Physiol Heart Circ Physiol, Dec 1985; 249: H1106-H1113
    5. Garcia R, Diebold S. Simple, rapid, and effective method of producing aortocaval shunts in the rat[J]. Cardiovasc Res, May 1990; 24: 430-432
    6.齐建光,杜军保.左向右分流所致肺动脉高压大鼠模型的建立及其肺血管结构的变化[J].中华实验外科杂志,2002,(3):199-200.
    7.刘斌,王献民,魏丽,等. 4种肺动脉高压动物模型肺血管重构模式的差异研究[J],中国病理生理杂志2008,24(2):289-193
    8.周菁,严文华,叶文学,等. SD大鼠腹主动脉-下腔静脉分流术致肺动脉高压模型的建立[J]苏州大学学报(医学版)2005;25(3):431-442
    9. Milias S, Kalekou H, Bobos M, et al. Immunohistochemical investigation of CD34 antigen in male breast carcinoma [J]. Clin Exp Med. 2007 Sep;7(3):122- 6.
    10.杜福杰,潘丽萍,李福海.套管连接法建立高血流大鼠肺动脉高压模型[J].中国医疗前沿,12(3):7-12.
    11. Melhem JA, Gu SX, Jack L, et al. Transvenous Closure of Secundum Atrial Septal Defects, Preliminary Results With a New Self-Expanding Nitinol Prosthesis in a Swine Model[J] Circulation, Apr 1997; 95: 2162-2168.
    12. Synhorst DP, Lauer RM, Doty DB,et al. Hemodynamic Effects of Vasodilator Agents in Dogs with Experimental Ventricular Septal DefectsPH.D.[J]. Circulation 1976;54;472-477
    13.刘瀚,魏新川,隋东虎,等.室间隔缺损动物模型的建立[J].四川大学学报(医学版), 2003, 34 (2) : 341-343
    14.陈瑞芬,周光德,曹文军,等.野百合碱诱导实验性肺动脉高压病理形态观察[J].电子显微学报,2002,21:45-54.
    15. Thomas HC,Lame MW ,Wilson DW,et a1.Cell cycle alterations associated with covalent binding of monocrotaline pyrrole to pulmonary artery endothelial cell DNA[J].Toxicol Appl Pharmacol, Nov 1996; 141(1): 319-29.
    16. Tyler RC,Muramatsu M,Abman SH,et a1.Variable expression of endothelial NO synthase in threeforms of rat pulmonary hypertension [J].Am J Physiol,1999,276:297-303.
    17. Farber H W , Loscalzo J. Mechanisms of disease Pulmonary ArterialHypertension [J].N Engl J Med,2004,351:1655-1665.
    18. White R J,Meoli DF,Swarthout RF,et a1.Plexiform-like lesions and increased tissue factor expression in a rat model of severe pulmonary arterial hypertension [J].Am J Physiol Lung Cell Mol Physiol,2007,293:583-590.
    19. Miyata MF,Sakuma F,Yoshimura A,et a1.Pulmonary hypertension in rats.1.Role of bromodeoxyuridine-positive mononuelear cells and alveolar macrophages[J].Int Arch Allergy Immunol, 1995, 108:281-286.
    20.孙菊光,奚肇庆,姜静,等.复方薤白胶囊对野百合碱诱导肺动脉高压大鼠ET、TNFot含量的影响[J].东南大学学报(医学版),2006,25:329-333.
    21.李娟,孙新,毕辉,等.低压低氧性大鼠肺动脉高压模型的建立[J]临床心血管病杂志,2008,24(4):297
    22. Faqan KA. Selected cont ribution : pulmonary hypertension in mice following intermittent hypoxia[J ] .J Appl Phyiol , 2001 , 90 : 2502 - 2507.
    23. Maggiorini M, Velarde lF. High-altitude pulmonary hypertension : A pathophysiologicalentity to different diseases [J] . Eur Respir J , 2003 ,22 : 1019 - 1025.
    24. Macchia A, Marchioli R, Marfisi R,et al. A meta-analysis of trials of pulmonary hypertension: a clinical condition looking for drugs and research methodology[J]. Am Heart J 153: 1037-1047, 2007.
    25. Clozel M, Hess P, Rey M, et al. Bosentan, sildenafil, and their combination in the monocrotaline model of pulmonary hypertension in rats[J]. Exp Biol Med2006, 231: 967-973,
    26. Phillips PG, Long L, Wilkins MR, et al. cAMP phosphodiesterase inhibitors potentiate effects of prostacyclin analogs in hypoxic pulmonary vascular remodeling[J]. Am J Physiol Lung Cell Mol Physiol 288: L103–L115, 2005.
    27. Schermuly RT, Kreisselmeier KP, Ghofrani HA, et al. Chronic sildenafil treatment inhibits monocrotaline-induced pulmonary hypertension in rats[J]. Am J Respir Crit Care Med 169: 39-45, 2004.
    28. Sebkhi A, Strange JW, Phillips SC,et al. Phosphodiesterase type 5 as a target for the treatment of hypoxia-induced pulmonary hypertension[J]. Circulation, Jul 2003; 107: 3230 - 3235
    29. Okada K, Tanaka Y, Bernstein M, et al. Pulmonary hemodynamics modify the rat pulmonary artery response to injury: a neointimal model of pulmonary hypertension[J]. Am J Pathol. 1997;151:1019-1025.
    30. Ivy DD, Parkey TA, Abman SH. Prolonged endothelin B receptor blockade causes pulmonary hypertension in the ovine fetus[J] Am J Physiol Lung Cell Mol Physiol.2000;279: L758–L765
    31. Ivy DD, Mcmurtry IF, Colvin K,et al. Development of Occlusive Neointimal Lesions in Distal Pulmonary Arteries of Endothelin B Receptor-Deficient Rats:A New Model of Severe Pulmonary Arterial Hypertension[J] Circulation 2005;111;2988-2996
    32. Taraseviciene-Stewart L, Kasahara Y, Alger L, et al. Inhibition of the VEGF receptor 2 combined with chronic hypoxia causes cell death-dependent pulmonary endothelial cell proliferation and severe pulmonary hypertension[J]The FASEB Journal.2001;15;427-438
    33. Taraseviciene-Stewart L, Nicolls MR, Kraskauskas D,et al. Absence of T Cells Confers Increased Pulmonary Arterial Hypertension and Vascular Remodeling [J] Am. J. Respir. Crit. Care Med., Jun 2007; 175: 1280 - 1289
    34. Greenway S, van Suylen RJ, Du Marchie Sarvaas G, et al. S100a4/mts1 produces murine pulmonary artery changes resembling plexogenic arteriopathy and is increased in human plexogenic arteriopathy[J]. Am J Pathol.2004;164:253-262.
    35. Spiekerkoetter E, Alvira CM, Kim YM, et al. Reactivation ofγhv68 induces neointimal lesions in pulmonary arteries of s100a4/mts1-overexpressing mice in association with degradation of elastin[J]. Am J Physiol Lung Cell Mol Physiol. 2008;294:L276-289.
    36. Steiner MK, Syrkina OL, Kolliputi N, et al. Interleukin-6 overexpression induces pulmonary hypertension[J]. Circ. Res., Jan 2009; 104: 236 - 244
    37. Ochiai E, Kamei K, Watanabe A, et al. Inhalation of stachybotrys chartarum causes pulmonary arterial hypertension in mice[J]. Int J Exp Pathol. 2008;89:201-208.
    38. Gust R, Schuster DP. Vascular remodeling in experimentally induced subacute canine pulmonary hypertension[J]. Exp Lung Res. 2001;27:1-12.
    39. Marecki JC, Cool CD, Parr JE, et al. Hiv-1 nef is associated with complex pulmonary vascular lesions in shiv-nef-infected macaques[J]. Am J Respir Crit Care Med. 2006;174:437-445.
    1. Lévy M, Maurey C, Celermajer DS, et al. Impaired Apoptosis of Pulmonary Endothelial Cells Is Associated With Intimal Proliferation and Irreversibility of Pulmonary Hypertension in Congenital Heart Disease. J Am Coll Cardiol 2007; 49: 803-810.
    2. Geiger R, Berger RM, Hess J, et al. Enhanced expression of vascular endothelial growth factor in pulmonary plexogenic arteriopathy due to congenital heart disease. J Pathol 2000; 191: 202–207.
    3. Wagenvoort CA, Mooi WJ. Plexogenic arteriopathy. In: Munro Neville A, Walker F, Gottlieb LS, eds. Biopsy pathology of the pulmonary vasculature. Chapman and Hall Medical, London, 1989: 56–113.
    4. Okada K, Tanaka Y, Bernstein M, et al. Pulmonary hemodynamics modify the rat pulmonary artery response to injury. A neointimal model of pulmonary hypertension 1997; Am J Pathol; 151: 1019-1025.
    5. Botney MD. Role of Hemodynamics in Pulmonary Vascular Remodeling. Am J Respir Crit Care Med 1999;159: 361-364.
    6. Stier S, Totzke G, Gruewald E, et al. Identification of p54(nrb) and the 14-3-3 protein HS1 as TNF-alpha-inducible genes related to cell cycle control and apoptosis in human arterial endothelial cells. J Biochem Mol Biol 2005; 38: 447-56.
    7. Sakao S, Taraseviciene-Stewart L, Lee JD, et al. Initial apoptosis is followed byincreased proliferation of apoptosis-resistant endothelial cells. FASEB J 2005; 19: 1178–80.
    8. Matter CM, Chadjichristos CE, Meier P, et al. Role of endogenous Fas (CD95/Apo-1) ligand in balloon-induced apoptosis, in?ammation, and neointima formation. Circulation 2006; 113: 1879–87.
    9. McLaughlin VV, FACC, FAHA. ACCF/AHA 2009 Expert Consensus Document on Pulmonary Hypertension: A Report of the American College of Cardiology Foundation Task Force on Expert Consensus Documents and the American Heart Association: Developed in Collaboration With the American College of Chest Physicians, American Thoracic Society, Inc., and the Pulmonary Hypertension Association. Circulation 2009; 119: 2250 - 2294.
    10. Teichert-Kuliszewska K, Kutryk MJ, Kuliszewski MA, et al. Bone morphogenetic protein receptor-2 signaling promotes pulmonary arterial endothelial cell survival: implications for loss-of-function mutations in the pathogenesis of pulmonary hypertension. Circ Res 2006; 98: 209-17.
    11. Budhiraja R, Tuder RM, Hassoun PM. Endothelial dysfunction in pulmonary hypertension. Circulation 2004; 109: 159-165.
    12. McMurtry MS, Archer SL, Altieri DC, et al. Gene therapy targeting survivin selectively induces pulmonary vascular apoptosis and reverses pulmonary arterial hypertension. J Clin Invest 2005; 115: 1479–91.
    13. Botney MD, Kaiser LR, Cooper JD, et al. Extracellular matrix protein gene expression in atherosclerotic hypertensive pulmonary arteries. 1992; Am J Pathol;151: 1019-1025.
    14. Yi ES, Kim H, Ahn H, et al. Distribution of Obstructive Intimal Lesions and Their Cellular Phenotypes in Chronic Pulmonary Hypertension. A Morphometric and Immunohistochemical Study. Am J Respir Cirt Care Med 2000; 162: 1577-1586.
    15. Morgan D, Murray A, Hunt T, et al. Fibroblasts and their transformations: the connective-tissue cell family. In:Alberts B, Johnson A,Lewis J, Raff M, Roberts K, Walter P, eds. The cell. Garland Science, New York, 2002: 1014-1024.
    16. L Mori, A Bellini, Stacey MA, et al. Fibrocytes contribute to the myofibroblast population in wounded skin and originate from the bone marrow. Exp Cell Res 2005; 304: 81-90.
    17. Kapanci Y, Ribaux C , Chaponnier C, et al. Cytoskeletal features of alveolar myofibroblasts and pericytes in normal human and rat lung. J Histochem Cytochem 1992; 40: 1955-1963.
    18. Das M, Dempsey EC, Reeves JT, et al. Selective expansion of fibroblast subpopulations from pulmonary artery adventitia in response to hypoxia. Am J Physiol 2002; 282: L976-L986.
    19. Stenmark KR, Mecham RP. Cellular and molecular mechanisms of pulmonary vascular remodeling. Annu Rev Physiol 1997; 59: 89-144.
    20. Riley DJ, Poiani GJ, Tozzi CA, et al. Collagen and elastin gene expression in the hypertensive pulmonary artery of the rat. Trans Assoc Am Phys 1986; 99: 180-188.
    21. Das M, Dempsey EC, Bouchey D, et al. Chronic hypoxia induces exaggerated growth responses in pulmonary artery adventitial fibroblasts. Am J Respir Cell Mol Biol 2000; 22: 15-25.
    22. Rendas A, Lennox S, Reid L. Aorta-pulmonary shunts in growing pigs. Functional and structural assessment of the changes in the pulmonary circulation. J Thorac Cardiovasc Surg 1979; 77: 109-118.
    23. Fasules JW, Tryka F, Chipman CW, et al. Pulmonary hypertension and arterial changes in calves with a systemic-to-left pulmonary artery connection. J Appl Physiol 1994; 77: 867-875.
    24. Michel RP, Hakim TS, Hanson RE, et al. Distribution of lung vascular resistance after chronic systemic-to-pulmonary shunts. Am J Physiol Heart Circ Physiol 1985; 249: H1106-H1113.
    25. Macchia A, Marchioli R, Marfisi R, et al. A meta-analysis of trials of pulmonary hypertension: a clinical condition looking for drugs and research methodology. Am Heart J 2007; 153: 1037-1047.
    26. Botney MD. Role of hemodynamics in pulmonary vascular remodeling : implications for primary pulmonary hypertension. Am J Respir Crit Care Med. 1999;159: 361-364.
    27. Stenmark KR, Meyrick B, Galie N, et al. Animal models of pulmonary arterial hypertension: the hope for etiological discovery and pharmacological cure. Am J Physiol Lung Cell Mol Physiol 2009; 297: L1013-L1032.
    1. Stephen L, David B, Robyn J, et al. ACCF/AHA 2009 Expert Consensus Document on Pulmonary Hypertension. J Am Coll Cardiol, 2009,53:1573-1619
    2. Botney MD. Role of hemodynamics in pulmonary vascular remodeling. Implications for Primary Pulmonary Hypertension. Am J Respir Crit Care Med,1999,159:361-364
    3. Cool CD, Stewart JS, Werahera P, et al. Three-Dimensional reconstruction of pulmonary arteries in plexiform pulmonary hypertension using cell-specific markers. Am J Pathol 1999,155:411-419
    4. Voelkel NF, Vandivier RW, Tuder RM, et al. Vascular endothelial growth factor in the lung. Am J Physiol Lung Cell Mol Physiol, 2006,290:L209 - L221.
    5. Lévy M, Maurey C, David S,et al. Impaired Apoptosis of Pulmonary Endothelial Cells Is Associated With Intimal Proliferation and Irreversibility of Pulmonary Hypertension in Congenital Heart Disease. J Am Coll Cardiol, 2007,49:803-810
    6. Grosjean J, Kiriakidis S, Reilly K, et al. Vascular endothelial growth factor signaling in endothelial cell survival: a role for NFkappaB. Biochem Biophys Res Commun, 2006,340:984-994.
    7. Andrew IM, Zhao Y, Sandhu R, et al. Cell-Based Gene Transfer of Vascular Endothelial Growth Factor Attenuates Monocrotaline-Induced Pulmonary Hypertension. Circulation, 2001,104:2242-2248
    8. Farkas L, farkas D, Ask K, et al. VEGF ameliorates pulmonary hypertensionthrough inhibition of endothelial apoptosis in experimental lung fibrosis in rats. J Clin Invest, 2009,119:1298-1311
    9. Adel M, Steven M, Selim M, et al. Platelet-Derived Growth Factor Is Increased in Pulmonary Capillary Hemangiomatosis. Chest, 2007; 131: 850-855
    10. Vivek B, Timothy D, Dunbar I, et al. Role of platelet-derived growth factor in vascular remodeling during pulmonary hypertension in the ovine fetus. Am J Physiol Lung Cell Mol Physiol, 2003,284: 826
    11. Schermuly RT, Dony E, Ghofrani HA et al. Reversal of experimental pulmonary hypertension by PDGF inhibition. J Clin Invest, 2005; 115:2811-2821.
    12. Morrell NW, Yang X, Upton PD, et al. Altered Growth Responses of Pulmonary Artery Smooth Muscle Cells From Patients With Primary Pulmonary Hypertension to Transforming Growth Factor-β1 and Bone Morphogenetic Proteins. Circulation, 2001,104:790-795
    13. Long L, Crosby A, Yang X, et al. Altered Bone Morphogenetic Protein and Transforming Growth Factor-βSignaling in Rat Models of Pulmonary Hypertension. Circulation, 2009,119:566-576
    14. Merklinger SL, Jones PL, Martinez EC, Rabinovitch M. Epidermal growth factor receptor blockade mediates smooth muscle cell apoptosis and improves survival in rats with pulmonary hypertension. Circulation, 2005,112:423-431.
    15. Eddahibi S, Adnot S. The serotonin pathway in pulmonary hypertension. Arch Mal Coeur Vaiss, 2006; 99: 621-625
    16. Hironaka E, Hongo M, Sakai A, et al. Serotonin receptor antagonist inhibitsmonocrotaline-induced pulmonary hypertension and prolongs survival in rats. Cardiovasc Res, 2003, 60: 692-699.
    17. Shah SJ, Gomberg-Maitland M,Thenappan T, et al. Selective Serotonin Reuptake Inhibitors and the Incidence and Outcome of Pulmonary Hypertension. Chest, 2009,136: 694-700
    18. Petkov V, Mosgoeller W, Ziesche R, et al. Vasoactive intestinal peptide as a new drug for treatment of primary pulmonary hypertension.J Clin Invest,2003,111:1339-1346.
    19. Said SI, Hamidi SA, Dickman KG, et al. Moderate Pulmonary Arterial Hypertension in Male Mice Lacking the Vasoactive Intestinal Peptide Gene. Circulation, 2007,115:1260-1268
    20. Hamidi SA, Prabhakar S, Said SI. Enhancement of pulmonary vascular remodelling and inflammatory genes with VIP gene deletion. Eur Respir J, 2008,31: 135–139
    21. Wort SJ, Woods M, Warner TD, et al. Endogenously Released Endothelin-1 from Human Pulmonary Artery Smooth Muscle Promotes Cellular Proliferation: Relevance to Pathogenesis of Pulmonary Hypertension and Vascular Remodeling. Am J Respir. Cell Mol. Biol, 2001,25: 104
    22.陶清国,张珍祥.慢性缺氧大鼠肺血管c-myc及bcl-2基因表达研究.中国组织化学与细胞化学杂志,1998,7:421-424.
    23.李荣,别毕华,张珍祥,等.野生型p53、bcl-2基因在低氧性肺动脉高压大鼠肺内表达及其分布.中国应用生理学杂志,2000,16:246-248.
    24.杨成,王胜发,王巨.凋亡机制在先天性心脏病肺动脉高压肺血管结构改建中的作用.中华胸心血管外科杂志,2001,17:355-357.
    25. McMurtry MS, Archer SL, Altieri DC, et al. Gene therapy targeting surviving selectively induce pulmonary vascular apoptosis and reverses pulmonary arterial hypertension. J Clin Invest, 2005;115: 1479-1491
    26.唐旭东,肖颖彬,周建国,等. Survivin在先天性心脏病肺动脉高压发生机制中的作用.第三军医大学学报,2008;30:27-30.
    27.李荣,别毕华,张珍祥.慢性缺氧大鼠肺血管c-myc及bcl-2基因表达研究.中国组织化学与细胞化学杂志,1998,7:421-424.
    28.彭丽静,李志超,李伟,等.慢性低氧性肺动脉高压大鼠肺组织p53表达增高.基础医学与临床2006;26:984-987.
    29.陈欧.腺病毒介导野生型p53基因转染左向右分流肺动脉高压大鼠的试验研究.济南,山东大学医学院儿科学;2008

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700