3.0T MRI上膝关节软骨体积的定量测量研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分:3.0T MRI上半自动软件软骨体积定量测量的可重复性及准确性研究
     目的:评估在3.0T MRI上使用半自动软件OsiriX测量膝关节软骨体积的可重复性及准确性。
     方法:在3.0T MR上使用磁共振(MR)轴位水激发三维快速小角度激发(3D-FLASH[we])序列对30名健康志愿者和30名骨性关节炎(OA)患者的右膝关节进行重复扫描。全部图像由3名观察者分别使用开放源软件OsiriX髌骨进行软骨的半自动分割及随机工作站进行人工分割,计算软骨体积,比较两种方法测量软骨体积所需时间、可重复性及测量结果。
     结果:①OsiriX软件分割比人工分割节省50%以上时间;②正常组OsiriX软件分割及人工分割的观察者间可重复性误差分别为4.9%和9.8%,高年资观察者内部可重复性误差分别为0.8%和1.3%,个体内部可重复性误差范围分别为0.1%-1.1%和0.5%~1.6%,前者各项可重复性误差均低于后者(P<0.05);OA组OsiriX软件分割及人工分割的观察者间可重复性误差分别为6.2%和11.3%,高年资观察者内部可重复性误差分别为1.5%和2.7%,个体内部可重复性误差范围分别为0.7%-2.0%和1.2%-3.7%,前者各项可重复性误差均低于后者(p<0.05);③正常组OsiriX软件与人工分割软骨体积测量结果之间的系统配对误差为-3.8%,随机配对误差为(4.7±2.7)%,测量结果差异无统计学意义(t=0.92,P=0.36);OA组OsiriX软件及人工分割软骨体积测量结果之间的系统配对误差为-5.4%,随机配对误差为(6.3±4.0)%,测量结果差异无统计学意义(t=0.74,P=0.47)。
     结论:与人工分割相比,OsiriX半自动分割测量软骨体积具有省时、观察者间及观察者内可重复性高、有相对固定标准等明显优势,可用于临床及多中心大样本量研究。
     第二部分:3.0T MRI上正常成人膝关节软骨体积的定量测量
     目的:提供正常成人膝关节关节软骨总体积的参考值,研究膝关节各部分软骨体积所占总体积的比重,探讨软骨体积与年龄、性别、身高及体重的关系。
     方法:选取无关节外伤及手术病史,无膝关节痛的健康志愿者140例,分为7个年龄组,在3.0T MR上使用水激发三维多回波数据联合成像(3D-MEDIC[we])扫描序列对膝关节进行矢状位重复扫描。所获图像使用半自动软件OsiriX进行膝关节软骨的体积测量及三维重建。
     结果:膝关节软骨总体积的平均值为(18.16±4.36)cm~3,在整个膝关节软骨中,股骨软骨所占体积最大,髌骨及胫骨外侧髁次之,胫骨内侧髁最小,所占平均比重分别为(58.1±3.3)%、(18.7±2.0)%、(13.3±1.8)%及(10.0±1.9)%,其中以胫骨内侧髁软骨比重变化程度最大(CV=19%)。男性软骨平均体积大于女性,平均总体积分别为(21.62±3.63)cm~3和(14.70±2.83)cm~3。正常人膝关节软骨总体积大小与年龄的增长没有显著相关性(r=-0.19),各部分软骨体积与年龄亦没有明显相关性。膝关节软骨总体积与身高及体重成正相关(r=0.48,P<0.001;r=0.30,P<0.001)。
     结论:正常成人膝关节软骨总体积大小约(18.16±4.36)cm~3,膝关节不同部分软骨占软骨总体积的比重及变化程度均不等。男性软骨体积大于女性。关节软骨体积与年龄没有明显相关性,与身高及体重呈正相关,因此在评估膝关节软骨病损的体积改变时需结合性别、身高及体重等因素综合评价。
     第三部分:3.0T MRI上骨性关节炎患者膝关节软骨体积的定量测量
     目的:在3.0T MRI使用水激发3D-MEDIC序列对正常人和OA患者膝关节软骨体积进行测量及对比分析,从而探讨3.0T MRI上软骨体积测量在OA中的应用价值。
     方法:选择具有膝关节疼痛和功能障碍等症状,无膝关节外伤及膝关节手术病史的男性OA患者作为研究对象,58例纳入实验,结合WOMAC骨性关节炎指数评分及K-L放射学诊断标准将OA患者分为轻、中、重度三组;选择无关节炎及外伤病史,无膝关节痛的健康男性20名作为对照组。58名OA患者及20名健康男性均使用3D-MEDIC[we]序列进行矢状位MRI扫描。所获图像使用半自动软件OsiriX进行膝关节软骨体积的测量,对所测数据进行身高及体重校正,分析比较正常组与病变各组之间的差异性。
     结果:通过对膝关节OA病变各组软骨体积的测量并与正常组对比,轻度OA组各部分关节软骨体积与正常组之间不存在统计学差异,而中、重度OA组之间及中、重度OA组与正常组之间软骨各部分软骨体积比较存在统计学差异(P<0.05)。
     结论:通过关节软骨OA组与对照组体积测量对比分析:发现OA患者膝关节各部分软骨体积随着OA病情的加重,其体积逐渐变小,以重度OA患者较明显,3.0T MRI上软骨体积测量可为OA软骨病损提供定量依据。
Part 1:Reproducibility and Accuracy of Quantitative Knee Cartilage Volume measurements using semi-automated software by MRI at 3.0T
     Objective:To evaluate the reproducibility and accuracy of semi-automated software OsiriX in the assessment of knee cartilage volume at 3.0T MR.
     Methods:The right knees of thirty healthy subjects and thirty patients with osteoarthritis were scanned twice with 3.0T MR using 3D-FLASH sequence with selective water excitation. Cartilage volume of the patellar compartment was determined with a validated open-source software OsiriX and manual segmentation separately by 3 observers using the MRI data sets. After calculating the cartilage volumes, the segmentation processing times, the reproducibility and volume results were compared between two segmentations.
     Results:①Compared with the manual segmentation, a time saving of at least 50% for cartilage volume measurement was achieved with OsiriX software segmentation.②In the normal group,the interobserver reproducibility error was 4.9% and 9.8% with OsiriX software segmentation and manual segmentation, respectively; the intraobserver reproducibility error of high experienced observer were 0.8% and 1.3%, the interindividual reproducibility error range were 0.1%~1.1% and 0.5%~1.6%. The reproducibility error of OsiriX software segmentaion proved to be significantly smaller than manual segmentation (P<0.05).③In the OA group,the interobserver reproducibility error was 6.2% and 11.3% with OsiriX software segmentation and manual segmentation, respectively; the intraobserver reproducibility error of high experienced observer were 1.5% and 2.7%, the interindividual reproducibility error range were 0.7%~2.0% and 1.2%~3.7%. The reproducibility error of OsiriX software segmentaion proved to be significantly smaller than manual segmentation (P< 0.05).④In the normal group,systematic pairwise difference between results obtained with OsiriX software measurement and manual measurement was-3.8% and absolute pairwise difference was (4.7±2.7)%. There was no statistical difference between the volume results measured by two techniques (t=0.92, P=0.36).⑤In the OA group, systematic pairwise difference between results obtained with OsiriX software measurement and manual measurement was-5.4% and absolute pairwise difference was(6.3±4.0)%. There was no statistical difference between the volume results measured by two techniques (t=0.74, P=0.47).
     Conclusion:Compared to manual segmentation, cartilage volume measurement with OsiriX semi-automated segmentation is faster and has higher inter- and intraobserver reproducibility with relatively fixed standard. This technique may therefore be used for clinical and multi-center trials of large sample.
     Part 2:Quantitative Measurement of the Knee joint Cartilage Volume in normal adult at 3.0T MRI
     Objective:To provide the normal reference value of cartilage volumes in the knee joints of healthy adults,study the percentage of the patellar, femoral, and tibial cartilages and analyze the correlation of the volumes with age,sex,body height and weight.
     Methods:We examed the knee joints of 140 healthy volunteers who had no past history of joint disease or trauma or operation.The studied population was divided by age into 7 groups. Each knee was examed twice using a sagittal 3D-MEDIC sequence with water excitation. The cartilage volumes and the three-dimensional reconstruction was determined by a semiautomatic software OsiriX.
     Results:The mean total volume of the knee joint cartilage was (18.16±4.36)cm3, the femoral cartilage volume occupied the highest percentage of the total knee joint volume, then the patellar and lateral tibial cartilage, the lowest one was the medial tibial cartilage. The mean percentage of each compartments was (58.1±3.3)%, (18.7±2.0)%, (13.3±1.8)% and (10.0±1.9)%,respectively. The medial tibial cartilage volume showed the highest Coefficient Variations(CV%) of the percentage(CV%=19%). Males displayed higher cartilage volumes than females.The mean total volume of cartilage in males was (21.62±3.63)cm3, in female was(14.70±2.83) cm3. There was no significant correlation of the total cartilage volume with age(r=-0.19), the same to each compartment of the joint cartilage. The total cartilage volume was positively correlated with body height (r=0.48,P<0.001) and weight(r=0.30,P<0.001).
     Conclusion:The mean total volume of the knee joint cartilage in normal adult is (18.16±4.36)cm3, each compartment occupies a relatively variable percentage of the total knee joint volume. The cartilage volume in males is higher than in females. There is no significant correlation of the knee joint cartilage volume with age. The cartilage volume is positively correlated with body height and weight.Therefore,the estimation of cartilage volume changes with cartilage lesion should consider the factors of sex, body height and weight.
     Part 3:Quantitative Measurement of Knee Cartilage volume in Osteoarthritis at 3.0 T MRI
     Objective:The knee cartilage volumes of various degrees of OA patients was determined by using a sagittal 3D-MEDIC sequence with water excitation at 3.0T MRI, and the clinical value of knee cartilage volume measurement at 3.0 MRI in OA are also evaluated after being compared with those in the normal group.
     Methods:58 male subjects having the symptoms of knee pain and function impairment in their knees were included, and all the cases had no history of trauma and operation.According to the OA index made by WOMAC and K-L radiological diagnosis standard, the cases with OA in the knee could be further classified into gentle, medium and serious groups.20 normal male subjects were selected for contrast. All of the knees were scanned by a sagittal 3D-MEDIC sequence with water excitation. The knee cartilage volumes was determined by a semiautomatic software OsiriX and the measurements were adjusted for height and weight.The volume measurements of OA groups were compared with normal group.
     Results:Comparing articular cartilage volume between in the OA cases of various degrees and in the healthy volunteers, in the gentle OA group, there was no statistical difference of knee cartilage volume with that in the normal volunteers, while that in medium and serious OA groups was significant different from that in the normal group.
     Conclusion:By comparing of articular cartilage volume between in the OA cases and in the healthy volunteers, we observed that the articular cartilage volume of each compartment of the knee joint attenuated gradually, following with the aggregated OA disease, especially in the serious group. The cartilage volume measurement at 3.0T MRI could offer quantitative evidence for OA cartilage defects.
引文
[1]Felson DT, Naimark A, Anderson J, et al. The prevalance of knee osteoarthritis in the elderly:The Framingham Osteoarthritis Study [J]. Arthr Rheum,1987,30(8): 914~918.
    [2]Hellio Le Graverand MP, Mazzuca S,et al. Radiographic-Based Grading Methods and Radiographic Measurement of Joint Space Width in oteoarthritis[J]. Radiol Clin North Am,2009,47(4):567~579.
    [3]Altman RD, Gold GE. Atlas of individual radiographic features in osteoarthritis, revised [J]. Osteoarthritis Cartilage,2007,15 Suppl A:A1~56.
    [4]Conrozier T, Favret H, Mathieu P, et al. Influence of the quality of tibial plateau alignment on the reproducibility of computer joint space measurement from Lyon schuss radiographic views of the knee in patients with knee osteoarthritis[J]. Osteoarthritis Cartilage,2004,12(10):765~770.
    [5]Brandt KD, Mazzuca SA, Conrozier T, et al.Which is the best radiographic protocol for a clinical trial of a structure modifying drug in patients with knee osteoarthritis? [J].J Rheumatol,2002,29(6):1308~1320.
    [6]LaValley MP, McAlindon TE, Chaisson CE,et al. The validity of different definitions of radiographic worsening for longitudinal studies of knee osteoarthritis[J]. J Clin Epidemiol,2001,54(1):30~39.
    [7]Buckland-Wright JC, Macfarlane DG, Lynch JA, et al.Joint space width measures cartilage thickness in osteoarthritis of the knee:high resolution plain film and double contrast macroradiographic investigation[J]. Ann Rheum Dis,1995, 54(4):263~268.
    [8]Adams JQMcAlindon T,Dimasi M,Carey J,Eustace S.Contribution of meniscal extrusion and cartilage loss to joint space narrowing in osteoarthritis[J].Clin Radiol,1999,54(8):502~506.
    [9]Gale DR, Chaisson CE, Totterman SM,et al.Meniscal subluxation:association with osteoarthritis and joint space narrowing[J]. Osteoarthritis Cartilage,1999,7: 526~532.
    [10]Peterfy CG, Charlis G,PhD,et al.Imaging of the disease process[J].Curr Opin Rheumatol,2002,14(5):590~596.
    [11]Calvo E, Palacios I, Delgado E, et al. High-resolution MRI detects cartilage swelling at the early stages of experimental osteoarthritis[J]. Osteoarthritis Cartilage,2001,9(5):463~472.
    [12]Peterfy CG, Van Dijke CF, Janzen DL, et al. Quantification of articular cartilage in the knee with pulsed saturation transfer subtraction and fat-suppressed MR imaging:optimization and validation[J].Radiology,1994,192(2):485~491.
    [13]Sittek H,Eckstein F,Gavazzeni A,et al.Assessment of normal patella cartilage volume and thickness using MRI:an analysis of currently available pulse sequences[J].Skeletal Radiol,1996,25(1):55~62.
    [14]Eckstein F,Westhoff J,Sittek H,et al.In vitro reproducibility of three-dimensional cartilage volume and thickness measurements with MRI imaging[J].Am J Radiol,1998,170(3):593~597.
    [15]Burgkart R, Glaser C, Hyhlik-Durr,et al.Magnetic Resonance Imaging-based assessment of cartilage loss in severe osteoarthritis[J]. Arthr Rheum,2001,44(9): 2072~2077.
    [16]Altman R,Brandt K,Hochberg M et al.Design and conduct of clinical trials in patients with osteoarthritis:recommendations from a task force of the Osteoarthritis Research Society.Results from a workshop[J].Osteoarthritis Cartilage,1996,4(4):217~243.
    [17]Kauffmann C, Gravel P,Godbout B,et al.Computer-aided method for quantification of cartilage thickness and volume changes using MRI:validation study using a synthetic model[J].IEEE Trans Biomed Eng,2003,50(8):978~988.
    [18]Eckstein F, Glaser C. Measuring cartilage morphology with quantitative magnetic resonance imaging [J]. Semin Musculoskelet Radiol,2004,8(4):329~353.
    [19]Tessier JJ,et al.Characterisation of the guinea pig model of osteoarthritis by in-vivo three-dimensional magnetic resonance imagine[J]. Osteoarthritis Cartilage,2003,11(12):845~853.
    [20]Graichen H,von Eisenhart-Rothe R,Vogl T,et al.Quantitative assessment of
    cartilage status in osteoarthritis by quantitative magnetic resonance imaging:technical validation for use in analysis of cartilage volume and further morphologic parameters[J].Arthr Rheum,2004,50(3):811~816.
    [21]Wluka AE,Stuckey S,Snaddon J,et al.The determinants of change in tibial cartilage volume in osteoarthritic knees[J].Arthr Rheum,2002,46(8):2065~2072.
    [22]Cicuttini F,Wluka A,Wang Y,et al.The determinants of change in patella cartilage volume in osteoarthritic knees[J].J Rheumatol,2002,29(12):2615~2619.
    [23]Wluka AE,Stuckey S,Brand C,et al.Supplementary vitamine does not affect the loss of cartilage volume in knee osteoarthritis:a 2 year double blind randomized placebo controlled study[J].J Rheumatol,2002,29(12):2585~2591.
    [24]Glaser C,Draeger M,Englmeier KH,et al.Cartilage loss over two years in femorotibial osteoarthritis[J].Radiology 2002,225(Suppl):330(Abstr).
    [25]Eckstein F, Glaser C,M.D.Measuring cartilage morphology with quantitative magnetic resonance imaging[J]. Semin Musculoskelet Radiol,2004,8(4): 329~353.
    [26]Glaser C, Faber S, Eckstein F,et al.Optimization and validation of a rapid high-resolution T1-w 3D FLASH water excitation MRI sequence for the quantitative assessment of articular cartilage volume and thickness[J]. Magn Reson Imaging,2001,19(2):177~185.
    [27]Eckstein F, Charles HC, Buck RJ. Accuracy and Precision of Quantitative Assessment of Cartilage Morphology by Magnetic Resonance Imaging at 3.0T[J]. Arthritis Rheum,2005,52(10):3132~3136.
    [28]Weckbach S, Mendilik T, Horger W, et al. Quantitative assessment of patellar cartilage volume and thickness at 3.0T comparing a 3D-Fast Low Angle Shot Versus a 3D-True Fast Imaging with Steady-State Precession Sequence for reproducibility[J]. Invest Radiol,2006,41 (2):189~197.
    [29]Gold GE, Hargreaves BA, Vasanawala SS, et al.Articular Cartilage of the Knee:Evaluation with Fluctuating Equilibrium MR Imaging-Initial Experience in Healthy Volunteers[J].Radiology,2006,2:712-718.
    [30]张礼荣,王德杭,尉传社等.3.OTMRI上FLASH与MEDIC序列定量测量猪膝关节体积的对比研究[J].南京医科大学学报,2007,27(5):436~440.
    [31]Eckstein F, Buck RJ, Charles HC, et al. Improved precision of quantitative cartilage measurements with magnetic resonance imaging at 3 T[J]. Osteoarthritis Cartilage 2004; 12:119.
    [32]Maataoui A, Graichen H, Nasreddin D, et al. Quantitative cartilage volume measurement using MRI:comparison of different evaluation techniques[J]. Eur Radiol,2005,15(8):1550~1554.
    [33]Eckstein F, Cicuttini F, Raynauld JP, et al. Magnetic resonance imaging (MRI) of articular cartilage in knee osteoarthritis (OA):morphological assessment[J]. Osteoarthritis Cartilage,2006,14:46~75.
    [34]Hodgson RJ, O'Connor P, Moots R. MRI of rheumatoid arthritis—image quantitation for the assessment of disease activity, progression and response to therapy [J]. Rheumatology (Oxford),2008,47(1):13~21.
    [35]Piplani MA,Disler DG,Mc Cauley TR,et al. Articular cartilage volume in the knee:semiautomated determination from three-dimensional reformation of MR images[J].Radiology,1996,198(3):855~859.
    [36]Stammberger T, Eckstein F, Michaelis M, et al.Interobserver reproducibility of quantitative cartilage measurements:comparison of B-spline snakes and manual segmentation [J]. Magnetic Resonance Imaging,1999,17 (7):1033~1042.
    [37]Steines D,Chen C,Berger F,et al.Segmentation of osteoarthritic femoral cartilage from MR images[J].Elsevier,2000,1214:303~308.
    [38]Gougoutas AJ,Wheaton AJ,Borthakur A,et al.Cartilage volume quantification via Live Wire segmentaion[J].Acad Radiol,2004,11(12):1389~1395.
    [39]Trinh NH, Lester J,Fleming BC,et al.Accurate measurement of cartilage morphology using a 3D laser scanner[J]. Springer, Heidelberg,2006,4341:37~48.
    [40]Glocker B,Komodakis N,Paraios N,et al.Primal/Dual Linear Programming and Statistical Atlases for Cartilage Segmentation[J]. Springer, Heidelberg,2007, 4972:536~543.
    [41]Dam EB, Folkesson J, Pettersen PC, et al. Automatic morphometric cartilage quantification in the medial tibial plateau from MRI for osteoarthritis grading[J]. Osteoarthritis Cartilage,2007,15(7):808~818.
    [42]Oka H, Muraki S, Akune T, et al. Fully automatic quantification of knee osteoarthritis severity on plain radiographs[J]. Osteoarthritis Cartilage,2008, 16(11):1300~1306.
    [43]Agneskirchner JD, Brucker P,Burkart A,et al.Large osteochondral defects of the femoral condyle:press-fit transplatation of the posterior femoral condyle (MEGA-OATS) [J]. Knee Surg Sports Traumatol Arthrosc,2002,10(3):160~168.
    [44]Brittberg M,Lindahl A,Nilsson A,et al.Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation[J].N Engl J Med,1994, 331(14):889~895.
    [45]Buckwalter JA, Mankin HJ.Articular cartilage.Part 2:Degeneration and osteoarthritis, repair, regeneration, and transplantation [J]. J Bone Joint Surg Am, 1997,79(4):612~632.
    [46]Buckwalter JA, Mankin HJ.Articular cartilage:degeneration and osteoarthritis, repair, regeneration, and transplantation [J].Instr Coursc Lcct,1998,47:487~504.
    [47]Beary JF III.Joint structure modification in osteoarthritis:development of SMOAD drugs [J].Curr Rheumatol Rep,2001,3(6):506~512.
    [48]Marshall KW,Mikulis DJ,Guthrie BM,et al.Quantification of articular cartilage using magnetic resonance imaging and three-dimensional reconstruction[J].J Orthop Res,1995,13(6):814~823.
    [49]Schnier M, Eckstein F,Priebsch J, et al. Dreidimensionale Dicken-und Volumenbestimmung des Kniegelenkknorpels in der MRT:Validierung am anatomischen Pr parat mittels CT Arthrographie[J].R Fo,1997,167(5):521~526.
    [50]Westhoff J,Eckstein F,Tieschky M,et al.Reproducibility of threedimensional cartilage volume and thickness measurements in the living with fat-suppressed MR sequences(abstract) [J].Trans EORS,1997,7:29.
    [51]Piplani MA, Disler DQMcCauley TR,et al.Articular cartilage volume in the knee:semiautomatic determination from three-dimensional reformations of MR images[J].Radiology,1996,19:855~859.
    [52]Eckstein F, Winzheimer M, Westhoff J, et al. Quantitative relationships of normal cartilage volumes of the human knee joint:assessment by magnetic resonance imaging [J]. Anat Embryol (Berl),1998,197(5):383~390.
    [53]Nishimural K, Tanabel T, Kimural M,, et al. Measurement of articular cartilage volumes in the normal knee by magnetic resonance imaging:can cartilage volumes be estimated from physical characteristics? [J]. J Orthop Sci,2005, 10(3):246~252.
    [54]Link TM, Steinbach LS, Ghosh S,et al.Osteoarthritis:MR imaging findings in different stages of disease and correlation with clinical findings[J]. Radiology, 2003(2),226:373~381.
    [55]Beuf O, Ghosh S, Newitt DC,et al.Magnetic resonance imaging of normal and osteoarthritic trabecular bone structure in the human knee[J]. Arthr Rheum,2002, 46(2):385~393.
    [56]Graichen H, von Eisenhart-Rothe R, Vogl T, et al. Quantitative assessment of cartilage status in osteoarthritis by quantitative magnetic resonance imaging: technical validation for use in analysis of cartilage volume and further morphologic parameters[J]. Arthr Rheum,2004,50 (3):811~816.
    [57]Gandy SJ, Brett AD, Dieppe PA, et al. Measurement of cartilage volumes in rheumatoid arthritis using MRI [J]. Br J Radiol,2005,78(925):39~45.
    [58]Gluer CC, Blake G,Lu Y,et al.Accurate assessment of precision errors:how to measure the reproducibility of bone densitometry techniques[J].Osteoporos Int,1995,5(4):262~270.
    [59]Rosset A, Spadola L, Ratib O, et al. OsiriX:an open-source software for navigating in multidimensional DICOM images[J]. J Digit Imaging,2004,17(3): 205~216.
    [60]Uebelhart D, Malaise M, Marcolongo R, et al. Intermittent treatment of knee osteoarthritis with oral chondronitin sulfate:a one-year, randomized, double-blind, multicenter study versus placebo[J]. Osteoarthritis Cartilage,2004,12(4): 269~276.
    [61]Kawahara Y, Uetni M, Nakahara N, et al. Fast Spin-echo MR of the Articular
    Cartilage in the Osteoarthrotic Knee:Correlation of MR and Arthroscopic Findings[J]. Acta-Radiol,1998,39(2):120.
    [62]Cicuttini F, Forbes A, Morris K, et al. Gender differences in knee cartilage volume as measured by magnetic resonance imaging[J]. Osteoarthritis Cartilage,1999,7(3):265~271.
    [63]Baysala O, Baysalb T and Alkan A,et al.Comparison of MRI graded cartilage and MRI based volume measurement in knee osteoarthritis[J]. Swiss Med Wkly,2004,134(19-20):283~288.
    [64]Stammberger T, Eckstein F, Michaelis M, et al. Interobserver reproducibility of quantitative cartilage measurements:comparison of B-spline snakes and manual segmentation[J]. Magn Reson Imaging,1999,17(7):1033~1042.
    [65]Hyhlik-Durrl A, Faber S, Burgkart R, et al. Precision of tibial cartilage morphometry with a coronal water-excitation MR sequence[J].Eur Radiol,2000,10(2):297~303.
    [66]Jaremko JL, Cheng RW, Lambert RG, et al. Reliability of an efficient MRI-based method for estimation of knee cartilage volume using surface registration[J]. Osteoarthritis Cartilage,2006,14(9):914~922.
    [67]Graichen H,Shamari DA,Hinterwimmer S,et al.Accuracy of quantitative magnetic resonance imaging in the detection of ex vivo focal cartilage defects[J].Ann Rheum Dis,2005,64(8):1120~1125.
    [68]Rosset A, Spadola L and Ratib O,et al. OsiriX:an open-source software for navigating in multidimensional DICOM images[J]. J Digital Imaging,2004,17(3): 205~216.
    [69]Brem M H, Lang P K, Neumann G, et al.Magnetic resonance image segmentation using semi-automated software for quantification of knee articular cartilage—initial evaluation of a technique for paired scans[J]. Skeletal Radiol, 2009,38(5):505~511.
    [70]Faber SC, Eckstein F, Lukasz S, et al. Gender differences in knee joint thickness, volume and articular surface areas:assessment with quantitative threedimensional MR imaging[J]. Skeletal Radiol,2001,30(3):144~150.
    [71]Ding C, Cicuttini F, Scott F, et al. Sex differences in knee cartilage volume in adults:role of body and bone size, age and physical activity [J]. Rheumatology, 2003,42(11):1317~1323.
    [72]Jones G,Glisson M,Hynes K,et al.Sex and site differences in cartilage development: possible explanation for variations in knee osteoarthritis in later life.Arthritis Rheum 2000;43(11):2543~2549.
    [73]Hall FM, Wyshak G.Thickness of articular cartilage in the normal knee[J].J Bone and Joint Surgery,1980,62(3):408~413.
    [74]Richette P, Corvol M, Bardin T,et al. Estrogens, cartilage, and osteoarthritis[J]. Joint Bone Spine,2003,70(4):257~262.
    [75]Yu SB, Wang MQ, Li YQ,et al. The effects of age and sex on the expression of oestrogen and its receptors in rat mandibular condylar cartilages[J]. Arch Oral Biol,2009,54(5):479~485.
    [76]Goebel J C, Pinzano A W, Brault I B,et al. Age-related quantitative MRI changes in healthy cartilage:Preliminary results[J].Biorheology,2006,43(3-4):547~551.
    [77]Felson DT, Lawrenee RC, DiePPe PA, etal.Osteoarthritis:New insights.Part 1:the disease and its risk factors[J]. Ann Illtem Med,2000,133(8):635-646.
    [78]Yoshioka H,Stevens K,Genovese M,et al.Articular cartilage of knee,normal patterns at MR imaging that mimic disease in healthy subjects and patients with osteoarthritis[J].Radiology,2004,231(1):31~38.
    [79]Peterfy CG,Guermazi A,Zaim S et al.Whole-organ magnetic resonance imaging score(WORMS)of the knee in osteoarthritis[J].Osteoarthritis Cartilage,2004, 12(3):177~190.
    [80]Kellgren JH&Lawrence JS.Radiological assessment of osteoarthrosis[J]. Ann Rheum Dis,1957,16(4):494~502.
    [81]Cicuttini FM,Wluka AE,Stuckey SL.Tibial and femoralcartilage changes in knee osteoarthritis[J].Ann.Rheum,2001,60(10):997~980.
    [82]Cicuttini FM,Wluka AE,Forbes A,et al.Comparison of tibial cartilage volume and radiologic grade of the tibiofemoral joint[J].Arthr Rheum,2003,48(3):682~688.
    [83]Kuettner KE,Aydelotte MB,Thonar EJ.Articular cartilage matrix and stucture:a minireview[J].J Rheumatol Suppl,1991:27(18):46~48.
    [84]Jason PH,Paul JR.Development of an explicit-element-based total knee replacement model[J].Bioengineer ingeonferenee,2003,10:550~551.
    [85]Andriacchi TP,Andersson GB,Fermier RW,et al.A study of lower-limb mechanics during stair-climbing[J] J Bone Joint Surg Am,1980,62(5):749~757.
    [86]Buckwalter JA.Chondral and osteochondral injuries:mechanisms of injury and repair responses[J].Op Tech Ort hop,1997,7(4):263.
    [87]Spector TD,Harris PA,Hart DJ,et al.Risk of osteoarthritis associated with long-term weight-bearing sports:a radiologic survey of the hips and knees in female ex-athletes and population controls[J].Arthr Rhrum,1996,39(6):988~995.
    [88]Reijman M,Ppols HA,Bergink AP,et al.Body mass index associated with onset and progression of osteoarthritis of the knee but not of the hip:The Rotterdam Study[J].Ann Rheum Dis,2007,66(2):158~162.
    [89]Stuermer T, Guenther KP, Brenner H,et al.Obesity, overweight and patterns of osteoarthritis:the Ulm Osteoarthritis Study[J]. J. Clin. Epidemiol,2000,53(3): 307~313.
    [1]Hidaka C, Goodrich LR, Chen CT,et al.Acceleration of cartilage repair by genetically modified chondrocytes over expressing bone morphogenetic protein-7[J]. J Orthop Res,2003,21(4)573~583.
    [2]Phan CM, Link TM, Blumenkrantz G,et al.MR imaging findings in the follow-up of patients with different stages of knee osteoarthritis and the correlation with clinical symptoms[J]. Eur Radiol,2006,16(3):608~618.
    [3]Quinn TM,Allen RG,Schalet BJ,et al.Matrix and cell injury due to sub-impact loading of adult bovine articular cartilage explants:Effects of strain rate and peak stress[J].J Ort hop Res,2001,19(2):242~249.
    [4]Buckwalter JA.Chondral and osteochondral injuries:mechanisms of injury and repair responses[J].Op Tech Ort hop,1997,7(4):263~269.
    [5]Tsou IY,Yegappan M,Ong WS,et al.Cartilage injury and repair:assessment with
    magnetic resonance imaging[J].Singapore Med J,2006,47(1):80~877 quiz88.
    [6]Kornaat PR,Reeder SB,Koo S,et al.MR imaging of articular cartilage at 1.5 T and 3.0 T:comparison of SPGR and SSFP sequences[J].Osteoarthritis Cartilage,2005,13(4):338~344.
    [7]Kornaat PR, Doornbos J, van der Molen AJ, et al.Magnetic resonance imaging of knee cartilage using a water selective balanced steady-state free precession sequence[J]. J Magn Reson Imaging,2004,20(5):850~856.
    [8]Eckstein F,Hudelmaier M,Wirth W,et al.Double echo steady state magnetic resonance imaging of knee articular cartilage at 3 Tesla:a pilot study for the Osteoarthritis Initiative[J]. Ann Rheum Dis,2006,65(4):433~441.
    [9]Eckstein F, Cicuttini F, Raynauld JP, et al.Magnetic resonance imaging (MRI) of articular cartilage in knee osteoarthritis (OA):morphological assessment. Osteoarthritis Cartilage,2006,14:46~75.
    [10]Eckstein F,Hudelmaier M,Wirth W,et al.Double echo steady state magnetic resonance imaging of knee articular cartilage at 3 Tesla:a pilot study for the Osteoarthritis Initiative[J].Rheum Dis,2006,65(4):433~441.
    [11]Weckbach S, Mendlik T, Horger W,et al.Quantitative assessment of patellar cartilage volume and thickness at 3.0 tesla comparing a 3d-fast low angle shot versus a 3d-true fast imaging with steady-state precession sequence for reproducibility. Inves Radiol,2006,41(2):189~197.
    [12]张礼荣,王德杭,尉传社等.3.OTMRI上FLASH与MEDIC序列定量测量猪膝关节体积的对比研究[J].南京医科大学学报,2007,27(5):436~440.
    [13]Eckstein F, Charles HC, Buck RJ,et al. Accuracy and Precision of Quantitative Assessment of Cartilage Morphology by Magnetic Resonance Imaging at 3.0T[J]. Arthritis Rheum,2005,52(10):3132~3136.
    [14]Gougoutas AJ,Wheaton AJ,Borthakur A,et al.Cartilage volume quantification via Live Wire segmentaion[J].Acad Radiol,2004,11(12):1389~1395.
    [15]Kauffmann C,Gravel P,Godbout B, et al.Computer-aided method for quantification of cartilage thickness and volume changes using MRI:validation study using a synthetic model[J].IEEE Trans Biomed Eng,2003,50(8):978~988.
    [16]Maataoui A, Graichen H, Nasreddin D, et al. Quantitative cartilage volume measurement using MRI:comparison of different evaluation techniques[J]. Eur Radiol,2005,15(8):1550~1554.
    [17]Wirth W, Eckstein F. A technique for regional analysis of femorotibial cartilage thickness based on quantitative magnetic resonance imaging[J]. IEEE Trans Med Imaging,2008,27(6):737~744.
    [18]Goebel J C, Pinzano A W, Brault I B,et al. Age-related quantitative MRI changes in healthy cartilage:Preliminary results[J].Biorheology,2006,43(3-4):547~551.
    [19]Ding C,Cicuttini F,Scot F t,et al.Sex differences in knee cartilage volume in adults:role of body and bone size, age and physical activity[J]. Rheumatology, 2003,42(11):1317~1323.
    [20]Cicuttini FM,Wluka A,Bailey M,et al.Factors affecting knee cartilage volume in healthy men[J].Rheumatology,2003,42(2):258-262.
    [21]Nishimural K, Tanabel T, Kimural M,, et al. Measurement of articular cartilage volumes in the normal knee by magnetic resonance imaging:can cartilage volumes be estimated from physical characteristics? [J]. J Orthop Sci,2005, 10(3):246~252.
    [22]孙英彩,崔建岭,李石玲,等.MRI测量正常人膝关节软骨厚度[J].实用放射学杂志,2004,20(11):1007~1010.
    [23]Burgkart R,Glaser C,Hyhlik-Durr A,et al.Magnetic resonance imaging-based assessment of cartilage loss in severe osteoarthritis:accuracy,precision,and diagnostic value[J].Arthritis Rheum 2001;44(9):2072~2077.
    [24]Baysal O,Baysal T,Alkan A,et al. Comparison of MRI graded cartilage and MRI based volume measurement in knee osteoarthritis[J].Swiss Med Wkly,2004,134(19-20):283~288.
    [25]Glaser C,Tins BJ,Trumm CG,et al.Quantitative 3D MR evaluation of autologous chondrocyte implantation in the knee:feasibility and initial results[J].Osteoarthritis Cartilage,2007,15(7):798~807.
    [26]Lusse S,Claassen H,Gehrke T,et al.Evaluation of water content by spatially resolved transverse relaxation times of human articular cartilage[J].Magn Reson Imaging,2000,18(4):423~430.
    [27]Pakin SK,Schweitzer MR,Regatte RR,et al.3D-Tlrho quantitation of patellar cartilage at 3.0T[J].J Magn Reson Imaging,2006,24(6):1357~1363.
    [28]Burstein D,Velyvis J,Scott KT,et al. Protocol issues for delayed Gd(DTPA)2-Enhanced MRI (dGEMRIC) for clinical evaluation of articular cartilage [J].Magn Reson Med,2001,45(1):36~41.
    [29]Welsch GH, Mamisch TC, Hughes T,et al.In Vivo Biochemical 7.0 Tesla Magnetic Resonance:Preliminary Results of dGEMRIC, Zonal T2, and T2* Mapping of Articular Cartilage[J]. Invest Radiol,2008,43(9):619~626.
    [30]Smith HE,Mosher TJ,Dardzinski BJ,et al.Spatial variation in cartilage T2 of the knee[J].J Magn Reson Imaging,2001,14(1):50~55.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700