大采高采场围岩控制及支架稳定性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大采高综采技术是厚煤层开采的重要发展方向之一,并且在我国很多矿区都得到了推广应用。论文以神华宁煤集团羊场湾煤矿6.2m大采高开采工艺为现场研究条件,通过物理模拟、数值模拟、矿压实测及理论分析等手段研究了大采高采场的矿压显现特征、围岩应力场分布规律、煤体片帮机理以及支架的稳定性等问题,得到了如下研究结果:
     (1)物理模拟的结果表明,大采高综采工作面的矿压显现具有支护强度高,动载系数小,周期来压步距与普通采高差别不大,支架载荷以静载为主等特征。
     (2) FLAC3D数值模拟的结果表明,大采高开采时支承压力峰值降低,支承压力的作用范围增大,工作面煤壁塑性破坏范围增大,顶板易发生超前断裂,说明大采高开采煤壁发生片帮的程度加大,而煤壁片帮和顶板超前断裂易诱发顶板发生架前冒顶事故。
     (3)工作面矿压观测的结果表明,工作面上端头和中部的支架载荷较大,是重点防范的区域。现场实践证明,采取“锚-网-索”及Π型钢梁架设“一梁三柱”的方式来维护超前支护段顶板对策合理、效果良好;采取加大护帮板对煤壁的支护强度,保证支架的支撑阻力,加快工作面推进速度以及改进回采工艺和操作技术等措施有利于煤壁片帮的防治。
     (4)大采高支架失稳倾倒主要与有重心、支架高度、煤层倾角、顶板压力及支架宽度等因素有关,倾角越大,重心越高,宽度越小,支架越易倾倒;支架极限倾角与顶板压力的关系受采高影响,采高大时极限倾角随顶板压力的增加而增大。防止支架失稳的主要措施有降低支架重心及重量,适当加大底座宽度,采取合理的移架方式,工作面下端头设置锚固站,工作面分段设置防倒千斤顶以及工作面的科学管理等。
     论文的研究结果为了解大采高采场的矿压显现规律及围岩合理控制提供了新的途径,为其他类似条件的缓倾斜大采高开采工艺提供了宝贵经验,其对大采高综采技术的推广应用具有一定的理论意义和工程实际意义。
High mining height fully mechanized technology is one of the important development inthe thick seam mining, and many mines have been the popularization and application in ourcountry. By yang changwan coal 6.2m high height mining technology research for the fieldconditions, study the ground pressure behavior, rock stress distribution, coal spallingmechanism and stability of support with the methods of similar simulation, numericalsimulation, pressure observation and theoretical analysis ,obtaining the following results:
     (1) By similar experiment, and combined with the situation of domestic several highmining height face , draw that high mining height face have some characteristics,such as largesupport resistance, small dynamic load coefficient , periodic pressure step isn’t very differentfrom normal mining height, support resistance is static load mainly and so on.
     (2) The analyzsis results of FLAC3D numerical simulation show that the peak ofabutment pressure is reduced, influenced range of abutment pressure is increasing, plasticdamage range of face is widen, roof is prone to fracture ahead, so the degree of rib spallingbecome serious in high mining height face, Rib spalling and roof fracture ahead easilyinduced to roof fall in front of support.
     (3) Face pressure observation results show, support resistance is large in the top andmiddle of face, this is key to prevent the region. it is reasonable and effective that taking "Bolt- Net - Cable" andΠsteel beam with "a beam and three-column" approach to maintain theadvanced section of roofs; Increase support strength of protection plate to rib, ensureresistance of support, accelerate the speed of face advance and improve operating techniquesare conducive to prevention of rib spalling.
     (4) Instability of high mining height support with a major focus, such as height ofsupport, angle of seam, roof pressure ,width of support and so on, the greater the angle, the higher center of gravity, the smaller width , the more support occurs dumping easily. Therelationship between limit angle and roof pressure is influenced by mining height, limit anglebecome increased while roof pressure increasing in high mining height.There are some majormeasures to prevent instability of support, for example, lower support’s center of gravity andweight, increasing the width of support, reasonable way of moving support, setting anchoragepoints at the bottom of face, installing jack of preventing the dumping in face, scientificmanagement of face and so on.
     The research achievements of this dissertation supply new views for behavior regularityof ground pressure and reasonably surrounding rock control in the high mining height face, itprovides valuable experience for other similar high mining height face in mining technologyrespect, it is significant of engineering experience and theory that the achievements put highmining height fully mechanized technology into effect promotion application anddevelopment in the coal industry.
引文
[1]徐永圻.煤矿开采学[M].徐州:中国矿业大学出版社, 1999.
    [2]刘涛.厚煤层大采高综采技术现状[J].煤炭工程, 2002(2): 4~8.
    [3]何富连,钱鸣高,刘长友.高产高效工作面支架—围岩保障系统[M].徐州:中国矿业大学出版社, 1997.
    [4]夏永学,康立军,齐庆新.割煤高度对大采高综放工作面煤壁稳定性影响[J].煤炭科学技术, 2008, 36(12): 1~4.
    [5] Liu S Y, Qian M G. Stability and Control ofImmediate Roof of Fully Mechanized CoalFace[J]. Intemational Conference on Ground Control in Mining, Morgantown: theUniversity of West Virgina, 1990:123~127.
    [6] Bordrac BB. Rock Pressure Features of Moscow Suburb Coal field[J]. Coal, 1998(2).
    [7]弓培林.大采高采场围岩控制理论及应用研究[M].北京:煤炭工业出版社,2006.
    [8]郭宝华,涂敏.浅谈我国大采高综采技术[J].中国矿业, 2003, 12(10): 40~42.
    [9]刘涛.厚煤层大采高综采技术现状[J].煤炭工程, 2002(2): 4~8.
    [10]夏均民.大采高综采围岩控制与支架适应型研究[D].济南:山东科技大学,2004.
    [11]郝海金,吴健,张勇等.大采高开采上位岩层平衡结构及对采场矿压显现的影响[J].煤炭学报, 2004, 29(2): 137~141.
    [12]王贵虎,周更廷.大采高倾斜长臂综采面矿压显现规律研究[J].矿业安全与环保,2005, 32(3): 67~70.
    [13]胡国伟.大采高综采工作面矿压显现特征及控制研究[D].太原:太原理工大学,2006.
    [14] N.E. Yasitili, B. Unver, 3D numerical modeling of longwall mining with top-coalcaving[J]. International Journal of Rock Mechanics & Mining Sciences, 42(2005): 219~235.
    [15] Rajendra Singh. Staggered development of a thick coal seam for full height working in asingle lift by the blasting gallery method[J]. International Journal of Rock Mechanics &Mining Sciences, 41(2004): 745~759.
    [16] B. Unver, N.E. Yasitli.Modelling of strata movement with a special reference to cavingmechanism in thick seam coal mining[J]. International Journal of Coal Geology,66(2006): 227~252.
    [17] S.K. Das. Obesrvations and classification of roof strata behaviour over longwall coalmining panels in India[J]. International Journal of Rock Mechanics & Mining Sciences,37(2000): 585~597.
    [18]周海丰,董尹庚,蔡宏年.大采高加长综采工作面矿压显现实测研究[J].煤炭技术,2007,27(10): 50~52.
    [19]武建国.大采高综采工作面与巷道围岩控制技术研究[D].太原:太原理工大学,2004.
    [20] Nevolin, N.V. Shilkov, B.P. potepko, V.M. Sudden Rock Failures in mining Coal Seamsof the kizel Basin[J]. Journal of mining Science,2003,39(l): 21~26.
    [21] Shutov.A,V. Krasnovskii, A.A.Mircnkov,V. E. Modeling of Contact Conditions underDeformation of Rock Samples. Journal of Mining Science, 2004, 40(2): 134~141.
    [22] Qian Minggao. A study ofthe behaviour ofoverlying strata in longwall mining and itsapplication to strata control[M]. Strata Mechanics, Elsevier Scientific PublishingCompany, 1982:13~17.
    [23]缓倾斜特厚煤层6.2m大采高开采工艺技术研究报告[R].西安:西安科技大学,2008.
    [24]刘小峰,等.浅谈液压支架的技术现状及发展趋势[J].河北煤炭, 2003(3),9~10.
    [25]何富连,钱鸣高.高产高效大采高综采技术的研究与实践[J].阜新矿业学院报,1997,16(1): 5~7.
    [26]李龙清,苏普正,张杰等.大采高综采支架工作阻力综合分析与确定[J].西安科技大学学报, 2008, 28(2): 254~257.
    [27]崔广心编著.相似理论与模型试验[M].徐州:中国矿业大学出版社, 1991.
    [28]神华宁夏煤业集团6.2m大采高综采支架工作阻力研究[R].西安:西安科技大学,2008.
    [29]冯茂龙,王占银.浅埋煤层工作面覆岩运动规律相似模拟实验研究[J].西北煤炭,2008, 6(2):41~44.
    [30]黄庆享.浅埋煤层长壁开采顶板结构及岩层控制研究[M].徐州:中国矿业大学出版社, 2000.
    [31]马振虎.大采高综采工作面矿压显现及控制[J].煤炭工程, 2005(7): 73~74.
    [32]尹希文.寺河煤矿5.8~6.0m大采高综采面矿压规律研究[D].北京:煤炭科学研究总院, 2007.
    [33]刘波,韩彦辉. FLAC原理、实例与应用指南.北京:人民交通出版社,2005.
    [34]复杂特厚易燃煤层6.2m大采高开采集成技术研究[R].银川:神华宁夏煤业集团有限责任公司,西安:西安科技大学, 2008, 12.
    [35]来兴平,伍永平.复杂条件下采空区煤岩失稳辨识与灾害控制基础研究[M].西安:陕西科学技术出版社, 2010.
    [36]胥海东.综采6.2m采高工作面破碎顶板稳定性研究[D].西安:西安科技大学,2009.
    [37]王家臣.极软厚煤层煤壁片帮与防治机理[J].煤炭学报, 2007, 32(8): 785~788.
    [38]闫国雄,王东,李永明等.两硬煤层大采高工作面煤壁片帮机理及防治研究[J].能源技术与管理, 2009(3): 13~15.
    [39]高玮.倾斜煤柱稳定性的弹塑性分析[J].力学与实践, 2001(23): 23~26.
    [40]何富连,钱鸣高,刘学锋等.大采高液压支架倾倒特征与控制条件[J].中国矿业大学学报, 1997, 26(4): 20~23.
    [41]杨瀚.大采高综采工作面冒顶事故原因分析[J].煤矿安全, 1999, 542~43.
    [42]刘锦荣.大采高综采工作面支架—围岩系统稳定性探讨[J].煤矿开采, 1995(3).
    [43]阎海琴,龚宇.浅析大采高支架的稳定性[J].煤矿机械, 2005(12): 56~58.
    [44] Gong Peilin, Jin Zhongming, Hao Haijin, etc.Research on stability test for fullymechanized mining support with large mining height[C]. Proceedings of the secondinternational symposium on mining technology, 2001, 246~251.
    [45]弓培林,靳钟铭.影响大采高综采支架稳定性的试验研究[J].太原理工大学学报,2001, 11(6), 666~669.
    [46]李文权.大采高综采支架稳定性及其控制技术分析[J].煤炭工程,2006(5), 50~53.
    [47]胡敏,曹必德. ZY10800/28/63型液压支架横向稳定性分析[J].煤矿机械, 2008, 29(8):61~63.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700