柚苷对大鼠创伤性脑损伤的预防治疗价值及其机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的拟通过动物实验研究柚苷对脑外伤的预防治疗价值及其可能机制。
     方法大鼠随机平均分为4组。A组(对照组),除不进行打击外,其余操作同模型组;B组(模型组),自由落体打击法制作脑外伤大鼠模型。C组(柚苷术后干预组),造模后给予柚苷(50mg/kg)治疗7d;D组(柚苷预防治疗组),提前7d给予大鼠柚苷,在造模后继续给药7d。术后通过尼氏染色观察坏死灶体积,干湿重法测定脑损伤皮层含水量,并对大鼠进行行为学评分;生物化学法测定脑皮层和血清中SOD和MDA的含量;免疫荧光观察损伤皮层il-1β和iNOS的表达,western blot观察损伤皮层il-1β的含量,生物化学法检测损伤皮层iNOS的活性和NO的含量。
     结果与A组相比,B组在成模后损伤皮层含水量增高(损伤1d),坏死灶出现,与损伤正相关的神经功能评分较高。与B组相比,柚苷干预明显降低了脑组织含水量,坏死灶体积,降低了神经功能评分。与C组相比,D组作用更为明显,降低组织含水量的作用出现早,梗死体积更小,神经功能评分低;与A组相比,B组大鼠损伤脑组织和血液中出现显著的MDA含量增高,SOD活性降低;损伤脑皮层的iL-1β表达显著升高,iNOS活性增强,NO含量增加。与B组相比,柚苷干预缓解了上述改变。与C组相比,D组的作用更为明显。以上各组有显著性差异(P<0.01)。
     结论脑外伤后大鼠出现氧化应激平衡失调和炎症的加剧,可能与脑外伤后的继发性损伤有关。柚苷干预有利于减轻大鼠脑外伤后的神经病理损害,促进功能恢复。柚苷的保护作用可能与缓解脑外伤后的氧化应激和炎症有关。与单纯术后干预相比,复合预防性给药更有利于柚苷保护作用的发挥。
Objective:To study the role of naringin in treating rats with traumatic brain injury (TBI) and its possible mechanism.
     Methods:Rats were randomly separated into four groups. Rats in group A were sham-operated; in group B received TBI operation; in group C were treated with naringin for 7 days after TBI; while naringin were given continually for 7 days either pro-or post-TBI. The TBI was induced by weight drop technique and naringin was given orally 50mg/kg per day. Volume of damaged cortex, tissue water content, neurological score, SOD and MDA in serum and damaged brain cortex, il-1βand iNOS expression in cortex, as well as NO, were detected with respective methods.
     Results:Comparing with group A, rats in group B showed significant brain edema, bigger volume of damaged brain cortex, and obviously sensor motor dysfunction. However, the brain edema and damage volume were reduced and behaviors was improved in rats of group C and D, comparing with rats in group B. Measurement of SOD and MDA showed that naringin elevated the activity of SOD, and reduced MDA content both in injured brain cortex and serum. And, the expression of il-1βand iNOS, as well as NO were reduced by naringin, since the obvious elevation of them appeared after TBI. Meanwhile, all those changes were more significant in group D than in group C.
     Conclusion:Oxidative damage and inflammation were enhanced after TBI, which seems to be important factors for secondary brain damage. Naringin treatment can attenuate the neuropathological damages and improve the functional recovery of rats after TBI, partly through weakening oxidative damage and inflammation. Comparing with treatment post-TBI, naringin also given as prophylactic treatment shows better effect on protecting brain.
引文
1. Wu X, Hu J, Zhuo L, et al. Epidemiology of traumatic brain injury in eastern China, 2004:a prospective large case study. J Trauma,2008,64 (5):1313-9.
    2. Langlois JA, Rutland-Brown W, Wald MM. The epidemiology and impact of traumatic brain injury:a brief overview. J Head Trauma Rehabil,2006,21 (5):375-8.
    3. Greve MW, Zink BJ. Pathophysiology of traumatic brain injury. Mt Sinai J Med, 2009,76 (2):97-104.
    4. Werner C, Engelhard K. Pathophysiology of traumatic brain injury. Br J Anaesth, 2007,99(1):4-9.
    5. Soustiel JF, Glenn TC, Shik V, et al. Monitoring of cerebral blood flow and metabolism in traumatic brain injury. J Neurotrauma,2005,22 (9):955-65.
    6. Jaeger M, Schuhmann MU, Soehle M, et al. Continuous assessment of cerebrovascular autoregulation after traumatic brain injury using brain tissue oxygen pressure reactivity. Crit Care Med,2006,34 (6):1783-8.
    7. Lifshitz J, Friberg H, Neumar RW, et al. Structural and functional damage sustained by mitochondria after traumatic brain injury in the rat:evidence for differentially sensitive populations in the cortex and hippocampus. J Cereb Blood Flow Metab, 2003,23 (2):219-31.
    8. Haitsma IK, Maas AI. Monitoring cerebral oxygenation in traumatic brain injury. Prog Brain Res,2007,161:207-16.
    9. Dennis AM, Haselkorn ML, Vagni VA, et al. Hemorrhagic shock after experimental traumatic brain injury in mice:effect on neuronal death. J Neurotrauma,2009,26 (6): 889-99.
    10. Utagawa A, Truettner JS, Dietrich WD, et al. Systemic inflammation exacerbates behavioral and histopathological consequences of isolated traumatic brain injury in rats. Exp Neurol,2008,211 (1):283-91.
    11. Fraser DD, Hutchison JS. Estrogen therapy after traumatic brain injury:time for clinical trials? Crit Care Med,2009,37 (12):3181-2.
    12. O'Connor CA, Cernak I, Vink R. Both estrogen and progesterone attenuate edema formation following diffuse traumatic brain injury in rats. Brain Res,2005,1062 (1-2): 171-4.
    13. Cavia-Saiz M, Busto MD, Pilar-Izquierdo MC, et al. Antioxidant properties, radical scavenging activity and biomolecule protection capacity of flavonoid naringenin and its glycoside naringin:a comparative study. J Sci Food Agric,90 (7):1238-44.
    14. Rajadurai M, Prince PS. Preventive effect of naringin on cardiac mitochondrial enzymes during isoproterenol-induced myocardial infarction in rats:a transmission electron microscopic study. J Biochem Mol Toxicol,2007,21 (6):354-61.
    15. Rajadurai M, Prince PS. Naringin ameliorates mitochondrial lipid peroxides, antioxidants and lipids in isoproterenol-induced myocardial infarction in Wistar rats. Phytother Res,2009,23 (3):358-62.
    16. Rajadurai M, Stanely Mainzen Prince P. Preventive effect of naringin on lipid peroxides and antioxidants in isoproterenol-induced cardiotoxicity in Wistar rats: biochemical and histopathological evidences. Toxicology,2006,228 (2-3):259-68.
    17. Bailey DG, Dresser GK, Leake BF, et al. Naringin is a major and selective clinical inhibitor of organic anion-transporting polypeptide 1A2 (OATP1A2) in grapefruit juice. Clin Pharmacol Ther,2007,81 (4):495-502.
    18. Choi MS, Do KM, Park YS, et al. Effect of naringin supplementation on cholesterol metabolism and antioxidant status in rats fed high cholesterol with different levels of vitamin E. Ann Nutr Metab,2001,45 (5):193-201.
    19. Pereira RM, Andrades NE, Paulino N, et al. Synthesis and characterization of a metal complex containing naringin and Cu, and its antioxidant, antimicrobial, antiinflammatory and tumor cell cytotoxicity. Molecules,2007,12 (7):1352-66.
    20. Ali MM, Agha FG, El-Sammad NM, et al. Modulation of anticancer drug-induced P-glycoprotein expression by naringin. Z Naturforsch C,2009,64 (1-2):109-16.
    21. Kim DI, Lee SJ, Lee SB, et al. Requirement for Ras/Raf/ERK pathway in naringin-induced G1-cell-cycle arrest via p21WAF1 expression. Carcinogenesis, 2008,29 (9):1701-9.
    22. Slemmer JE, Shacka JJ, Sweeney MI, et al. Antioxidants and free radical scavengers for the treatment of stroke, traumatic brain injury and aging. Curr Med Chem, 2008,15 (4):404-14.
    23. Jordan BD. Genetic influences on outcome following traumatic brain injury. Neurochem Res,2007,32 (4-5):905-15.
    24. Potts MB, Koh SE, Whetstone WD, et al. Traumatic injury to the immature brain: inflammation, oxidative injury, and iron-mediated damage as potential therapeutic targets. NeuroRx,2006,3 (2):143-53.
    25. Stubbe HD, Greiner C, Van Aken H, et al. Cerebral vascular and metabolic response to sustained systemic inflammation in ovine traumatic brain injury. J Cereb Blood Flow Metab,2004,24 (12):1400-8.
    26. Ghirnikar RS, Lee YL, Eng LF. Inflammation in traumatic brain injury:role of cytokines and chemokines. Neurochem Res,1998,23 (3):329-40.
    1. Werner C, Engelhard K. Pathophysiology of traumatic brain injury. Br J Anaesth, 2007,99 (1):4-9.
    2. Gaur V, Aggarwal A, Kumar A. Protective effect of naringin against ischemic reperfusion cerebral injury:possible neurobehavioral, biochemical and cellular alterations in rat brain. Eur J Pharmacol,2009,616 (1-3):147-54.
    3. Feeney DM, Boyeson MG, Linn RT, et al. Responses to cortical injury:I. Methodology and local effects of contusions in the rat. Brain Res,1981,211 (1): 67-77.
    4. Schabitz WR, Berger C, Kollmar R, et al. Effect of brain-derived neurotrophic factor treatment and forced arm use on functional motor recovery after small cortical ischemia. Stroke,2004,35 (4):992-7.
    5. Zhu Z, Zhang Q, Yu Z, et al. Inhibiting cell cycle progression reduces reactive astrogliosis initiated by scratch injury in vitro and by cerebral ischemia in vivo. Glia, 2007,55 (5):546-58.
    6. Baguley IJ, Heriseanu RE, Cameron ID, et al. A critical review of the pathophysiology of dysautonomia following traumatic brain injury. Neurocrit Care, 2008,8 (2):293-300.
    7. Greve MW, Zink BJ. Pathophysiology of traumatic brain injury. Mt Sinai J Med, 2009,76 (2):97-104.
    8. Mautes AE, Muller M, Cortbus F, et al. Alterations of norepinephrine levels in plasma and CSF of patients after traumatic brain injury in relation to disruption of the blood-brain barrier. Acta Neurochir (Wien),2001,143 (1):51-7; discussion 57-8.
    9. Shi XY, Tang ZQ, Sun D, et al. Evaluation of hyperbaric oxygen treatment of neuropsychiatric disorders following traumatic brain injury. Chin Med J (Engl), 2006,119(23):1978-82.
    10. Sahuquillo J, Vilalta A. Cooling the injured brain:how does moderate hypothermia influence the pathophysiology of traumatic brain injury. Curr Pharm Des,2007,13 (22):2310-22.
    11. Bayir H, Kochanek PM, Clark RS. Traumatic brain injury in infants and children: mechanisms of secondary damage and treatment in the intensive care unit. Crit Care Clin,2003,19 (3):529-49.
    12. Slemmer JE, Shacka JJ, Sweeney MI, et al. Antioxidants and free radical scavengers for the treatment of stroke, traumatic brain injury and aging. Curr Med Chem, 2008,15 (4):404-14.
    13. Pettus EH, Wright DW, Stein DG, et al. Progesterone treatment inhibits the inflammatory agents that accompany traumatic brain injury. Brain Res,2005,1049 (1): 112-9.
    14. Chung RS, Leung YK, Butler CW, et al. Metallothionein treatment attenuates microglial activation and expression of neurotoxic quinolinic acid following traumatic brain injury. Neurotox Res,2009,15 (4):381-9.
    15. Vajtr D, Benada O, Kukacka J, et al. Correlation of ultrastructural changes of endothelial cells and astrocytes occurring during blood brain barrier damage after traumatic brain injury with biochemical markers of BBB leakage and inflammatory response. Physiol Res,2009,58 (2):263-8.
    16. Kochanek PM, Berger RP, Bayir H, et al. Biomarkers of primary and evolving damage in traumatic and ischemic brain injury:diagnosis, prognosis, probing mechanisms, and therapeutic decision making. Curr Opin Crit Care,2008,14 (2): 135-41.
    17. Katada R, Nishitani Y, Honmou O, et al. Prior ethanol injection promotes brain edema after traumatic brain injury. J Neurotrauma,2009,26 (11):2015-25.
    18. DeWitt DS, Prough DS. Traumatic cerebral vascular injury:the effects of concussive brain injury on the cerebral vasculature. J Neurotrauma,2003,20 (9):795-825.
    19. Stiefel MF, Tomita Y, Marmarou A. Secondary ischemia impairing the restoration of ion homeostasis following traumatic brain injury. J Neurosurg,2005,103 (4):707-14.
    20. Unterberg AW, Stover J, Kress B, et al. Edema and brain trauma. Neuroscience, 2004,129(4):1021-9.
    21. Rajadurai M, Prince PS. Naringin ameliorates mitochondrial lipid peroxides, antioxidants and lipids in isoproterenol-induced myocardial infarction in Wistar rats. Phytother Res,2009,23 (3):358-62.
    22. Rajadurai M, Stanely Mainzen Prince P. Preventive effect of naringin on lipid peroxides and antioxidants in isoproterenol-induced cardiotoxicity in Wistar rats: biochemical and histopathological evidences. Toxicology,2006,228 (2-3):259-68.
    23. Dressler J, Hanisch U, Kuhlisch E, et al. Neuronal and glial apoptosis in human traumatic brain injury. Int J Legal Med,2007,121 (5):365-75.
    24. Jiang S, Yu R, Mao B, et al. [An experimental study on traumatic brain injury for inducing neuronal apoptosis in rats]. Hua Xi Yi Ke Da Xue Xue Bao,2000,31 (3): 358-61.
    25. Lou J, Lenke LG, Ludwig FJ, et al. Apoptosis as a mechanism of neuronal cell death following acute experimental spinal cord injury. Spinal Cord,1998,36 (10):683-90.
    26. France-Lanord V, Brugg B, Michel PP, et al. Mitochondrial free radical signal in ceramide-dependent apoptosis:a putative mechanism for neuronal death in Parkinson's disease. J Neurochem,1997,69(4):1612-21.
    27. Pedrosa R, Soares-da-Silva P. Oxidative and non-oxidative mechanisms of neuronal cell death and apoptosis by L-3,4-dihydroxyphenylalanine (L-DOPA) and dopamine. Br J Pharmacol,2002,137 (8):1305-13.
    28. Kumar A, Prakash A, Dogra S. Naringin alleviates cognitive impairment, mitochondrial dysfunction and oxidative stress induced by D-galactose in mice. Food Chem Toxicol,48 (2):626-32.
    29. Kumar P, Kumar A. Protective effect of hesperidin and naringin against 3-nitropropionic acid induced Huntington's like symptoms in rats:possible role of nitric oxide. Behav Brain Res,206 (1):38-46.
    1. Deng Y, Thompson BM, Gao X, et al. Temporal relationship of peroxynitrite-induced oxidative damage, calpain-mediated cytoskeletal degradation and neurodegeneration after traumatic brain injury. Exp Neurol,2007,205 (1):154-65.
    2. Potts MB, Koh SE, Whetstone WD, et al. Traumatic injury to the immature brain: inflammation, oxidative injury, and iron-mediated damage as potential therapeutic targets. NeuroRx,2006,3 (2):143-53.
    3. Ali MM, El Kader MA. The influence of naringin on the oxidative state of rats with streptozotocin-induced acute hyperglycaemia. Z Naturforsch C,2004,59 (9-10): 726-33.
    4. Jagetia GC, Reddy TK, Venkatesha VA, et al. Influence of naringin on ferric iron induced oxidative damage in vitro. Clin Chim Acta,2004,347 (1-2):189-97.
    5. Kumar A, Prakash A, Dogra S. Naringin alleviates cognitive impairment, mitochondrial dysfunction and oxidative stress induced by D-galactose in mice. Food Chem Toxicol,48 (2):626-32.
    6. Kumar P, Kumar A. Protective effect of hesperidin and naringin against 3-nitropropionic acid induced Huntington's like symptoms in rats:possible role of nitric oxide. Behav Brain Res,206 (1):38-46.
    7. Gaur V, Aggarwal A, Kumar A. Protective effect of naringin against ischemic reperfusion cerebral injury:possible neurobehavioral, biochemical and cellular alterations in rat brain. Eur J Pharmacol,2009,616 (1-3):147-54.
    8. Lu D, Qu C, Goussev A, et al. Statins increase neurogenesis in the dentate gyrus, reduce delayed neuronal death in the hippocampal CA3 region, and improve spatial learning in rat after traumatic brain injury. J Neurotrauma,2007,24 (7):1132-46.
    9. Muller F, Simion A, Reviriego E, et al. Exploring theory of mind after severe traumatic brain injury. Cortex,2009.
    10. Bibby H, McDonald S. Theory of mind after traumatic brain injury. Neuropsychologia, 2005,43(1):99-114.
    11. Hall ED, Vaishnav RA, Mustafa AG. Antioxidant therapies for traumatic brain injury. Neurotherapeutics,7 (1):51-61.
    12. Slemmer JE, Shacka JJ, Sweeney MI, et al. Antioxidants and free radical scavengers for the treatment of stroke, traumatic brain injury and aging. Curr Med Chem, 2008,15 (4):404-14.
    13. Czapski G, Goldstein S. Superoxide scavengers and SOD or SOD mimics. Adv Exp Med Biol,1990,264:45-50.
    14. Gawel S, Wardas M, Niedworok E, et al. [Malondialdehyde (MDA) as a lipid peroxidation marker]. Wiad Lek,2004,57 (9-10):453-5.
    15. De Souza EB, Battaglia G. Effects of MDMA and MDA on brain serotonin neurons: evidence from neurochemical and autoradiographic studies. NIDA Res Monogr, 1989,94:196-222.
    16. Adamides AA, Cooper DJ, Rosenfeldt FL, et al. Focal cerebral oxygenation and neurological outcome with or without brain tissue oxygen-guided therapy in patients with traumatic brain injury. Acta Neurochir (Wien),2009,151 (11):1399-409.
    17. Haitsma IK, Maas AI. Monitoring cerebral oxygenation in traumatic brain injury. Prog Brain Res,2007,161:207-16.
    18. Gracias VH, Guillamondegui OD, Stiefel MF, et al. Cerebral cortical oxygenation:a pilot study. J Trauma,2004,56 (3):469-72; discussion 472-4.
    19. Shi H, Liu KJ. Cerebral tissue oxygenation and oxidative brain injury during ischemia and reperfusion. Front Biosci,2007,12:1318-28.
    20. Aitken RJ, Roman SD. Antioxidant systems and oxidative stress in the testes. Adv Exp Med Biol,2008,636:154-71.
    21. Misra MK, Sarwat M, Bhakuni P, et al. Oxidative stress and ischemic myocardial syndromes. Med Sci Monit,2009,15 (10):RA209-219.
    22. Saito A, Maier CM, Narasimhan P, et al. Oxidative stress and neuronal death/survival signaling in cerebral ischemia. Mol Neurobiol,2005,31 (1-3):105-16.
    23. Ratan RR, Baraban JM. Apoptotic death in an in vitro model of neuronal oxidative stress. Clin Exp Pharmacol Physiol, 1995,22 (4):309-10.
    24. Mandadi K, Ramirez M, Jayaprakasha GK, et al. Citrus bioactive compounds improve bone quality and plasma antioxidant activity in orchidectomized rats. Phytomedicine, 2009,16 (6-7):513-20.
    25. Zielinska-Przyjemska M, Ignatowicz E. Citrus fruit flavonoids influence on neutrophil apoptosis and oxidative metabolism. Phytother Res,2008,22 (12): 1557-62.
    26. Kanno S, Shouji A, Hirata R, et al. Effects of naringin on cytosine arabinoside (Ara-C)-induced cytotoxicity and apoptosis in P388 cells. Life Sci,2004,75 (3): 353-65.
    27. Choi YJ, Kang JS, Park JH, et al. Polyphenolic flavonoids differ in their antiapoptotic efficacy in hydrogen peroxide-treated human vascular endothelial cells. J Nutr, 2003,133 (4):985-91.
    28. Balestrieri ML, Castaldo D, Balestrieri C, et al. Modulation by flavonoids of PAF and related phospholipids in endothelial cells during oxidative stress. J Lipid Res,2003,44 (2):380-7.
    29. Mercer LD, Kelly BL, Home MK, et al. Dietary polyphenols protect dopamine neurons from oxidative insults and apoptosis:investigations in primary rat mesencephalic cultures. Biochem Pharmacol,2005,69 (2):339-45.
    30. Singh D, Chander V, Chopra K. Protective effect of naringin, a bioflavonoid on ferric nitrilotriacetate-induced oxidative renal damage in rat kidney. Toxicology,2004,201 (1-3):1-8.
    1. Lescot T, Fulla-Oller L, Po C, et al. Temporal and regional changes after focal traumatic brain injury. J Neurotrauma,2010,27 (1):85-94.
    2. Lu J, Goh SJ, Tng PY, et al. Systemic inflammatory response following acute traumatic brain injury. Front Biosci,2009,14:3795-813.
    3. Pan DS, Liu WG, Yang XF, et al. Inhibitory effect of progesterone on inflammatory factors after experimental traumatic brain injury. Biomed Environ Sci,2007,20 (5): 432-8.
    4. Folkersma H, Breve JJ, Tilders FJ, et al. Cerebral microdialysis of interleukin (IL)-1beta and IL-6:extraction efficiency and production in the acute phase after severe traumatic brain injury in rats. Acta Neurochir (Wien),2008,150 (12):1277-84; discussion 1284.
    5. Orihara Y, Ikematsu K, Tsuda R, et al. Induction of nitric oxide synthase by traumatic brain injury. Forensic Sci Int,2001,123 (2-3):142-9.
    6. Clausen F, Hanell A, Bjork M, et al. Neutralization of interleukin-lbeta modifies the inflammatory response and improves histological and cognitive outcome following traumatic brain injury in mice. Eur J Neurosci,2009,30 (3):385-96.
    7. Frugier T, Morganti-Kossmann MC, O'Reilly D, et al. In situ detection of inflammatory mediators in post mortem human brain tissue after traumatic injury. J Neurotrauma,2010,27 (3):497-507.
    8. Gentleman SM, Leclercq PD, Moyes L, et al. Long-term intracerebral inflammatory response after traumatic brain injury. Forensic Sci Int,2004,146 (2-3):97-104.
    9. Lucas SM, Rothwell NJ, Gibson RM. The role of inflammation in CNS injury and disease. BrJ Pharmacol,2006,147 Suppl 1:S232-40.
    10. Potts MB, Koh SE, Whetstone WD, et al. Traumatic injury to the immature brain: inflammation, oxidative injury, and iron-mediated damage as potential therapeutic targets. NeuroRx,2006,3 (2):143-53.
    11. Fabricius M, Fuhr S, Bhatia R, et al. Cortical spreading depression and peri-infarct depolarization in acutely injured human cerebral cortex. Brain,2006,129 (Pt 3): 778-90.
    12. Boneberg EM, Hartung T. Granulocyte colony-stimulating factor attenuates LPS-stimulated IL-lbeta release via suppressed processing of proIL-lbeta, whereas TNF-alpha release is inhibited on the level of proTNF-alpha formation. Eur J Immunol,2002,32 (6):1717-25.
    13. Fassbender K, Rossol S, Kammer T, et al. Proinflammatory cytokines in serum of patients with acute cerebral ischemia:kinetics of secretion and relation to the extent of brain damage and outcome of disease. J Neurol Sci,1994,122 (2):135-9.
    14. Takano T, Ohno M, Takeuchi Y, et al. Cytotoxic edema and interleukin-6 in hypertensive encephalopathy. Pediatr Neurol,2002,26 (1):71-3.
    15. Koch S, Rabinstein A, Falcone S, et al. Diffusion-weighted imaging shows cytotoxic and vasogenic edema in eclampsia. AJNR Am J Neuroradiol,2001,22 (6):1068-70.
    16. Sancesario G, Kreutzberg GW. Stimulation of astrocytes affects cytotoxic brain edema. Acta Neuropathol,1986,72 (1):3-14.
    17. Yahyavi-Firouz-Abadi N, Tahsili-Fahadan P, Ostad SN. Effect of mu and kappa opioids on injury-induced microglial accumulation in leech CNS:involvement of the nitric oxide pathway. Neuroscience,2007,144 (3):1075-86.
    18. Cherian L, Hlatky R, Robertson CS. Nitric oxide in traumatic brain injury. Brain Pathol,2004,14 (2):195-201.
    19. Wada K, Chatzipanteli K, Busto R, et al. Role of nitric oxide in traumatic brain injury in the rat. J Neurosurg,1998,89 (5):807-18.
    20. Saha RN, Pahan K. Signals for the induction of nitric oxide synthase in astrocytes. Neurochem Int,2006,49 (2):154-63.
    21. Mariotto S, Menegazzi M, Suzuki H. Biochemical aspects of nitric oxide. Curr Pharm Des,2004,10 (14):1627-45.
    22. Okamura T, Ayajiki K, Fujioka H, et al. Neurogenic cerebral vasodilation mediated by nitric oxide. Jpn J Pharmacol,2002,88 (1):32-8.
    23. Chou TC, Lin YF, Wu WC, et al. Enhanced nitric oxide and cyclic GMP formation plays a role in the anti-platelet activity of simvastatin. Br J Pharmacol,2008,153 (6): 1281-7.
    24. Xu X, Zheng X. Potential involvement of calcium and nitric oxide in protective effects of puerarin on oxygen-glucose deprivation in cultured hippocampal neurons. J Ethnopharmacol,2007,113 (3):421-6.
    25. Radi R, Beckman JS, Bush KM, et al. Peroxynitrite-induced membrane lipid peroxidation:the cytotoxic potential of superoxide and nitric oxide. Arch Biochem Biophys,1991,288 (2):481-7.
    26. Li XL, Zou XM, Gao P, et al. Role of nitric oxide in ischemia-reperfusion injury and acute rejection in rat intestinal transplantation. Transplant Proc,2008,40 (10):3342-5.
    27. Mesenge C, Verrecchia C, Allix M, et al. Reduction of the neurological deficit in mice with traumatic brain injury by nitric oxide synthase inhibitors. J Neurotrauma, 1996,13 (4):209-14.
    28. Kumar P, Kumar A. Protective effect of hesperidin and naringin against 3-nitropropionic acid induced Huntington's like symptoms in rats:possible role of nitric oxide. Behav Brain Res,2010,206 (1):38-46.
    29. Kanno S, Shouji A, Tomizawa A, et al. Inhibitory effect of naringin on lipopolysaccharide (LPS)-induced endotoxin shock in mice and nitric oxide production in RAW 264.7 macrophages. Life Sci,2006,78 (7):673-81.
    30. Ajay M, Gilani AU, Mustafa MR. Effects of flavonoids on vascular smooth muscle of the isolated rat thoracic aorta. Life Sci,2003,74 (5):603-12.
    31. Smith AD, Cowan JO, Brassett KP, et al. Exhaled nitric oxide:a predictor of steroid response. Am J Respir Crit Care Med,2005,172 (4):453-9.
    32. Rajadurai M, Prince PS. Preventive effect of naringin on isoproterenol-induced cardiotoxicity in Wistar rats:an in vivo and in vitro study. Toxicology,2007,232 (3): 216-25.
    33. Steiner J, Rafols D, Park HK, et al. Attenuation of iNOS mRNA exacerbates hypoperfusion and upregulates endothelin-1 expression in hippocampus and cortex after brain trauma. Nitric Oxide,2004,10 (3):162-9.
    34. Tsai SH, Lin-Shiau SY, Lin JK. Suppression of nitric oxide synthase and the down-regulation of the activation of NFkappaB in macrophages by resveratrol. Br J Pharmacol,1999,126 (3):673-80.
    35. Ho E, Bray TM. Antioxidants, NFkappaB activation, and diabetogenesis. Proc Soc Exp Biol Med,1999,222 (3):205-13.
    36. Ng YY, Hou CC, Wang W, et al. Blockade of NFkappaB activation and renal inflammation by ultrasound-mediated gene transfer of Smad7 in rat remnant kidney. Kidney Int Suppl,2005 (94):S83-91.
    37. van den Tweel ER, Peeters-Scholte CM, van Bel F, et al. Inhibition of nNOS and iNOS following hypoxia-ischaemia improves long-term outcome but does not influence the inflammatory response in the neonatal rat brain. Dev Neurosci,2002,24 (5):389-95.
    38. Jones NC, Constantin D, Gibson CL, et al. A detrimental role for nitric oxide synthase-2 in the pathology resulting from acute cerebral injury. J Neuropathol Exp Neurol,2004,63 (7):708-20.
    39. Bayir H, Kagan VE, Borisenko GG, et al. Enhanced oxidative stress in iNOS-deficient mice after traumatic brain injury:support for a neuroprotective role of iNOS. J Cereb Blood Flow Metab,2005,25 (6):673-84.
    40. Rafols D, Steiner J, Rafols JA, et al. Intracellular coexpression of endothelin-1 and inducible nitric oxide synthase underlies hypoperfusion after traumatic brain injury in the rat. Neurosci Lett,2004,362 (2):154-7.
    41. Matthys KE, Bult H. Nitric oxide function in atherosclerosis. Mediators Inflamm, 1997,6(1):3-21.
    42. D'Ambrosio R. Maris DO, Grady MS, et al. Selective loss of hippocampal long-term potentiation, but not depression, following fluid percussion injury. Brain Res, 1998,786 (1-2):64-79.
    43. Balaratnasingam C, Ye L, Morgan WH, et al. Protective role of endothelial nitric oxide synthase following pressure-induced insult to the optic nerve. Brain Res, 2009,1263:155-64.
    1. Corrigan JD, Selassie AW, Orman JA. The epidemiology of traumatic brain injury. J Head Trauma Rehabil,2010,25 (2):72-80.
    2. Wu X, Hu J, Zhuo L, et al. Epidemiology of traumatic brain injury in eastern China, 2004:a prospective large case study. J Trauma,2008,64 (5):1313-9.
    3. Myburgh JA, Cooper DJ, Finfer SR, et al. Epidemiology and 12-month outcomes from traumatic brain injury in australia and new zealand. J Trauma,2008,64 (4):854-62.
    4. Zhu GW, Wang F, Liu WG. Classification and prediction of outcome in traumatic brain injury based on computed tomographic imaging. J Int Med Res,2009,37 (4):983-95.
    5. Saatman KE, Duhaime AC, Bullock R, et al. Classification of traumatic brain injury for targeted therapies. J Neurotrauma,2008,25 (7):719-38.
    6. Baethmann A, Eriskat J, Stoffel M, et al. Special aspects of severe head injury:recent developments. Curr Opin Anaesthesiol, 1998,11 (2):193-200.
    7. Marshall LF. Head injury:recent past, present, and future. Neurosurgery,2000,47 (3): 546-61.
    8. McIntosh TK, Smith DH, Meaney DF, et al. Neuropathological sequelae of traumatic brain injury:relationship to neurochemical and biomechanical mechanisms. Lab Invest, 1996,74 (2):315-42.
    9. Nortje J, Menon DK. Traumatic brain injury:physiology, mechanisms, and outcome. Curr Opin Neurol,2004,17 (6):711-8.
    10. Botteri M, Bandera E, Minelli C, et al. Cerebral blood flow thresholds for cerebral ischemia in traumatic brain injury. A systematic review. Crit Care Med,2008,36 (11): 3089-92.
    11. Stiefel MF, Tomita Y, Marmarou A. Secondary ischemia impairing the restoration of ion homeostasis following traumatic brain injury. J Neurosurg,2005,103 (4):707-14.
    12. Yang SY, Xue L. Human neuronal apoptosis secondary to traumatic brain injury and the regulative role of apoptosis-related genes. Chin J Traumatol,2004,7 (3):159-64.
    13. Bouma GJ, Muizelaar JP, Stringer WA, et al. Ultra-early evaluation of regional cerebral blood flow in severely head-injured patients using xenon-enhanced computerized tomography. J Neurosurg,1992,77 (3):360-8.
    14. Coles JP, Fryer TD, Smielewski P, et al. Defining ischemic burden after traumatic brain injury using 150 PET imaging of cerebral physiology. J Cereb Blood Flow Metab, 2004,24 (2):191-201.
    15. Inoue Y, Shiozaki T, Tasaki O, et al. Changes in cerebral blood flow from the acute to the chronic phase of severe head injury. J Neurotrauma,2005,22 (12):1411-8.
    16. Overgaard J, Tweed WA. Cerebral circulation after head injury. Part 4:Functional anatomy and boundary-zone flow deprivation in the first week of traumatic coma. J Neurosurg,1983,59 (3):439-46.
    17. Coles JP, Fryer TD, Smielewski P, et al. Incidence and mechanisms of cerebral ischemia in early clinical head injury. J Cereb Blood Flow Metab,2004,24 (2):202-11.
    18. Uzan M, Erman H, Tanriverdi T, et al. Evaluation of apoptosis in cerebrospinal fluid of patients with severe head injury. Acta Neurochir (Wien),2006,148 (11):1157-64; discussion.
    19. Bramlett HM, Dietrich WD. Pathophysiology of cerebral ischemia and brain trauma: similarities and differences. J Cereb Blood Flow Metab,2004,24 (2):133-50.
    20. DeWitt DS, Prough DS. Traumatic cerebral vascular injury:the effects of concussive brain injury on the cerebral vasculature. J Neurotrauma,2003,20 (9):795-825.
    21. Rodriguez-Baeza A, Reina-de la Torre F, Poca A, et al. Morphological features in human cortical brain microvessels after head injury:a three-dimensional and immunocytochemical study. Anat Rec A Discov Mol Cell Evol Biol,2003,273 (1): 583-93.
    22. Scremin OU, Li MG, Jenden DJ. Cholinergic modulation of cerebral cortical blood flow changes induced by trauma. J Neurotrauma,1997,14 (8):573-86.
    23. Kelly DF, Kordestani RK, Martin NA, et al. Hyperemia following traumatic brain injury:relationship to intracranial hypertension and outcome. J Neurosurg,1996,85 (5): 762-71.
    24. Langfitt TW, Weinstein JD, Kassell NF. Cerebral Vasomotor Paralysis Produced by Intracranial Hypertension. Neurology,1965,15:622-41.
    25. Martin NA, Patwardhan RV, Alexander MJ, et al. Characterization of cerebral hemodynamic phases following severe head trauma:hypoperfusion, hyperemia, and vasospasm. J Neurosurg,1997,87 (1):9-19.
    26. Sakas DE, Bullock MR, Patterson J, et al. Focal cerebral hyperemia after focal head injury in humans:a benign phenomenon? J Neurosurg,1995,83 (2):277-84.
    27. Bouma GJ, Muizelaar JP. Cerebral blood flow, cerebral blood volume, and cerebrovascular reactivity after severe head injury. J Neurotrauma,1992,9 Suppl 1: S333-48.
    28. Enevoldsen EM, Jensen FT. Autoregulation and CO2 responses of cerebral blood flow in patients with acute severe head injury. J Neurosurg,1978,48 (5):689-703.
    29. Hauerberg J, Xiaodong M, Willumsen L, et al. The upper limit of cerebral blood flow autoregulation in acute intracranial hypertension. J Neurosurg Anesthesiol,1998,10 (2): 106-12.
    30. Jaeger M, Schuhmann MU, Soehle M, et al. Continuous assessment of cerebrovascular autoregulation after traumatic brain injury using brain tissue oxygen pressure reactivity. Crit Care Med,2006,34 (6):1783-8.
    31. Junger EC, Newell DW, Grant GA, et al. Cerebral autoregulation following minor head injury. J Neurosurg,1997,86 (3):425-32.
    32. Lam JM, Hsiang JN, Poon WS. Monitoring of autoregulation using laser Doppler flowmetry in patients with head injury. J Neurosurg,1997,86 (3):438-45.
    33. Lang EW, Czosnyka M, Mehdorn HM. Tissue oxygen reactivity and cerebral autoregulation after severe traumatic brain injury. Crit Care Med,2003,31 (1):267-71.
    34. Schmidt EA, Czosnyka M, Steiner LA, et al. Asymmetry of pressure autoregulation after traumatic brain injury. J Neurosurg,2003,99 (6):991-8.
    35. Lee JH, Kelly DF, Oertel M, et al. Carbon dioxide reactivity, pressure autoregulation, and metabolic suppression reactivity after head injury:a transcranial Doppler study. J Neurosurg,2001,95 (2):222-32.
    36. McLaughlin MR, Marion DW. Cerebral blood flow and vasoresponsivity within and around cerebral contusions. J Neurosurg,1996,85 (5):871-6.
    37. Lee JH, Martin NA, Alsina G, et al. Hemodynamically significant cerebral vasospasm and outcome after head injury:a prospective study. J Neurosurg,1997,87 (2):221-33.
    38. Oertel M, Boscardin WJ, Obrist WD, et al. Posttraumatic vasospasm:the epidemiology, severity, and time course of an underestimated phenomenon:a prospective study performed in 299 patients. J Neurosurg,2005,103 (5):812-24.
    39. Sobey CG. Cerebrovascular dysfunction after subarachnoid haemorrhage:Novel mechanisms and directions for therapy. Clinical and Experimental Pharmacology and Physiology,2001,28 (11):926-929.
    40. Zuccarello M, Boccaletti R, Romano A, et al. Endothelin B receptor antagonists attenuate subarachnoid hemorrhage-induced cerebral vasospasm. Stroke,1998,29 (9): 1924-1929.
    41. Todo H, Ohta S, Wang J, et al. Impairment in biochemical level of arterial dilative capability of a cyclic nucleotides-dependent pathway by induced vasospasm in the canine basilar artery. Journal of Cerebral Blood Flow and Metabolism,1998,18 (7): 808-817.
    42. Armstead WM. Differential activation of ERK, P38, and JNK MAPK by NOC/OFQ in the potentiation of prostaglandin cerebrovasoconstriction after brain injury. Journal of Neurotrauma,2005,22 (10):1182-1182.
    43. Cunningham AS, Salvador R, Coles JP, et al. Physiological thresholds for irreversible tissue damage in contusional regions following traumatic brain injury. Brain,2005,128: 1931-1942.
    44. Clark RSB, Carcillo JA, Kochanek PM, et al. Cerebrospinal fluid adenosine concentration and uncoupling of cerebral blood flow and oxidative metabolism after severe head injury in humans. Neurosurgery,1997,41 (6):1284-1292.
    45. Diringer MN, Yundt K, Videen TO, et al. No reduction in cerebral metabolism as a result of early moderate hyperventilation following severe traumatic brain injury. Journal of Neurosurgery,2000,92 (1):7-13.
    46. Daboussi A, Minville V, Foucras SL. Cerebral Hemodynamic Changes in Severe Head Injury Patients Undergoing Decompressive Craniectomy (vol 21, pg 339,2009). Journal of Neurosurgical Anesthesiology,2010,22 (2):157-157.
    47. Wu HM, Huang SC, Hattori N, et al. Selective metabolic reduction in gray matter acutely following human traumatic brain injury. Journal of Neurotrauma,2004,21 (2): 149-161.
    48. Tavazzi B, Signoretti S, Lazzarino G, et al. Cerebral oxidative stress and depression of energy metabolism correlate with severity of diffuse brain injury in rats. Neurosurgery, 2005,56 (3):582-588.
    49. Verweij BH, Muizelaar JP, Vinas FC, et al. Impaired cerebral mitochondrial function after traumatic brain injury in humans. Journal of Neurosurgery,2000,93 (5):815-820.
    50. Johnston AJ, Steiner LA, Coles JP, et al. Effect of cerebral perfusion pressure augmentation on regional oxygenation and metabolism after head injury. Crit Care Med, 2005,33 (1):189-95; discussion 255-7.
    51. Rose JC, Neill TA, Hemphill JC,3rd. Continuous monitoring of the microcirculation in neurocritical care:an update on brain tissue oxygenation. Curr Opin Crit Care,2006,12 (2):97-102.
    52. Leal-Noval SR, Rincon-Ferrari MD, Marin-Niebla A, et al. Transfusion of erythrocyte concentrates produces a variable increment on cerebral oxygenation in patients with severe traumatic brain injury:a preliminary study. Intensive Care Med,2006,32 (11): 1733-40.
    53. Menzel M, Doppenberg EM, Zauner A, et al. Cerebral oxygenation in patients after severe head injury:monitoring and effects of arterial hyperoxia on cerebral blood flow, metabolism and intracranial pressure. J Neurosurg Anesthesiol,1999,11 (4):240-51.
    54. Stiefel MF, Spiotta A, Gracias VH, et al. Reduced mortality rate in patients with severe traumatic brain injury treated with brain tissue oxygen monitoring. J Neurosurg, 2005,103 (5):805-11.
    55. Bullock R, Zauner A, Woodward JJ, et al. Factors affecting excitatory amino acid release following severe human head injury. J Neurosurg,1998,89 (4):507-18.
    56. Robertson CL, Bell MJ, Kochanek PM, et al. Increased adenosine in cerebrospinal fluid after severe traumatic brain injury in infants and children:association with severity of injury and excitotoxicity. Crit Care Med,2001,29 (12):2287-93.
    57. Floyd CL, Gorin FA, Lyeth BG. Mechanical strain injury increases intracellular sodium and reverses Na+/Ca2+exchange in cortical astrocytes. Glia,2005,51 (1):35-46.
    58. Yi JH, Hazell AS. Excitotoxic mechanisms and the role of astrocytic glutamate transporters in traumatic brain injury. Neurochem Int,2006,48 (5):394-403.
    59. Obrenovitch TP, Urenjak J. Is high extracellular glutamate the key to excitotoxicity in traumatic brain injury? J Neurotrauma,1997,14 (10):677-98.
    60. Bayir H, Kagan VE, Borisenko GG, et al. Enhanced oxidative stress in iNOS-deficient mice after traumatic brain injury:support for a neuroprotective role of iNOS. J Cereb Blood Flow Metab,2005,25 (6):673-84.
    61. Chong ZZ, Li F, Maiese K. Oxidative stress in the brain:novel cellular targets that govern survival during neurodegenerative disease. Prog Neurobiol,2005,75 (3): 207-46.
    62. Shao C, Roberts KN, Markesbery WR, et al. Oxidative stress in head trauma in aging. Free Radic Biol Med,2006,41 (1):77-85.
    63. Unterberg AW, Stover J, Kress B, et al. Edema and brain trauma. Neuroscience, 2004,129(4):1021-9.
    64. Marmarou A, Fatouros PP, Barzo P, et al. Contribution of edema and cerebral blood volume to traumatic brain swelling in head-injured patients. J Neurosurg,2000,93 (2): 183-93.
    65. Marmarou A, Signoretti S, Fatouros PP, et al. Predominance of cellular edema in traumatic brain swelling in patients with severe head injuries. J Neurosurg,2006,104 (5): 720-30.
    66. Lucas SM, Roth well NJ, Gibson RM. The role of inflammation in CNS injury and disease. Br J Pharmacol,2006,147 Suppl 1:S232-40.
    67. Pullela R, Raber J, Pfankuch T, et al. Traumatic injury to the immature brain results in progressive neuronal loss, hyperactivity and delayed cognitive impairments. Dev Neurosci,2006,28 (4-5):396-409.
    68. Fabricius M, Fuhr S, Bhatia R, et al. Cortical spreading depression and peri-infarct depolarization in acutely injured human cerebral cortex. Brain,2006,129 (Pt 3):778-90.
    1. Boland B, Campbell V. beta-Amyloid (1-40)-induced apoptosis of cultured cortical neurones involves calpain-mediated cleavage of poly-ADP-ribose polymerase. Neurobiol Aging,2003,24 (1):179-86.
    2. Chong ZZ, Li F, Maiese K. Oxidative stress in the brain:novel cellular targets that govern survival during neurodegenerative disease. Prog Neurobiol,2005,75 (3):207-46.
    3. Klein JA, Ackerman SL. Oxidative stress, cell cycle, and neurodegeneration. J Clin Invest,2003,111 (6):785-93.
    4. Stadtman ER. Protein oxidation in aging and age-related diseases. Ann N Y Acad Sci, 2001,928:22-38.
    5. Dringen R. Metabolism and functions of glutathione in brain. Prog Neurobiol,2000,62 (6):649-71.
    6. Floyd RA, Carney JM. Free radical damage to protein and DNA:mechanisms involved and relevant observations on brain undergoing oxidative stress. Ann Neurol,1992,32 Suppl:S22-7.
    7. Zarkovic K.4-hydroxynonenal and neurodegenerative diseases. Mol Aspects Med, 2003,24 (4-5):293-303.
    8. Droge W. Oxidative stress and aging. Adv Exp Med Biol, 2003,543:191-200.
    9. Andersen JK. Oxidative stress in neurodegeneration:cause or consequence? Nature Medicine,2004:S18-S25.
    10. Kamata H, Honda S, Maeda S, et al. Reactive oxygen species promote TNFalpha-induced death and sustained JNK activation by inhibiting MAP kinase phosphatases. Cell,2005,120 (5):649-61.
    11. Finkel T. Redox-dependent signal transduction. FEBS Lett,2000,476 (1-2):52-4.
    12. Meng TC, Fukada T, Tonks NK. Reversible oxidation and inactivation of protein tyrosine phosphatases in vivo. Mol Cell,2002,9 (2):387-99.
    13. Namgung U, Xia Z. Arsenic induces apoptosis in rat cerebellar neurons via activation of JNK3 and p38 MAP kinases. Toxicol Appl Pharmacol,2001,174 (2):130-8.
    14. Liao G, Tao Q, Kofron M, et al. Jun NH2-terminal kinase (JNK) prevents nuclear beta-catenin accumulation and regulates axis formation in Xenopus embryos. Proc Natl Acad Sci USA,2006,103 (44):16313-8.
    15. Liu Y, Guyton KZ, Gorospe M, et al. Age-related decline in mitogen-activated protein kinase activity in epidermal growth factor-stimulated rat hepatocytes. J Biol Chem, 1996,271 (7):3604-7.
    16. Suzaki Y, Yoshizumi M, Kagami S, et al. Hydrogen peroxide stimulates c-Src-mediated big mitogen-activated protein kinase 1 (BMK1) and the MEF2C signaling pathway in PC12 cells:potential role in cell survival following oxidative insults. J Biol Chem, 2002,277 (11):9614-21.
    17. Chalovich EM, Zhu JH, Caltagarone J, et al. Functional repression of cAMP response element in 6-hydroxydopamine-treated neuronal cells. J Biol Chem,2006,281 (26): 17870-81.
    18. Zaman K, Baqui AH, Yunus M, et al. Association between nutritional status, cell-mediated immune status and acute lower respiratory infections in Bangladeshi children. Eur J Clin Nutr,1996,50 (5):309-14.
    19. Dunah AW, Jeong H, Griffin A, et al. Spl and TAFⅡ130 transcriptional activity disrupted in early Huntington's disease. Science,2002,296 (5576):2238-43.
    20. Van Der Heide LP, Hoekman MF, Smidt.MP. The ins and outs of FoxO shuttling: mechanisms of FoxO translocation and transcriptional regulation. Biochem J,2004,380 (Pt 2):297-309.
    21.Brunet A, Sweeney LB, Sturgill JF, et al. Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science,2004,303 (5666):2011-5.
    22. Essers MA, Weijzen S, de Vries-Smits AM, et al. FOXO transcription factor activation by oxidative stress mediated by the small GTPase Ral and JNK. EMBO J,2004;23 (24): 4802-12.
    23. Susin SA, Lorenzo HK, Zamzami N, et al. Molecular characterization of mitochondrial apoptosis-inducing factor. Nature,1999,397 (6718):441-6.
    24. Vahsen N, Cande C, Briere JJ, et al. AIF deficiency compromises oxidative phosphorylation. EMBO J,2004,23 (23):4679-89.
    25. Kaplan DR, Miller FD. Neurotrophin signal transduction in the nervous system. Curr Opin Neurobiol,2000,10 (3):381-91.
    26. Kuan CY, Whitmarsh AJ, Yang DD, et al. A critical role of neural-specific JNK3 for ischemic apoptosis. Proc Natl Acad Sci USA,2003,100 (25):15184-9.
    27. Martindale JL, Holbrook NJ. Cellular response to oxidative stress:signaling for suicide and survival. J Cell Physiol,2002,192 (1):1-15.
    28. Bonni A, Brunet A, West AE, et al. Cell survival promoted by the Ras-MAPK signaling pathway by transcription-dependent and-independent mechanisms. Science,1999,286 (5443):1358-62.
    29. Becker EB, Howell J, Kodama Y, et al. Characterization of the c-Jun N-terminal kinase-BimEL signaling pathway in neuronal apoptosis. J Neurosci,2004,24 (40): 8762-70.
    30. Shimamura A, Ballif BA, Richards SA, et al. Rskl mediates a MEK-MAP kinase cell survival signal. Curr Biol,2000,10 (3):127-35.
    31. Tamagno E, Robino G, Obbili A, et al. H2O2 and 4-hydroxynonenal mediate amyloid beta-induced neuronal apoptosis by activating JNKs and p38MAPK. Exp Neurol, 2003,180(2):144-55.
    32. Luo Y, DeFranco DB. Opposing roles for ERK1/2 in neuronal oxidative toxicity: distinct mechanisms of ERK1/2 action at early versus late phases of oxidative stress. J Biol Chem,2006,281 (24):16436-42.
    33. Chu CT, Levinthal DJ, Kulich SM, et al. Oxidative neuronal injury. The dark side of ERK1/2. Eur J Biochem,2004,271 (11):2060-6.
    34. Stanciu M, DeFranco DB. Prolonged nuclear retention of activated extracellular signal-regulated protein kinase promotes cell death generated by oxidative toxicity or proteasome inhibition in a neuronal cell line. J Biol Chem,2002,277 (6):4010-7.
    35. Hu BR, Wieloch T. Tyrosine phosphorylation and activation of mitogen-activated protein kinase in the rat brain following transient cerebral ischemia. J Neurochem, 1994,62(4):1357-67.
    36. Campos-Gonzalez R, Kindy MS. Tyrosine phosphorylation of microtubule-associated protein kinase after transient ischemia in the gerbil brain. J Neurochem,1992,59 (5): 1955-8.
    37. Otani N, Nawashiro H, Fukui S, et al. Differential activation of mitogen-activated protein kinase pathways after traumatic brain injury in the rat hippocampus. J Cereb Blood Flow Metab,2002,22 (3):327-34.
    38. Satoh T, Nakatsuka D, Watanabe Y, et al. Neuroprotection by MAPK/ERK kinase inhibition with U0126 against oxidative stress in a mouse neuronal cell line and rat primary cultured cortical neurons. Neurosci Lett,2000,288 (2):163-6.
    39. Xia Z, Dickens M, Raingeaud J, et al. Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science,1995,270 (5240):1326-31.
    40. Oh SW, Mukhopadhyay A, Svrzikapa N, et al. JNK regulates lifespan in Caenorhabditis elegans by modulating nuclear translocation of forkhead transcription factor/DAF-16. Proc Natl Acad Sci USA,2005,102 (12):4494-9.
    41. Wang MC, Bohmann D, Jasper H. JNK extends life span and limits growth by antagonizing cellular and organism-wide responses to insulin signaling. Cell,2005,121 (1):115-25.
    42. Davis RJ. Signal transduction by the JNK group of MAP kinases. Cell,2000,103 (2): 239-52.
    43. Namgung U, Xia Z. Arsenite-induced apoptosis in cortical neurons is mediated by c-Jun N-terminal protein kinase 3 and p38 mitogen-activated protein kinase. J Neurosci, 2000,20 (17):6442-51.
    44. Herdegen T, Claret FX, Kallunki T, et al. Lasting N-terminal phosphorylation of c-Jun and activation of c-Jun N-terminal kinases after neuronal injury. J Neurosci,1998,18 (14):5124-35.
    45. Ozawa H, Shioda S, Dohi K, et al. Delayed neuronal cell death in the rat hippocampus is mediated by the mitogen-activated protein kinase signal transduction pathway. Neurosci Lett,1999,262 (1):57-60.
    46. Kuan CY, Whitmarsh AJ, Yang DD, et al. A critical role of neural-specific JNK3 for ischemic apoptosis. Proceedings of the National Academy of Sciences of the United States of America,2003,100 (25):15184-15189.
    47. Choi WS, Yoon SY, Oh TH, et al. Two distinct mechanisms are involved in 6-hydroxydopamine-and MPP+-induced dopaminergic neuronal cell death:role of caspases, ROS, and JNK. J Neurosci Res,1999,57 (1):86-94.
    48. Dirnagl U, Simon RP, Hallenbeck JM. Ischemic tolerance and endogenous neuroprotection. Trends in Neurosciences,2003,26 (5):248-254.
    49. Stanciu M, DeFranco DB. Prolonged nuclear retention of activated extracellular signal-regulated protein kinase promotes cell death generated by oxidative toxicity or proteasome inhibition in a neuronal cell line. Journal of Biological Chemistry,2002,277 (6):4010-4017.
    50. Kulich SM, Chu CT. Sustained extracellular signal-regulated kinase activation by 6-hydroxydopamine:implications for Parkinson's disease. J Neurochem,2001,77 (4): 1058-66.
    51. Liu ZG, Hsu H, Goeddel DV, et al. Dissection of TNF receptor 1 effector functions: JNK activation is not linked to apoptosis while NF-kappaB activation prevents cell death. Cell,1996,87 (3):565-76.
    52. Colucci-D'Amato L, Perrone-Capano C, di Porzio U. Chronic activation of ERK and neurodegenerative diseases. Bioessays,2003,25 (11):1085-95.
    53. Zhang P, Wang YZ, Kagan E, et al. Peroxynitrite targets the epidermal growth factor receptor, Raf-1, and MEK independently to activate MAPK. J Biol Chem,2000,275 (29):22479-86.
    54. Lee SR, Kwon KS, Kim SR, et al. Reversible inactivation of protein-tyrosine phosphatase 1B in A431 cells stimulated with epidermal growth factor. J Biol Chem, 1998,273 (25):15366-72.
    55. Levinthal DJ, Defranco DB. Reversible oxidation of ERK-directed protein phosphatases drives oxidative toxicity in neurons. J Biol Chem,2005,280 (7):5875-83.
    56. Takano S, Fukuyama H, Fukumoto M, et al. Induction of CL100 protein tyrosine phosphatase following transient forebrain ischemia in the rat brain. J Cereb Blood Flow Metab,1995,15(1):33-41.
    57. Levinthal DJ, DeFranco DB. Reversible oxidation of ERK-directed protein phosphatases drives oxidative toxicity in neurons. Journal of Biological Chemistry, 2005,280 (7):5875-5883.
    58. Lee SR, Sonn JK, Yoo BJ, et al. Phosphorylation of a 66 kDa protein, a putative protein kinase C substrate, is related to chondrogenesis of chick embryo mesenchymes in vitro. Journal of Biochemistry and Molecular Biology,1998,31 (4):350-354.
    59. Tonks NK. Redox redux:Revisiting PTPs and the control of cell signaling. Cell, 2005,121 (5):667-670.
    60. Tran H, Brunet A, Griffith EC, et al. The many forks in FOXO's road. Sci STKE, 2003,2003 (172):RE5.
    61.Chu S, Ferro TJ. Spl:regulation of gene expression by phosphorylation. Gene, 2005,348:1-11.
    62. Lonze BE, Riccio A, Cohen S, et al. Apoptosis, axonal growth defects, and degeneration of peripheral neurons in mice lacking CREB. Neuron,2002,34 (3):371-85.
    63. Ito Y, Arakawa M, Ishige K, et al. Comparative study of survival signal withdrawal-and 4-hydroxynonenal-induced cell death in cerebellar granule cells. Neurosci Res,1999,35 (4):321-7.
    64. See V, Loeffler JP. Oxidative stress induces neuronal death by recruiting a protease and phosphatase-gated mechanism. J Biol Chem,2001,276 (37):35049-59.
    65. Zaman K, Ryu H, Hall D, et al. Protection from oxidative stress-induced apoptosis in cortical neuronal cultures by iron chelators is associated with enhanced DNA binding of hypoxia-inducible factor-1 and ATF-1/CREB and increased expression of glycolytic enzymes, p21(waf1/cip1), and erythropoietin. J Neurosci,1999,19 (22):9821-30.
    66. Yonezawa M, Back SA, Gan X, et al. Cystine deprivation induces oligodendroglial death:rescue by free radical scavengers and by a diffusible glial factor. J Neurochem, 1996,67 (2):566-73.
    67. Nucifora FC, Jr., Sasaki M, Peters MF, et al. Interference by huntingtin and atrophin-1 with cbp-mediated transcription leading to cellular toxicity. Science,2001,291 (5512): 2423-8.
    68. Zhu JH, Guo F, Shelburne J, et al. Localization of phosphorylated ERK/MAP kinases to mitochondria and autophagosomes in Lewy body diseases. Brain Pathol,2003,13 (4): 473-81.
    69. Wang X, Zhu C, Qiu L, et al. Activation of ERK1/2 after neonatal rat cerebral hypoxia-ischaemia. J Neurochem,2003,86 (2):351-62.
    70. Lam YA, Pickart CM, Alban A, et al. Inhibition of the ubiquitin-proteasome system in Alzheimer's disease. Proc Natl Acad Sci USA,2000,97 (18):9902-6.
    71. Moore DJ, Dawson VL, Dawson TM. Role for the ubiquitin-proteasome system in Parkinson's disease and other neurodegenerative brain amyloidoses. Neuromolecular Med,2003,4 (1-2):95-108.
    72. Keller JN, Dimayuga E, Chen Q, et al. Autophagy, proteasomes, lipofuscin, and oxidative stress in the aging brain. Int J Biochem Cell Biol,2004,36 (12):2376-91.
    73. Le-Niculescu H, Bonfoco E, Kasuya Y, et al. Withdrawal of survival factors results in activation of the JNK pathway in neuronal cells leading to Fas ligand induction and cell death. Mol Cell Biol,1999,19 (1):751-63.
    74. Matsushita K, Wu Y, Qiu J, et al. Fas receptor and neuronal cell death after spinal cord ischemia. J Neurosci,2000,20 (18):6879-87.
    75. Accili D, Arden KC. FoxOs at the crossroads of cellular metabolism, differentiation, and transformation. Cell,2004,117 (4):421-6.
    76. Brunet A, Bonni A, Zigmond MJ, et al. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell,1999,96 (6):857-68.
    77. Bonni A. Neurodegeneration:A non-apoptotic role for AIF in the brain. Curr Biol, 2003,13 (1):R19-21.
    78. Joza N, Susin SA, Daugas E, et al. Essential role of the mitochondrial apoptosis-inducing factor in programmed cell death. Nature,2001,410 (6828):549-54.
    79. Yu SW, Wang H, Poitras MF, et al. Mediation of poly(ADP-ribose) polymerase-1-dependent cell death by apoptosis-inducing factor. Science,2002,297 (5579):259-63.
    80. Otera H, Ohsakaya S, Nagaura Z, et al. Export of mitochondrial AIF in response to proapoptotic stimuli depends on processing at the intermembrane space. EMBO J, 2005,24(7):1375-86.
    81. Cheung EC, Melanson-Drapeau L, Cregan SP, et al. Apoptosis-inducing factor is a key factor in neuronal cell death propagated by BAX-dependent and BAX-independent mechanisms. J Neurosci,2005,25 (6):1324-34.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700