盐胁迫下胡杨表达谱微阵列分析及差异表达基因的功能解析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
胡杨为我国西北干旱盐碱区域唯一能够成林的高大乔木树种,在生态脆弱地区的生态稳定性方面具有不可替代的作用。近年来,国内外学者从生理生化层面对胡杨的耐盐机制进行了系统研究,但是胡杨耐盐分子机理方面的研究还不系统和深入。据此,我们以胡杨以及盐敏感的群众杨为材料,对NaCl长期和短期胁迫下叶片的表达谱进行了动态分析,拟从基因表达的角度揭示胡杨的耐盐机理。主要研究结果和结论如下:
     1.利用改良的热硼砂盐法提取胡杨与群众杨叶片的总RNA,该方法能有效的抑制植物体内多酚和多糖的干扰,后续的实验也表明,所得到的高质量RNA能应用于生物芯片的研究。
     2.利用Affymetrix芯片技术研究了胡杨和盐敏感杨树群众杨的表达谱,发现两种杨树的表达谱存在明显差异,这些差异基本上可以分成两类:非诱导型差异(树种间的表达谱差异)和诱导型差异(盐处理前后表达谱的差异)。对比分析两种杨树诱导型与非诱导型差异表达的基因,就可以推断胡杨耐盐分子机制的有关信息。在非胁迫条件下,许多与抗逆相关蛋白的基因在胡杨中的表达量明显高于群众杨。这些基因包括转录调节因子蛋白基因、离子与多糖转运蛋白基因、细胞信号转导蛋白基因、植物抗氧化胁迫蛋白基因等。这表明,生长在干旱盐碱沙漠地带的胡杨已经通过长期进化形成了特有的耐盐机制。
     3.胡杨与群众杨的表达谱还存在诱导型差异:在胡杨中,短期盐处理共获得了个467差异基因探针,其中368个基因探针上调,99个基因探针下调;长期盐处理的胡杨共获得52个差异表达基因探针,其中上调43个,下调9个。在群众杨中,短期盐处理共获得458个差异表达基因探针,其中420个上调,38个下调,长期盐处理的群众杨共获得3908个差异基因表达探针,其中上调2047个,下调1861个。在这些差异表达的基因中,我们发现一些基因的表达应与胡杨的耐盐性相关,这些基因包括:(1)转录调节物质类基因:转录调节因子(锌指蛋白,wrky51,MYB11,ABF2)、磷脂酶C、酪氨酸磷酸酶、14-3-3等基因;(2)叶绿体叶绿素合成类基因;(3)糖代谢(糖酵解,三羧酸循环,磷酸戊糖途径)、淀粉合成基因;(4)次生代谢物质(渗透调节物质)的合成:类黄酮类、木质素、甘露糖合成基因;(5)活性氧代谢基因:POD、SOD、谷胱甘肽-S-转移酶、抗坏血酸还原酶、抗坏血酸过氧化物酶、过氧化氢裂解酶、铁(硫)氧还蛋白等;(6)保护蛋白基因:热激蛋白、LEA蛋白、细胞色素P450;(7)各种转运体基因:氮转运体、阳离子转运体、山梨糖类转运体、糖类转运体等。在短期或长期盐处理下,上述这些基因在胡杨叶片中上调表达,但在群众杨中的表达量下降或不变。因此,我们认为这些基因的表达应与胡杨的耐盐性相关。
     此外,我们还在两种杨树中发现了盐诱导共表达的基因。在短期盐处理下,胡杨与群众杨有40个基因表达探针共上调,我们对这些基因进行了启动子的生物信息学分析,发现这些基因的启动子都具有共同的顺式作用元件的结构,主要响应渗透胁迫。
     4.在对杨树表达谱分析的基础上,我们研究了重要抗盐基因在两种杨树中的表达特点,发现离子平衡调控、活性氧平衡的调控、光合作用相关基因的表达与胡杨的耐盐性密切相关。
     (1)在离子平衡调控方面,参与离子平衡调控的Na+/H+逆向转运蛋白(如SOS1、NHD2)和质子泵(如质膜H+-ATPase)等重要蛋白的基因在胡杨中的表达量明显高于群众杨,并且,这些基因的表达量没有受到短期和长期盐胁迫的影响。叶片中离子关系的研究结果表明,在长期盐处理下,胡杨叶片中的Na+离子含量显著小于群众杨。表达谱数据显示,胡杨能够保持Na+/H+逆向转运蛋白以及质子泵基因的高表达,有助于将Na+离子排到细胞外空间。
     (2)在光合作用调控方面,短期盐胁迫下胡杨上调了包括叶绿素a/b结合蛋白、PSB-Q(光系统亚基Q蛋白)、叶绿体内膜蛋白以及光合作用电子传递链类基因,并且,在长期盐胁迫下,这些基因在胡杨中表达量未有下降,但在群众杨中却明显下调。胡杨能够上调光合作用相关基因,有利于胡杨在盐处理条件下维持光合作用的进行,这与本实验室前期胡杨光合作用方面的研究结果相吻合。
     (3)在活性氧平衡调控方面,短期盐胁迫下,胡杨能够迅速上调许多抗氧化物酶基因,包括Cu-Zn SOD、CAT、PODs、PRX、TRXs、GRX和GSTs。然而,短期盐处理的群众杨只能上调如APX、阴离子POD、TRX、GRX等少数抗氧化物酶基因。长期盐胁迫下,胡杨的抗氧化物酶基因的表达并没有受到太大的影响。与胡杨不同,在长期盐胁迫下,群众杨叶片中许多抗氧化酶基因的表达发生了很大改变:群众杨在下调如Cu-Zn SOD、H2O2水解酶、APX、PRX以及一止匕POD、TRX、GRX和GST家族成员基因表达的同时,也上调了CAT以及POD、TRX、GRX以及GST另外一些家族成员的基因表达。实验结果说明,群众杨抗氧化物酶基因家族的不同成员对于盐胁迫的响应具有明显差异。胡杨响应盐胁迫上调抗氧化酶基因的表达,有利于胡杨细胞对ROS平衡的调控。Confocal的实验结果显示,在长期盐胁迫条件下,胡杨能够控制叶片H202的水平,避免盐诱导氧化伤害。与胡杨不同,群众杨在长期盐胁迫下,叶片发生H202爆发。这是由于群众杨在初始盐胁迫不能迅速上调抗氧化酶基因的表达,难以控制ROS水平,在长期盐处理后导致ROS爆发,从而诱发氧化伤害。
     (4)应用了荧光定量PCR技术对代表性的差异基因(包括HAK1、ATGPX2、APX、POD和K+通道蛋白基因)进行了验证,验证结果显示,荧光定量PCR结果和表达谱结果所得的差异基因表达趋势一致,表明表达谱数据真实可靠,数据质量满足数据挖掘的质量要求。
     5.质膜H+-ATPase在胡杨离子平衡调控和胁迫信号转导方面起到非常重要的作用。表达谱的数据显示,胡杨在非盐胁迫下就能维持H+-ATPase基因(AHA)的高表达,然而,胡杨质膜H+-ATPase的分子调控机制鲜有研究。通过比较不同耐盐性杨树H+-ATPase启动子区域的顺式作用元件,能够了解H+-ATPase基因表达调控的分子机制。本文克隆了胡杨与不耐盐杨树灰杨(AHA)的启动子区域,并构建载体进行了瞬时转化的研究。生物信息学的分析表明,胡杨AHA的启动子结构与灰杨明显不同,胡杨AHA的启动子区域富集了响应ABA的顺式作用元件。瞬时表达的结果表明,胡杨AHA的启动子响应ABA,而灰杨该基因的启动子不具ABA响应能力。
     总之,胡杨与盐敏感杨树在基因表达方面存在明显差异,在胁迫和非胁迫条件下,胡杨能维持离子转运相关蛋白基因的高表达,保持叶片的K+/Na+平衡,避免Na+离子过度累积对叶细胞的毒害作用。胡杨能迅速上调ROS代谢相关蛋白基因的表达,有助于维持膜系统的稳定性,避免膜系统的氧化损伤。此外,胡杨还能迅速上调光合作用相关蛋白基因的表达,从而有利于胡杨在盐胁迫下固定CO2,合成碳水化合物,为胡杨维持离子平衡和活性氧平衡提供重要的能量来源。
P. euphratica Oliv. is a valuable tree species used for afforestation on saline and alkaline desert sits in the north-west China, and plays a crucial role to maintain ecological stability in ecologically fragile areas. Recently, the physiological and biochemical mechanisms of the salt tolerance have been extensively investigated in P. euphratica, however, the molecular mechanism of salt tolerance in P. euphratica is not systematicly and thoroughly investigated. Using the Affymetrix poplar genome array, we explored the leaf transcriptome of salt-tolerant Populus euphratica Oliv. and salt-sensitive P. popularis 35-44 (P. popularis) under short term and long term NaCl stress. The aim is to establish a correlation between the gene expression and molecular mechanism of salt tolerance in P. euphratica.
     1. A modified sodium borate method was adopted to extract the total leaf RNA of P. popularis and P. popularis. This method was effectively to reduce the interference of polyphenolics and polysaccharides during RNA isolation and purification. The follow-up experiments also confirmed that high quality of total RNA could be successfully used in our microarray analysis.
     2. The transcriptomes of P. euphratica and P. popularis were compared using Affymetrix microarray systems. We found that there were species difference in the expression profiles between the two poplars, which can basically be divided into two categories:natural (non-induced) differences (differences in expression patterns between the poplar species under non-stress conditions) and salt-induced differences (differences in expression profiles before and after salt treatments). The molecular mechanism of salt-tolerant P. euphratica can be inferred according to the differential expressed genes-natural and stress-inducible genes between the salt-tolerant and sensitive poplar. Under non-saline conditions, the transcription abundance of many genes related to stress resistance in P. euphratica is significantly higher than that in P. popularis. They are genes of the transcription factor protein, ion and polysaccharide transporter, signal transduction protein, and anti-oxidative defence components. The data suggest that P. euphratica plants have evolved relevant mechanisms to tolerate saline environments after a long time adaptation to arid and saline desert.
     3. There are still salt inducible differences in gene expression profiles between P. euphratica and P. popularis. In ST (short-term NaCl)-treated P. euphratica,368 probesets among the 467 differentially expressed genes were up-regulated while the other 99 probesets were down-regulated. Under LT (long-term NaCl) stress conditions,52 probesets were differentially expressed, among which 43 probesets were up-regulated and 9 probesets were down-regulated. For the salt sensitive species, P. popularis, the ST treatment changed the expression of 458 probesets:420 probesets were increased while 38 probesets decreased. The transcription of 3908 probesets were alterd by the LT stress, among which 2047 probesets were up-regulated and 1861 probesets down-regulated. In these differentially expressed genes, we found that some genes were highly associated with the salt tolerance in P. euphratica. These genes are (1) transcriptional regulators genes such as transcription factors (zinc finger protein, wrky51, MYB11, ABF2), phospholipase C, tyrosine phosphatase,14-3-3 and other genes; (2) chloroplast chlorophyll biosynthesis genes; (3) carbohydrate metabolic genes which are involved in glycolysis, Krebs cycle, pentose phosphate and starch synthesis pathway; (4) secondary metabolite (especially osmotic adjustment) synthesis genes like flavonoids, lignin and mannose synthesis genes; (5) ROS metabolism genes like POD, SOD, glutathione-S-transferase, ascorbate reductase, ascorbate peroxidase, hydrogen peroxide lyase and TRX; (6) protective protein genes like heat shock proteins, LEA proteins, cytochrome P450; (7) various transporter genes:nitrogen transporter, cation transporter, sugar transporter, etc. Noteworthy is that these genes were up-regulated in P. euphratica during short-term or long-term salt treatments, but their expression were decreased or remained unchanged in salinised P. popularis. Therefore, we conclude that the salt inducible genes expression is presumably associated with salt tolerance in P. euphratica.
     Besides the differentially expressed genes that mentioned above, we also found co-upregulated genes in salt-treated plants of the two species. Under ST treatments, transcription of 40 probesets was enhanced in salinied P. euphratica and P. popularis. We extracted the promoter regions of their homolog genes from P. trichocarpa. The bioinformatics analysis show that the promoter of these genes share common cis-acting elements that are responsible for osmotic stress sensing.
     4. On the basis of poplar transcriptome analysis, we characterized the expression of some important salt-resistant genes in the two poplar species. We found that the gene transcription of ion homeostasis, ROS homeostasis and photosynthesis is closely related to the salt tolerance of P. euphratica.
     (1) Genes related to ionic homeostasis. We found that genes like Na+/H+ antiporter such as SOS1 and NHD2 and proton pump genes such as PM H+-ATPase were significantly higher expressed in P. euphratica compared to P. popularis. Moreover, their expression was not decreased by the ST and LT stress in P. euphratica. Na+ content in P. euphratica leaves was significantly less than P. popularis under LT treatments. Our microarray data show that P. euphratica maintained high expression of Na+/H+ antiporter and proton pumpss, which are favorable to extrude Na+ to the extracellular space.
     (2) Genes related to photosynthesis. In P. euphratica, photosynthesis related genes like chlorophyll a/b binding protein, PSB-Q, the chloroplast membrane proteins and electron transport chain genes were up-regulated during ST treatment, and their expression was not down-regulated by the LT treatments. In contrast, the expression of these genes in P. popularis was decreased by LT stress. Therefore, P. euphratica up-regulated photosynthesis related genes to cope with the salt stress, which is beneficial to maintain leaf photosynthesis under saline conditions. The result is consistent to our previous findings in photosynthesis studies.
     (3) Genes related to ROS homeostasis. After exposure to ST salinity, P. euphratica showed strikingly up-regulated transcription of a variety of anti-oxidant enzymes, including Cu-Zn SOD, CAT, PODs, PRX, TRXs, GRX and GSTs. Compared with P. euphratica, fewer antioxidant enzymes (e.g., APX, anionic POD, TRXs and GRX) were up-regulated in ST-stressed P. popularis. Unlike ST-stressed plants, expression of antioxidant enzymes in P. euphratica was not significantly altered by LT stress. In contrast to P. euphratica, LT salinity significantly affected the transcription of a large number of antioxidant enzymes in P. popularis leaves. NaCl decreased transcription of Cu-Zn SODs, H2O2 lyase, APX, PRXs and some members of POD, TRX, GRX and GST, but enhanced expression of CAT and several members of POD, TRX, GRX and GST. These results indicate the member-specific response to salinity in each family of antioxidant enzymes in P. popularis. P. euphratica rapidly up-regulated expression of antioxidant enzymes upon salt stress, contributing to the control of ROS production and oxidative damage. Confocal analysis of leaves show that P. euphratica strictly limited the level of H2O2 during the LT stress, thus avoiding the salt-induced oxidative damage. In contrast to to P. euphratica, H2O2 burst occurred in LT-stressed P. popularis leaves. This is due to its inability to increase the expression of antioxidant enzymes at the beginning of salt stress, which resulted in an overproduction of ROS in leaf cells, leading to an oxidative damage over a prolonged period of salinity.
     (4) We used quantitative RT-PCR to evaluate our microarray data. Several representative genes, e.g., HAK1, ATGPX2, APX, POD and K+ channel gene, were verified. Real-time PCR confirmation showed a consistent tendency of gene expression to the microarray data. This indicates that the data derived from Affymetrix poplar genome array was solid and reliable, therefore, the data is sufficiently qualified to continue the subsequent data mining.
     5. The plasma membrane H+-ATPase plays an important role in ion homeostasis and stress signal transduction in P. euphratica. Our microarray data show that P. euphratica retained a high transcription abundance of the H+-ATPase gene (AHA) under non saline conditions. However, the regulation of H+-ATPase at molecular levels is unkown. We are able to identify different cis-elements related to stress in poplars by comparing the promoter regions of AHAs in the salt tolerant and sensitive poplar species., This can also help us to understand the expression regulation of AHAs upon the salt treatment. The promoter regions of AHAs were cloned from P. euphratica and a salt sensitive species P. canescens, followed by bioinformatics and transient transformation analyses. Bioinformatics analysis show that the promoter structure of PeAHA is rather different to that of PcAHA. Compared to PcAHA, PeAHA is enriched with cis-elements in response to ABA in the promoter region. Moreover, the transient expression results also confirmed that the promoter of PeAHA could response to ABA treatments, but there was no corresponding response in PcAHA promoter.
     In conclusion, there were marked differences of gene expression between P. euphratica and salt sensitive species. P. euphratica maintained high expression of ion transporters and channels under normal and stressed conditions, which is helpful for the salt-resistant species to control K+/Na+ homeostasis in leaves. This is a mechanism to avoid excessive accumulation of Na+, and reduces its toxicity in leaf cells. P. euphratica can also rapidly increase the expression of ROS metabolism genes to pre(?)ent oxidative damage. This is able to maintain the stability of membrane system and reduces the membrane peroxidation. In addition, P. euphratica is capable of increasing the expression of photosynthesis-related genes, thus contributing to CO2 assimilation under salt stress. The carbohydrates provide an important source of energy for maintaining ionic homeostasis and ROS homeostasis.
引文
1.戴松香,陈少良,Fritz E. Olbrich A, Kettner C, Polle A and Huttermann A盐胁迫下胡杨和毛白杨叶细胞中的离子区隔化[J]。北京林业大学学报,2006.28(增刊2):1-5.
    2.马焕成,王沙生.盐胁迫下胡杨的离子响应[J].西南林学院学报,1998,18(1):42-47
    3.王世绩,陈炳浩,李护群.胡杨林[M],北京:中国环境科学出版社,1995.
    4.魏庆莒.胡杨[M],中国林业出版社,1990.
    5. Achard P, Cheng H, De Grauwe L, Decat J, Schoutteten H, Moritz T, Van Der Straeten D, Peng J, Harberd NP (2006) Integration of plant responses to environmentally activated phytohormonal signals. Science 311:91-94
    6. Apel K, Hirt H (2004) Reactive oxygen species:metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373-399
    7. Apse MP, Aharon GS, Snedden WA, Blumwald E (1999) Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis. Science 285:1256-1258
    8. Batelli G, Verslues PE, Agius F, Qiu Q, Fujii H, Pan S, Schumaker KS, Grillo S, Zhu JK (2007) SOS2 promotes salt tolerance in part by interacting with the vacuolar H+-ATPase and upregulating its transport activity. Mol Cell Biol 27:7781-7790
    9. Baxter-Burrell A, Yang Z, Springer PS, Bailey-Serres J (2002) RopGAP4-dependent Rop GTPase rheostat control of Arabidopsis oxygen deprivation tolerance. Science 296: 2026-2028
    10. Beritognolo I, Piazzai M, Benucci S, Kuzminsky E, Sabatti M, Mugnozza GS, Muleo R (2007) Functional characterisation of three Italian Populus alba L. genotypes under salinity stress. Trees (Berl) 21:465-477
    11. Brosche M, Vinocur B, Alatalo ER, Lamminmaki A, Teichmann T, Ottow EA, Djilianov D, Afif D, Bogeat-Triboulot MB, Altman A, Polle A, Dreyer E, Rudd S, Paulin L, Auvinen P, Kangasjarvi J (2005) Gene expression and metabolite profiling of Populus euphratica growing in the Negev desert. Genome Biol 6:R101
    12. Bolu W.H., Polle A. (2004) Growth and stress reactions in roots and shoots of a salt-sensitive poplar species (Populus × canescens). Tropical Ecology 45:161-171
    13. Chen LH, Zhang B, Xu ZQ (2008) Salt tolerance conferred by overexpression of Arabidopsis vacuolar Na(+)/H(+) antiporter gene AtNHX1 in common buckwheat (Fagopyrum esculentum). Transgenic Res 17:121-132
    14. Chen S, Li J, Wang S, Huttermann A, Altman A (2001) Salt, nutrient uptake and transport, and ABA of Populus euphratica; a hybrid in response to increasing soil NaCl. Trees (Berl) 15:186-194
    15. Chen S, Li J, Fritz E, Wang S, Hu ttermann A (2002a) Sodium and chloride distribution in roots and transport in three poplar genotypes under increasing NaCl stress. For Ecol Manag 168:217-230
    16. Chen S, Li J, Wang T, Wang S, Polle A, Hu ttermann A (2002b) Osmotic stress and ion-specific effects on xylem abscisic acid and the relevance to salinity tolerance in poplar. J Plant Growth Regul 21:224-233
    17. Chen S, Li J, Wang S, Fritz E, Hu'ttermann A, Altman A (2003a) Effects of NaCl on shoot growth, transpiration, ion compartmentation, and transport in regenerated plants of Populus euphratica and Populus tomentosa. Can J For Res 33:967-975
    18. Chen S, Li J, Wang T, Wang S, Polle A, Hu'ttermann A (2003b) Gas exchange, xylem ions and abscisic acid response to Na+-salts and Cl--salts in Populus euphratica. Acta Bot Sin 45:561-566
    19. Chen S, Polle A (2010) Salinity tolerance of Populus. Plant Biol (Stuttg) 12:317-333
    20. Chen Z, Silva H, Klessig DF (1993) Active oxygen species in the induction of plant systemic acquired resistance by salicylic acid. Science 262:1883-1886
    21. Chinnusamy V, Jagendorf A, Zhu J-K (2005) Understanding and improving salt tolerance in plants. Crop Sci 45:437-448
    22. Czempinski K, Frachisse JM, Maurel C, Barbier-Brygoo H, Mueller-Roeber B (2002) Vacuolar membrane localization of the Arabidopsis'two-pore'K+ channel KCO1. Plant J 29:809-820
    23. Dai S, Chen S, Fritz E, Olbrich A, Kettner C, Polle A, Hu ttermann A (2006) Ion compartmentation in leaf cells of Populus euphratica and P. tomentosa under salt stress. J Beijing For Univ 28 (Supp12):1-5 (in Chinese with English abstract)
    24. Dat J, Vandenabeele S, Vranova E, Van Montagu M, Inze D, Van Breusegem F (2000) Dual action of the active oxygen species during plant stress responses. Cell Mol Life Sci 57: 779-795
    25. Desikan R, Cheung MK, Bright J, Henson D, Hancock JT, Neill SJ (2004) ABA, hydrogen peroxide and nitric oxide signalling in stomatal guard cells. J Exp Bot 55:205-212
    26. Desikan R, S AH-M, Hancock JT, Neill SJ (2001) Regulation of the Arabidopsis transcriptome by oxidative stress. Plant Physiol 127:159-172
    27. Ding HD, Zhang XH, Xu SC, Sun LL, Jiang MY, Zhang AY, Jin YG (2009) Induction of protection against paraquat-induced oxidative damage by abscisic acid in maize leaves is mediated through mitogen-activated protein kinase. J Integr Plant Biol 51:961-972
    28. Eckardt NA (2008) Oxylipin signaling in plant stress responses. Plant Cell 20:495-497
    29. Escalante-Pe'rez M, Lautner S, Nehls U, Selle A, Teuber M, Schnitzler JP, Teichmann T, Fayyaz P, Hartung W, Polle A,Fromm J, Hedrich R, Ache P (2009) Salt stress affects xylem differentiation of grey poplar (Populus 9 canescens). Planta 229:299-309
    30. Ferreira S, Hjerno K, Larsen M, Wingsle G, Larsen P, Fey S, Roepstorff P, Salome Pais M (2006) Proteome profiling of Populus euphratica Oliv. upon heat stress. Ann Bot 98:361-377
    31. Fricke W, Akhiyarova G, Veselov D, Kudoyarova G (2004) Rapid and tissue-specific changes in ABA and in growth rate in response to salinity in barley leaves. J Exp Bot 55:1115-1123
    32. Fricke W, Akhiyarova G, Wei W, Alexandersson E, Miller A, Kjellbom PO, Richardson A, Wojciechowski T, Schreiber L, Veselov D, Kudoyarova G, Volkov V (2006) The short-term growth response to salt of the developing barley leaf. J Exp Bot 57:1079-1095
    33. Fricke W, Peters WS (2002) The biophysics of leaf growth in salt-stressed barley. A study at the cell level. Plant Physiol 129:374-388
    34. Fu HH, Luan S (1998) AtKuP1:a dual-affinity K+ transporter from Arabidopsis. Plant Cell 10: 63-73
    35. Grant JJ, Loake GJ (2000) Role of reactive oxygen intermediates and cognate redox signaling in disease resistance. Plant Physiol 124:21-29
    36. Grene (2002) Oxidative stress and acclimation mechanisms in plants. The Arabidopsis Book (Special revue), The American Society of Plant Biologists, Rockville, MD, USA, pp 1-20
    37. Gu R, Fonseca S, Puskas LG, Hackler L, Jr., Zvara A, Dudits D, Pais MS (2004) Transcript identification and profiling during salt stress and recovery of Populus euphratica. Tree Physiol 24:265-276
    38. Hamanishi ET, Raj S, Wilkins O, Thomas BR, Mansfield SD, Plant AL, Campbell MM (2010) Intraspecific variation in the Populus balsamifera drought transcriptome. Plant Cell Environ 33:1742-1755
    39. Hammond-Kosack KE, Jones JD (1996) Resistance gene-dependent plant defense responses. Plant Cell 8:1773-1791
    40. Horie T, Sugawara M, Okada T, Taira K, Kaothien-Nakayama P, Katsuhara M, Shinmyo A, Nakayama H (2011) Rice sodium-insensitive potassium transporter, OsHAK5, confers increased salt tolerance in tobacco BY2 cells. J Biosci Bioeng 111:346-356
    41. Huang XY, Chao DY, Gao JP, Zhu MZ, Shi M, Lin HX (2009) A previously unknown zinc finger protein, DST, regulates drought and salt tolerance in rice via stomatal aperture control. Genes Dev 23:1805-1817
    42. Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions:beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901-3907
    43. Jeong J, Cohu C, Kerkeb L, Pilon M, Connolly EL, Guerinot ML (2008) Chloroplast Fe(Ⅲ) chelate reductase activity is essential for seedling viability under iron limiting conditions. Proc Natl Acad Sci U S A 105:10619-10624
    44. Liang.J, Zhang.J and Wong. M H (1997) Can stomatal closure caused by xylem ABA explain the inhibition of leaf photosynthesis under soil drying? Photosynthesis Research 51:149-159
    45. Liang.J, ZhangJ. and M. H. Wong (1997) Can stomatal closure caused by xylem ABA explain the inhibition of leaf photosynthesis under soil drying? Photosynthesis Research 51:149-159
    46. Kawaura K, Mochida K, Ogihara Y (2008) Genome-wide analysis for identification of salt-responsive genes in common wheat. Funct Integr Genomics 8:277-286
    47. Knight H, Knight MR (2001) Abiotic stress signalling pathways:specificity and cross-talk. Trends Plant Sci 6:262-267
    48. Kovtun Y, Chiu WL, Tena G, Sheen J (2000) Functional analysis of oxidative stress-activated mitogen-activated protein kinase cascade in plants. Proc Natl Acad Sci U S A 97:2940-2945
    49. Kreps JA, Wu Y, Chang HS, Zhu T, Wang X, Harper JF (2002) Transcriptome changes for Arabidopsis in response to salt, osmotic, and cold stress. Plant Physiol 130:2129-2141
    50. Kuromori T, Shinozaki K (2010) ABA transport factors found in Arabidopsis ABC transporters. Plant Signal Behav 5:1124-1126
    51. Lebaudy A, Very AA, Sentenac H (2007) K+ channel activity in plants:genes, regulations and functions. FEBS Lett 581:2357-2366
    52. Leshem Y, Seri L, Levine A. Induction of phosphatidylinositol 3-kinase-mediated endocytosis by salt stress leads to intracellular production of reactive oxygen species and salt tolerance [J]. Plant J.2007,51,185-197.
    53. Lee SC, Choi du S, Hwang IS, Hwang BK (2010) The pepper oxidoreductase CaOXRl interacts with the transcription factor CaRAV1 and is required for salt and osmotic stress tolerance. Plant Mol Biol 73:409-424
    54. Leidi EO, Barragan V, Rubio L, El-Hamdaoui A, Ruiz MT, Cubero B, Fernandez JA, Bressan RA, Hasegawa PM, Quintero FJ, Pardo JM (2010) The AtNHX1 exchanger mediates potassium compartmentation in vacuoles of transgenic tomato. Plant J 61:495-506
    55. Lin H, Yang Y, Quan R, Mendoza I, Wu Y, Du W, Zhao S, Schumaker KS, Pardo JM, Guo Y (2009) Phosphorylation of SOS3-LIKE CALCIUM BINDING PROTEIN8 by SOS2 protein kinase stabilizes their protein complex and regulates salt tolerance in Arabidopsis. Plant Cell 21:1607-1619
    56. Lintala M, Allahverdiyeva Y, Kangasjarvi S, Lehtimaki N, Keranen M, Rintamaki E, Aro EM, Mulo P (2009) Comparative analysis of leaf-type ferredoxin-NADP oxidoreductase isoforms in Arabidopsis thaliana. Plant J 57:1103-1115
    57. Liu X, Zhao J, Wu Q (2006) Biogenesis of chlorophyll-binding proteins under iron stress in Synechocystis sp. PCC 6803. Biochemistry (Mosc) 71 Suppl 1:S101-104
    58. Lu S, Sun YH, Chiang VL (2008) Stress-responsive microRNAs in Populus. Plant J 55: 131-151
    59. Lv PP, Hu J, Chen SL, Shcn X, Yin WB, Chen YH, Sun YR, Hu ZM (2007) [Function of the putative Na+/H+ antiporter gene PeNhaDl from salt-resistant Populus euphratica Oliv]. Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao 33:173-178
    60. Maffei M, Mithofer A, Arimura G, et al. Effects of feeding Spodoptera littoralis on Lima bean leaves. III.Membrane depolarization and involvement of hydrogen peroxide [J]. Plant Physiol. 2006,140,1022-1035.
    61. Mason MJ, Hussain JF, and Mahaut-Smith MP. A novel role for membrane potential in the modulation of intracellular Ca2+ oscillations in rat megakaryocytes [J]. J Physiol.2000,524: 437-446.
    62. Mazea D, Schatten G, Sale W. Adhension of cells to surfaces coated with polylysine [J]. J Cell Biol.1975,66:198-200.
    63. Mano J, Miyatake F, Hiraoka E, Tamoi M (2009) Evaluation of the toxicity of stress-related aldehydes to photosynthesis in chloroplasts. Planta 230:639-648
    64. Martinez-Atienza J, Jiang X, Garciadeblas B, Mendoza I, Zhu JK, Pardo JM, Quintero FJ (2007) Conservation of the salt overly sensitive pathway in rice. Plant Physiol 143:1001-1012
    65. Miller G, Suzuki N, Ciftci-Yilmaz S, Mittler R. Reactive oxygen species homeostasis and signaling during drought and salinity stresses [J]. Plant Cell Environ.2010,33:566-589.
    66. Mittler R, Vanderauwera S, Gollery M, Van Breusegem F. Reactive oxygen gene network of plants [J]. Trends Plant Sci.2004,9,490-498.
    67. Moller IM. Plant mitochondria and oxidative stress:electron transport, NADPH turnover, and metabolism of reactive oxygen species [J]. Ann Rev Plant Physiol Plant Mol Biol.2001,52: 561-591.
    68. Moller IS, Gilliham M, Jha D, Mayo GM, Roy SJ, Coates JC, Haseloff J,Tester M. Shoot Na+ exclusion and increased salinity tolerance engineered by cell type-specific alteration of Na+ transport in Arabidopsis [J]. Plant Cell.2009,21:2163-2178.
    69. Mullan DJ, Colmer TD, Francki MG (2007) Arabidopsis-rice-wheat gene orthologues for Na+ transport and transcript analysis in wheat-L. elongatum aneuploids under salt stress. Mol Genet Genomics 277:199-212
    70. Munns R, James RA, Lauchli A (2006) Approaches to increasing the salt tolerance of wheat and other cereals. J Exp Bot 57:1025-1043
    71. Munns R, Tester M. Mechanisms of salinity tolerance [J]. Ann Rev Plant Biol.2008, 59:651-681.
    72. Oh DH, Leidi E, Zhang Q, et al. Loss of halophytism by interference with SOS1 expression [J]. Plant Physiol.2009,151:210-222.
    73. Oh DH, Lee SY, Bressan RA, Yun DJ, Bohnert HJ. Intracellular consequences of SOS1 deficiency during salt stress [J]. J Exp Bot.2010,61:1205-1213.
    74. Ohta M, Hayashi Y, Nakashima A, et al. Introduction of a Na+/H+ antiporter gene from Atriplex gmelini confers salt tolerance to rice [J]. FEBS Lett.2002,532:279-282.
    75. Oh DH, Leidi E, Zhang Q, Hwang SM, Li Y, Quintero FJ, Jiang X, D'Urzo MP, Lee SY, Zhao Y, Bahk JD, Bressan RA, Yun DJ, Pardo JM, Bohnert HJ (2009) Loss of halophytism by interference with SOS 1 expression. Plant Physiol 151:210-222
    76. Orozco-Cardenas M, Ryan CA (1999) Hydrogen peroxide is generated systemically in plant leaves by wounding and systemin via the octadecanoid pathway. Proc Natl Acad Sci U S A 96: 6553-6557
    77. Ottow EA, Brinker M, Teichmann T, Fritz E, Kaiser W, Brosche M, Kangasjarvi J, Jiang X, Polle A (2005a) Populus euphratica displays apoplastic sodium accumulation, osmotic adjustment by decreases in calcium and soluble carbohydrates, and develops leaf succulence under salt stress. Plant Physiol 139:1762-1772
    78. Ottow EA, Polle A, Brosche M, Kangasjarvi J, Dibrov P, Zorb C, Teichmann T (2005b) Molecular characterization of PeNhaDl:the first member of the NhaD Na+/H+ antiporter family of plant origin. Plant Mol Biol 58:75-88
    79. Pardo JM, Quintero FJ (2002) Plants and sodium ions:keeping company with the enemy. Genome Biol 3:REVIEWS 1017
    80. Parker R, Flowers TJ, Moore AL, Harpham NV (2006) An accurate and reproducible method for proteome profiling of the effects of salt stress in the rice leaf lamina. J Exp Bot 57: 1109-1118
    81. Pei ZM, Murata Y, Benning G, et al. Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells [J]. Nature.2000,406:731-734.
    82. Pilot G, Gaymard F, Mouline K, et al. Regulated expression of Arabidopsis shaker K+ channel genes involved in K+ uptake and distribution in the plant [J]. Plant Mol.Biol.2003,51: 773-787.
    83. Pla M, Gomez J, Goday A, Pages M (1991) Regulation of the abscisic acid-responsive gene rab28 in maize viviparous mutants. Mol Gen Genet 230:394-400
    84. Qiu Q, Ma T, Hu Q, Liu B, Wu Y, Zhou H, Wang Q, Wang J, Liu J (2011) Genome-scale transcriptome analysis of the desert poplar, Populus euphratica. Tree Physiol
    85. Qiu QS, Guo Y, Quintero FJ, Pardo JM, Schumaker KS, Zhu JK (2004) Regulation of vacuolar Na+/H+ exchange in Arabidopsis thaliana by the salt-overly-sensitive (SOS) pathway. J Biol Chem 279:207-215
    86. Quintero FJ, Martinez-Atienza J, Villalta I, Jiang X, Kim WY, Ali Z, Fujii H, Mendoza I, Yun DJ, Zhu JK, Pardo JM (2011) Activation of the plasma membrane Na/H antiporter Salt-Overly-Sensitive 1 (SOS1) by phosphorylation of an auto-inhibitory C-terminal domain. Proc Natl Acad Sci U S A 108:2611-2616
    87. Quintero FJ, Ohta M, Shi HZ, Kim C, Zhu JK, Pardo JM. Reconstitution in yeast of the Arabidopsis SOS signaling path-way for Na+ homeostasis [J]. Proc Natl Acad Sci USA.2002, 99:9061-9066.
    88. Ralph S, Oddy C, Cooper D, Yueh H, Jancsik S, Kolosova N, Philippe RN, Aeschliman D, White R, Huber D, Ritland CE, Benoit F, Rigby T, Nantel A, Butterfield YS, Kirkpatrick R, Chun E, Liu J, Palmquist D, Wynhoven B, Stott J, Yang G, Barber S, Holt RA, Siddiqui A, Jones SJ, Marra MA, Ellis BE, Douglas CJ, Ritland K, Bohlmann J (2006) Genomics of hybrid poplar (Populus trichocarpax deltoides) interacting with forest tent caterpillars (Malacosoma disstria):normalized and full-length cDNA libraries, expressed sequence tags, and a cDNA microarray for the study of insect-induced defences in poplar. Mol Ecol 15: 1275-1297
    89. Redondo-Gomez S, Mateos-Naranjo E, Figueroa ME, Davy AJ (2010) Salt stimulation of growth and photosynthesis in an extreme halophyte, Arthrocnemum macrostachyum. Plant Biol(Stuttg) 12:79-87
    90. Renault S. Response of red-osier dogwood (Cornus stolonifera) seedlings to sodium sulphate salinity:effects of supplemental calcium [J]. Physiol Plant.2005,123:75-81.
    91. Roberts SK. Plasma membrane anion channels in higher plants and their putative functions in roots [J]. New Phytol.2006,169:647-666.
    92. Rodriguez-Navarro A, Rubio F (2006) High-affinity potassium and sodium transport systems in plants. J Exp Bot 57:1149-1160
    93. Roxas VP, Smith RK Jr, Allen ER, Allen RD (1997) Overexpression of glutathione S-transferase/glutathione peroxidase enhances the growth of transgenic tobacco seedlings during stress. Nat Biotechnol 15:988-991
    94. Roxas VP, Lodhi SA, Garrett DK, Mahan JR, Allen RD (2000) Stress tolerance in transgenic tobacco seedlings that overexpress glutathione S-transferase/glutathione peroxidase. Plant Cell Physiol 41:1229-1234
    95. Rus A, Lee BH, Munoz-Mayor A, et al. AtHKTl facilitates Na+ homeostasis and K+ nutrition in planta [J]. Plant Physiol.2004,136:2500-2511.
    96. Schaedle M, Bassham JA. Chloroplast glutathione reductase [J]. Plant Physiol.1977, 59:1011-1012.
    97. Schonknecht G, Spoormaker P, Steinmeyer R, et al. KCO1 is a component of the slow-vacuolar (SV) ion channel [J]. FEBS Lett.2002,511:28-32.
    98. Schroeder JI, Ward JM, Gassmann W (1994) Perspectives on the physiology and structure of inward-rectifying K+ channels in higher plants:biophysical implications for K+ uptake. Annu Rev Biophys Biomol Struct 23:441-471
    99. Seki M, Narusaka M, Abe H, Kasuga M, Yamaguchi-Shinozaki K, Carninci P, Hayashizaki Y, Shinozaki K (2001) Monitoring the expression pattern of 1300 Arabidopsis genes under drought and cold stresses by using a full-length cDNA microarray. Plant Cell 13:61-72
    100. Seki M, Narusaka M, Ishida J, Nanjo T, Fujita M, Oono Y, Kamiya A, Nakajima M, Enju A, Sakurai T, Satou M, Akiyama K, Taji T, Yamaguchi-Shinozaki K, Carninci P, Kawai J, Hayashizaki Y, Shinozaki K (2002) Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray. Plant J 31:279-292
    101. Shabala S (2000) Ionic and osmotic components of salt stress specifically modulate net ion fluxes from bean leaf mesophyll. Plant Cell Environ 23:825-837
    102. Shabala S, Newman IA (2000) Salinity effects on the activity of plasma membrane H+ and Ca2+ transporters in bean leaf mesophyll:masking role of the cell wall. Ann Bot 85:681-686.
    103. Shabala L, Cuin TA, Newman IA, Shabala S. Salinity-induced ion flux patterns from the excised roots of Arabidopsis sos mutants [J]. Planta.2005,222:1041-1050.
    104. Shi H, Quintero FJ, Pardo JM, Zhu JK (2002) The putative plasma membrane Na(+)/H(+) antiporter SOS1 controls long-distance Na(+) transport in plants. Plant Cell 14:465-477
    105. Shi H, Lee BH, Wu SJ and Zhu JK. Overexpression of a plasma membrane Na+/H+ antiporter gene improves salt tolerance in Arabidopsis thaliana [J]. Nat Biotechnol.2003,21:81-85.
    106. Shi HZ, Ishitani M, Kim CS, Zhu JK. The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter [J]. Proc Natl Acad Sci USA 2000,97:6896-6901.
    107. Shirasu K, Nakajima H, Rajasekhar VK, Dixon RA, Lamb C (1997) Salicylic acid potentiates an agonist-dependent gain control that amplifies pathogen signals in the activation of defense mechanisms. Plant Cell 9:261-270
    108. Skriver K, Mundy J (1990) Gene expression in response to abscisic acid and osmotic stress. Plant Cell 2:503-512
    109. Sudhakar C, Lakshmi A, Giridarakumar S (2001) Changes in the antioxidant enzyme efficacy in two high yielding genotypes of mulberry (Morus alba L.) under NaCl salinity. Plant Sci 161:613-619
    110. Sun J, Chen S, Dai S, Wang R, Li N, Shen X, Zhou X, Lu C, Zheng X, Hu Z, Zhang Z, Song J, Xu Y (2009a) NaCl-induced alternations of cellular and tissue ion fluxes in roots of salt-resistant and salt-sensitive poplar species. Plant Physiol 149:1141-1153
    111. Sun J, Dai S, Wang R, Chen S, Li N, Zhou X, Lu C, Shen X, Zheng X, Hu Z, Zhang Z, Song J, Xu Y (2009b) Calcium mediates root K+/Na+ homeostasis in poplar species differing in salt tolerance. Tree Physiol 29:1175-1186
    112. Sun J, Wang M, Ding M, Deng S, Liu M, Lu C, Zhou X, Shen X, Zheng X, Zhang Z, Song J, Hu Z, Xu Y, Chen S (2010) H2O2 and cytosolic Ca2+ signals triggered by the PM H+-coupled transport system mediate K+/Na+ homeostasis in NaCl-stressed Populus euphratica cells. Plant Cell Environ (doi:10.1111/j.1365-3040.2010.02118.x)
    113. Taji T, Seki M, Satou M, Sakurai T, Kobayashi M, Ishiyama K, Narusaka Y, Narusaka M, Zhu J-K, Shinozaki K (2004) Comparative genomics in salt tolerance between Arabidopsis and Arabidopsis-related halophyte salt cress using Arabidopsis microarray. Plant Physiol 135:1697-1709
    114. Tester M, Davenport R (2003) Na+ tolerance and Na+ transport in higher plants. Ann Bot 91: 503-527
    115. Tiwari BS, Belenghi B, Levine A (2002) Oxidative stress increased respiration and generation of reactive oxygen species, resulting in ATP depletion, opening of mitochondrial permeability transition, and programmed cell death. Plant Physiol 128:1271-1281
    116. Vitart V, Baxter I, Doerner P, Harper JF (2001) Evidence for a role in growth and salt resistance of a plasma membrane H+-ATPase in the root endodermis. Plant J 27:191-201
    117. Wang R, Chen S, Ma H, Liu L, Li H, Weng H, Hao Z, Yang S (2006) Genotypic differences in anti-oxidative stress and salt tolerance of three poplars under saline conditions. Front For China 1:82-88
    118. Wang R, Chen S, Deng L, Fritz E, Huttermann A, Polle A (2007) Leaf photosynthesis, fluorescence response to salinity and the relevance to chloroplast salt compartmentation and anti-oxidative stress in two poplars. Trees 21:581-591
    119. Wang R, Chen S, Zhou X, Shen X, Deng L, Zhu H, Shao J, Shi Y, Dai S, Fritz E, Huttermann A, Polle A (2008) Ionic homeostasis and reactive oxygen species control in leaves and xylem sap of two poplars subjected to NaCl stress. Tree Physiol 28:947-957
    120. Wong CE, Li Y, Labbe A, Guevara D, Nuin P, Whitty B, Diaz C, Golding GB, Gray GR, Weretilnyk EA, Griffith M, Moffatt BA (2006) Transcriptional profiling implicates novel interactions between abiotic stress and hormonal responses in Thellungiella, a close relative of Arabidopsis. Plant Physiol 140:1437-1450
    121. Wu Y, Ding N, Zhao X, Zhao M, Chang Z, Liu J, Zhang L (2007) Molecular characterization of PeSOSl:the putative Na(+)/H(+) antiporter of Populus euphratica. Plant Mol Biol 65: 1-11
    122. Xie Z, Zhang ZL, Zou X, Yang G, Komatsu S, Shen QJ (2006) Interactions of two abscisic-acid induced WRKY genes in repressing gibberellin signaling in aleurone cells. Plant J 46:231-242
    123. Xiong L, Schumaker KS, Zhu JK (2002) Cell signaling during cold, drought, and salt stress. Plant Cell 14 Suppl:S165-183
    124. Xiong L, Zhu JK (2002) Molecular and genetic aspects of plant responses to osmotic stress. Plant Cell Environ 25:131-139
    125. Xiuying Ma, Lin Deng, Jinke Li, Xiaoyang Zhou, Niya Li, Decai Zhang, Yanjun Lu, Ruigang Wang, Jian Sun, and Cunfu Lu, Xiaojiang Zheng, Eberhard Fritz, Aloys Hu'ttermann, Shaoliang Chen (2010) Effect of NaCl on leaf H+-ATPase and the relevance to salt tolerance in two contrasting poplar species. TREES 24:597-607
    126. Yamaguchi-Shinozaki K, Mino M, Mundy J, Chua NH (1990) Analysis of an ABA-responsive rice gene promoter in transgenic tobacco. Plant Mol Biol 15:905-912
    127. Yamaguchi-Shinozaki K, Shinozaki K (1993) The plant hormone abscisic acid mediates the drought-induced expression but not the seed-specific expression of rd22, a gene responsive to dehydration stress in Arabidopsis thaliana. Mol Gen Genet 238:17-25
    128. Yang O, Popova OV, Suthoff U, Luking I, Dietz KJ, Golldack D (2009a) The Arabidopsis basic leucine zipper transcription factor AtbZIP24 regulates complex transcriptional networks involved in abiotic stress resistance. Gene 436:45-55
    129. Yang Q, Chen ZZ, Zhou XF, Yin HB, Li X, Xin XF, Hong XH, Zhu JK, Gong Z (2009b) Overexpression of SOS (Salt Overly Sensitive) genes increases salt tolerance in transgenic Arabidopsis. Mol Plant 2:22-31
    130. Yang Y, Zhang F, Zhao M, An L, Zhang L, Chen N (2007) Properties of plasma membrane H+-ATPase in salt-treated Populus euphratica callus. Plant Cell Rep 26:229-235
    131. Yokotani N, Ichikawa T, Kondou Y, Matsui M, Hirochika H, Iwabuchi M, Oda K (2009) Tolerance to various environmental stresses conferred by the salt-responsive rice gene ONAC063 in transgenic Arabidopsis. Planta 229:1065-1075
    132. Zhang A, Jiang M, Zhang J, Ding H, Xu S, Hu X, Tan M (2007a) Nitric oxide induced by hydrogen peroxide mediates abscisic acid-induced activation of the mitogen-activated protein kinase cascade involved in antioxidant defense in maize leaves. New Phytol 175:36-50
    133. Zhang F, Wang Y, Yang Y, Wu H, Wang D, Liu J (2007b) Involvement of hydrogen peroxide and nitric oxide in salt resistance in the calluses from Populus euphratica. Plant Cell Environ 30:775-785
    134. Zhang X, Wang L, Meng H, Wen H, Fan Y, Zhao J (2011) Maize ABP9 enhances tolerance to multiple stresses in transgenic Arabidopsis by modulating ABA signaling and cellular levels of reactive oxygen species. Plant Mol Biol 75:365-378
    135. Zhao Q, Zhao YJ, Zhao BC, Ge RC, Li M, Shen YZ, Huang ZJ (2009) Cloning and functional analysis of wheat V-H+-ATPase subunit genes. Plant Mol Biol 69:33-46
    136. Zhou GA, Jiang Y, Yang Q, Wang JF, Huang J, Zhang HS (2006) Isolation and characterization of a new Na+/H+ antiporter gene OsNHAl from rice (Oryza sativa L.). DNA Seq 17:24-30
    137. Zhu JK. Plant salt tolerance. [J] Trends Plant Sci.2001a,6:66-71.
    138. Zhu JK. Cell signaling under salt, water and cold stresses [J]. Curr Opin Plant Biol.2001b, 4(5):401-406.
    139. Zhu JK. Regulation of ion homeostasis under salt stress[J]. Curr Opin Plant Biol.2003, 6:1-5.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700