Foxc2过表达通过上调CXCR4增强内皮祖细胞促损伤血管内皮修复作用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
内皮损伤或功能障碍是动脉粥样硬化和血管成形术后再狭窄等心血管疾病发生进展的始动环节。加快损伤内皮的修复可有效抑制新生内膜的增生,对动脉粥样硬化的早期预防和血管成形术后再狭窄的防治具有重要意义。
     近年的研究表明动员或移植的内皮祖细胞(endothelial progenitor cells, EPCs)可直接分化为内皮细胞,和或以旁分泌机制刺激成熟内皮增殖迁移,促进损伤血管的再内皮化,抑制新生内膜的增生。充足的归巢是移植EPCs功能发挥的前提,但大多数动物及临床实验显示移植EPCs的归巢和长期植入率都非常低,这也是导致治疗效果不理想的重要原因之一。事实上,EPCs在损伤区归巢聚集的数量不仅取决于循环中细胞数目也取决于移植细胞迁移粘附等生物学功能。有研究表明CXCR4的表达水平对EPCs的归巢及促内皮修复功能起重要的调控作用。然而,冠心病的危险因素可导致EPCs CXCR4表达下调或CXCR4的信号通路受损,导致EPCs的迁移归巢能力下降,严重影响了EPCs移植的疗效。因此,CXCR4表达及功能调控已成为EPCs治疗领域重要的研究课题。
     Foxc2蛋白是叉头框转录因子家族成员之一,对于心血管系统起重要的调控作用。在胚胎发育期,Foxc2可以调控内皮基因表达及血管的发生。近来研究表明Foxc2可通过多个环节调控血管生成。例如,Foxc2可诱导多种粘附分子和促血管生成因子的表达。此外,Foxc2可直接调控内皮细胞CXCR4的表达。然而Foxc2对EPCs生物学特性的影响,迄今尚未见报道。基于此,我们欲探讨Foxc2对EPCs CXCR4表达、归巢功能及促内皮修复效应的影响。本研究分为三个部分。
     第一部分小鼠骨髓内皮祖细胞的培养及鉴定
     目的:分离培养小鼠骨髓源内皮祖细胞并鉴定。
     方法:分离小鼠骨髓单个核细胞,在内皮培养系定向诱导培养15-21天,通过形态学观察细胞的生长形态,用免疫荧光、Western blot及流式细胞仪技术检测内皮标记及造血系标记,Dil-acLDL摄取及Matrigel管样结构形成实验检测内皮分化的功能学特性。
     结果:分离骨髓单个核细胞诱导培养14天后,培养细胞逐渐呈现单层的“铺路石样”外观。免疫荧光检测结果显示,绝大多数细胞表达内皮标记物CD31、VE-cadherin及vWF; Western blot分析进一步证实培养细胞表达内皮标记FLK-1、CD31和VE-cadherin。而流式细胞仪分析显示培养细胞几乎不表达造血系标记CD34和CD45. Dil-acLDL摄取结果显示,约95%的细胞吸收Dil-acLDL。Matrigel管状结构形成实验显示培养细胞能围成管状、网络状结构。因此,从形态学、细胞表型及功能学鉴定来看,培养细胞具有内皮集落形成细胞(endothelial colony forming cells, ECFCs)或晚期EPCs特性。
     结论:小鼠骨髓单个核细胞在特定诱导扩增的培养条件下可获得EPCs。
     第二部分Foxc2过表达对内皮祖细胞迁移及粘附能力的影响
     目的:研究Foxc2过表达对EPCs体外迁移及粘附功能的影响及其机制。
     方法:将PcDNA3.1-Foxc2质粒用脂质体转染EPCs,转染48小时后用定量RT-PCR及Western blot检钡Foxc2基因的表达。用免疫荧光、Western blot、流式细胞仪及定量RT-PCR方法检测CXCR4的表达。用Transwell小室检测EPCs向SDF-1α迁移,用静止粘附实验检测EPCs与纤维连接蛋白的粘附。
     结果:定量RT-PCR及Western blot检测结果显示,PcDNA3.1-Foxc2质粒转染显著增加Foxc2 mRNA及蛋白的表达。免疫荧光、Western blot及流式细胞仪结果表明Foxc2过表达增加EPCs CXCR4蛋白的表达,定量RT-PCR检测显示Foxc2-EPCs CXCR4 mRNA水平大约是对照组的2倍(P<0.05)。在SDF-1α刺激下,Foxc2-EPCs迁移及粘附能力明显高于Ctrl-EPCs,而AMD3100或LY294002可抑制Foxc2-EPCs增加的迁移及粘附效应。
     结论:Foxc2过表达能有效增加EPCs CXCR4的表达及体外迁移、粘附功能,Foxc2过表达所增强的迁移及粘附效应与CXCR4表达上调及下游PI3K/Akt信号活化增强有关。
     第三部分Foxc2过表达对内皮祖细胞归巢及促内皮修复作用的影响
     目的:研究Foxc2过表达对EPCs体内归巢及促内皮修复作用的影响。
     方法:建立小鼠颈动脉内膜损伤模型。从野生小鼠和GFP小鼠骨髓分离培养EPCs和GFP/EPCs,进行Foxc2质粒转染,再经尾静脉输注颈动脉内膜损伤小鼠体内,3天后观察损伤部位GFP标记细胞数目,以检测移植EPCs在体内归巢潜能;7天后用Evens蓝染色检测损伤血管再内皮化的程度,14天后观察GFP+内皮细胞的百分比,以检测移植GFP/EPCs掺入修复内皮层的情况,28天后组织学检测新生内膜和中膜面积的比值(N/M),评价EPCs移植抑制新生内膜增生的治疗效应。
     结果:GFP/EPCs移植3天后,GFP+严格局限于损伤部位的腔表面,Foxc2-GFP/EPCs移植组损伤血管募集的GFP+细胞明显多于Ctrl-GFP/EPCs组(约为Ctrl-GFP/EPCs组的2倍,P<0.05);7天后,Ctrl-EPCs移植组损伤血管再内皮化程度明显提高,Foxc2-EPCs组再内皮化程度又显著高于Ctrl-EPCs组(90.3±1.6%vs 57.2±1.3%,P<0.05);14天后,Foxc2-GFP/EPCs移植组GFP+内皮细胞百分比显著高于Ctrl-GFP/EPCs组(46.67±7.09%vs 31.50±5.26%,P<0.05);28天后,Ctrl-EPCs移植组小鼠损伤血管新生内膜的形成明显减少,N/M较PBS组降低了65%,而Foxc2-EPCs组新生内膜的增生程度降低更明显(N/M:0.38±0.03 vs 0.67±0.05,P<0.05)。最后,Foxc2-EPCs移植前用AMD3100或LY294002预孵育能显著抑制Foxc2过表达所增强的EPCs归巢能力、促进再内皮化及抑制新生内膜增生的效应。
     结论:Foxc2过表达可促进EPCs在损伤内膜的归巢和募集,相应提高EPCs促内皮修复及抑制新生内膜增生的效应;而且Foxc2过表达增强的EPCs归巢及治疗效应与CXCR4/PI3K/Akt信号通路有关。
Endothelial disruption or dysfunction is vital to the initiation and progression of atherosclerosis and postangioplasty restenosis. Thus, maintenance of endothelial integrity and promotion of early re-endothelialization are of paramount importance for reducing cardiovascular diseases and the post-intervention complications. Accumulating evidences suggest that endothelial progenitor cells (EPCs) mobilized or transfused are capable of facilitating endothelial repair through direct differentiation into endothelial cells and/or via the paracrine mechanisms. The vasoregenerative effects of EPCs depend on their homing to the vascular injury sites. Indeed, the number of recruited EPCs appears to be related to their circulating numbers but also the functional properties of EPCs homing. Studies show that CXCR4 is a key molecule in regulating EPCs homing and recruitment. Emerging evidences exist for the impaired CXCR4-dependent homing and the low engraftment of EPCs due to some risk factors for coronary artery disease. These underline the need for new strategies capable of increasing the CXCR4-mediated homing potential of EPCs.
     The Foxc2 protein, a member of the Forkhead/Fox transcription factor family, is essential for the cardiovascular system. Foxc2 plays an important role in the combinatorial regulation of endothelial gene expression and vasculogenesis during embryonic development. Foxc2 is recognized as a novel regulator of angiogenesis via induction of integrinβ3 and angiopoietin-2 expression. Foxc2 might be involved in the angiogenesis under pathologic conditions. Just as recent studies reveal that Foxc2 expression is associated with the human heart failure and increased in periinfarcted zones of the rat left ventricle. Notably, Foxc2 directly induces the expression of CXCR4 in endothelial cells. Recently, it is accepted that the phenotypic and functional behavior of endothelial colony forming cells (ECFCs, also called "late" EPCs) is very similar to mature endothelial cells. Until now there are no data showing the effects of Foxc2 on the functional properties of EPCs. Based on the effects of Foxc2 on the properties of endothelial cells, we sought to determine whether Foxc2 may affect CXCR4 expression and the homing capacity of EPCs as well as the EPCs-mediated endothelial repair.
     Part One Isolation and Characterization of Mouse Bone Marrow-derived Endothelial Progenitor Cells
     Objective:To isolate and culture mouse bone marrow-derived EPCs, and to identify the morphological, immunophenotypic and functional characteristics.
     Methods:Isolated mononuclear cells were cultured in endothelial cell basal medium-2 (EBM-2) supplemented with endothelial growth medium (EGM). After 24 h, nonadherent cells were removed. Adherent cells were cultured for further 15-21 days. Morphological characteristics were observed by inverted microscope. Immunofluorescence, western blot and flow cytometry were used to detect the endothelial cell markers and the hematopoietic markers. The functional characteristics were assessed by uptake of Dil-acLDL and Matrigel tube formation assay.
     Results:Isolated bone marrow derived-mononuclear cells were cultured for 15-21 days, which exhibited a cobblestone-like morphology. Immunofluorescence and western blot analysis demonstrated that the adherent cells expressed the endothelial cell markers, including CD31, VE-cad, FLK-1 and vWF. Flow cytometric analysis revealed that only very few cells expressed the hematopoietic marker CD34 or leukocytic marker CD45. Moreover, the majority of adherent cells were found positive for uptake of DiI-acLDL. In addition, these cells were capable of assembling into tube-like structures when plated in matrigel. On the basis of the morphological, immunophenotypic and functional characteristics, the cells in our study were confirmed EPCs characterized as ECFCs or late EPCs.
     Conclusions:Isolated bone marrow derived-mononuclear cells are cultured in EBM-2 supplemented with EGM, which give EPCs.
     Part Two Effects of Foxc2 Overexpression on Migration and Adhesion Potential of Endothelial Progenitor Cells
     Objective:To investigate the effects and mechanisms of Foxc2 overexpression on the in vitro migration and adhesion potential of EPCs
     Methods:EPCs were transfected by using lipidosome transfection reagent with Foxc2 expression vector (Foxc2-EPCs) or with empty control vector (Ctrl-EPCs) and examined 48 hours later. Foxc2 expression of EPCs was detected by western blot and quantitative RT-PCR (qRT-PCR). CXCR4 expression of EPCs was detected by immunofluorescence, western blot, flow cytometry and qRT-PCR. The migration of EPCs toward SDF-la was evaluated in a transwell migration assay, and the adhesion to fibronectin was determined using a static adhesion assay.
     Results:qRT-PCR and Western blot showed that the transfection with Foxc2 expression vector efficiently induced the up-regulation of Foxc2 mRNA and protein in EPCs. Flow cytometry showed that Foxc2 overexpression significantly increased surface expression of CXCR4 on EPCs. Fluorescence microscopy and western blot analysis further confirmed that Foxc2 overexpression up-regulated CXCR4 expression of EPCs. qRT-PCR analysis showed CXCR4 mRNA expression in Foxc2-EPCs was about 2-fold of Ctrl-EPCs (P<0.05). Foxc2-EPCs demonstrated an increased response to SDF-1α-mediated chemotaxis and adhesion. However, the increased effects were reduced by pretreatment of Foxc2-EPCs with the AMD3100 or LY294002.
     Conclusions:Foxc2 overexpression may markedly increase CXCR4 expression in EPCs and enhance the in vitro migration and adhesion capacities of EPCs. Moreover, the enhanced in vitro function by Foxc2 overexpression is associated with the up-regulation of CXCR4 and the activation of PI3K/Akt signal pathway.
     Part Three Effects of Foxc2 Overexpression on Homing and Re-endothelialization Potential of Endothelial Progenitor Cells
     Objective:To investigate the effects of Foxc2 overexpression on the in vivo homing and the re-endothelialization potential of EPCs.
     Methods:Mouse carotid injury was established using a 0.014-inch-PTCA flexible guide wire. The mice subjected to carotid injury were randomly assigned into experimental groups. EPCs and GFP/EPCs were isolated and cultured respectively from wild type mice and GFP/mice. EPCs and GFP/EPCs were transfected with Foxc2 expression vector (Foxc2-EPCs or Foxc2-GFP/EPCs) or with empty control vector (Ctrl-EPCs or Ctrl-GFP/EPCs). The mice subjected to carotid injury received PBS, Ctrl-EPCs or Foxc2-EPCs by tail vein injection. To examine the homing capacity, at 3 days after GFP/EPCs delivery, the recruited GFP+ cells to the injury sites were detected by fluorescent microscopy. For assessment of re-endothelialization, animals were perfused with Evans blue dye at 7 days after EPCs delivery. At 14 days, the percent of GFP positive endothelial cells in the cross-section of injured arteries was estimated to observe the incorporation of the delivered EPCs into the regenerative endothelial layer. Neointimal formation was assessed by the morphometric analysis for neointima and media area ratio (N/M) at 28 days after EPCs transfusion.
     Results:At 3 days after GFP/EPCs delivery, GFP+ cells were strictly restricted to the injury sites. The number of recruited GFP cells was significantly higher in the mice transfused with Foxc2-GFP/EPCs compared with Ctrl-GFP/EPCs (about 2-fold of Ctrl-GFP/EPCs). At 7 days after EPCs delivery, the degree of re-endothelialization was significantly higher in mice transfused with Ctrl-EPCs compared with PBS. Nevertheless, Foxc2-EPCs delivery further increased the degree of re-endothelialization relative to Ctrl-EPCs (90.3±1.6% vs.57.2±1.3%, P<0.05). More GFP cells were incorporated into the CD31 positive endothelial layer at 14 days after Foxc2-GFP/EPCs compared with Ctrl-EPCs delivery (46.7±7.1% vs.31.5±5.3%, P<0.05). At 28 days, Ctrl-EPCs delivery led to a 65% reduction in N/M compared with PBS control (P<0.05). However, the inhibitory effect of Foxc2-EPCs delivery was greater than Ctrl-EPCs (0.38±0.03 vs.0.67±0.05, P<0.05). Finally, preincubation with AMD3100 or LY294002 significantly attenuated the enhanced homing and therapeutic potential of Foxc2-EPCs for promoting re-endothelialization and inhibiting neointimal formation.
     Conclusions:Foxc2 overexpression may increase EPCs homing and recruitment to the sites of vascular injury, and thereby enhance the therapeutic benefit of EPCs for facilitating re-endothelialization and inhibiting neointimal hyperplasia. Moreover, the enhanced in vivo function by Foxc2 overexpression is associated with the CXCR4/PI3K/Akt signal pathway.
引文
[1]Bauters C, Isner JM. The biology of restenosis. Prog Cardiovasc Dis 1997, 40(2):107-116.
    [2]Libby P, Sukhova G, Lee RT, et al. Molecular biology of atherosclerosis. Int J Cardiol 1997,62 Suppl 2:S23-29.
    [3]Kinlay S, Libby P, Ganz P. Endothelial function and coronary artery disease. Curr Opin Lipidol 2001,12(4):383-389.
    [4]Libby P, Schwartz D, Brogi E, et al. A cascade model for restenosis. A special case of atherosclerosis progression. Circulation 1992,86(6 Suppl):Ⅲ47-52.
    [5]Carmeliet P, Moons L, Stassen JM, et al. Vascular wound healing and neointima formation induced by perivascular electric injury in mice. Am J Pathol 1997,150(2):761-776.
    [6]Xu Q. The impact of progenitor cells in atherosclerosis. Nat Clin Pract Cardiovasc Med 2006,3(2):94-101.
    [7]Asahara T, Murohara T, Sullivan A, et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science 1997,275(5302):964-967.
    [8]Asahara T, Masuda H, Takahashi T, et al. Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ Res 1999,85(3):221-228.
    [9]Kalka C, Masuda H, Takahashi T, et al. Transplantation of ex vivo expanded endothelial progenitor cells for therapeutic neovascularization. Proc Natl Acad Sci U S A 2000,97(7):3422-3427.
    [10]Takahashi T, Kalka C, Masuda H, et al. Ischemia-and cytokine-induced mobilization of bone marrow-derived endothelial progenitor cells for neovascularization. Nat Med 1999,5(4):434-438.
    [11]Urbich C, Dimmeler S. Endothelial progenitor cells:characterization and role in vascular biology. Circ Res 2004,95(4):343-353.
    [12]Vasa M, Fichtlscherer S, Aicher A, et al. Number and migratory activity of circulating endothelial progenitor cells inversely correlate with risk factors for coronary artery disease. Circ Res 2001,89(1):E1-7.
    [13]Hill JM, Zalos G, Halcox JP, et al. Circulating endothelial progenitor cells, vascular function, and cardiovascular risk. N Engl J Med 2003, 348(7):593-600.
    [14]Tepper OM, Galiano RD, Capla JM, et al. Human endothelial progenitor cells from type Ⅱ diabetics exhibit impaired proliferation, adhesion, and incorporation into vascular structures. Circulation 2002,106(22):2781-2786.
    [15]Walter DH, Haendeler J, Reinhold J, et al. Impaired CXCR4 signaling contributes to the reduced neovascularization capacity of endothelial progenitor cells from patients with coronary artery disease. Circ Res 2005, 97(11):1142-1151.
    [16]Hamed S, Brenner B, Abassi Z, et al. Hyperglycemia and oxidized-LDL exert a deleterious effect on endothelial progenitor cell migration in type 2 diabetes mellitus. Thromb Res,126(3):166-174.
    [17]Shantsila E, Watson T, Lip GY. Endothelial progenitor cells in cardiovascular disorders. J Am Coll Cardiol 2007,49(7):741-752.
    [18]Pirro M, Bagaglia F, Paoletti L, et al. Hypercholesterolemia-associated endothelial progenitor cell dysfunction. Ther Adv Cardiovasc Dis 2008, 2(5):329-339.
    [19]Zhou B, Ma FX, Liu PX, et al. Impaired therapeutic vasculogenesis by transplantation of OxLDL-treated endothelial progenitor cells. J Lipid Res 2007,48(3):518-527.
    [20]Aicher A, Brenner W, Zuhayra M, et al. Assessment of the tissue distribution of transplanted human endothelial progenitor cells by radioactive labeling. Circulation 2003,107(16):2134-2139.
    [21]Brenner W, Aicher A, Eckey T, et al. lllln-labeled CD34+ hematopoietic progenitor cells in a rat myocardial infarction model. J Nucl Med 2004, 45(3):512-518.
    [22]Hofmann M, Wollert KC, Meyer GP, et al. Monitoring of bone marrow cell homing into the infarcted human myocardium. Circulation 2005, 111(17):2198-2202.
    [23]Schober A, Knarren S, Lietz M, et al. Crucial role of stromal cell-derived factor-1 alpha in neointima formation after vascular injury in apolipoprotein E-deficient mice. Circulation 2003,108(20):2491-2497.
    [24]Zernecke A, Schober A, Bot I, et al. SDF-lalpha/CXCR4 axis is instrumental in neointimal hyperplasia and recruitment of smooth muscle progenitor cells. Circ Res 2005,96(7):784-791.
    [25]Walter DH, Haendeler J, Reinhold J, et al. Impaired CXCR4 signaling contributes to the reduced neovascularization capacity of endothelial progenitor cells from patients with coronary artery disease. Circ Res 2005, 97(11):1142-1151.
    [26]Sbaa E, Dewever J, Martinive P, et al. Caveolin plays a central role in endothelial progenitor cell mobilization and homing in SDF-1-driven postischemic vasculogenesis. Circ Res 2006,98(9):1219-1227.
    [27]Molino M, Woolkalis MJ, Prevost N, et al. CXCR4 on human endothelial cells can serve as both a mediator of biological responses and as a receptor for HIV-2. Biochim Biophys Acta 2000,1500(2):227-240.
    [28]Son BR, Marquez-Curtis LA, Kucia M, et al. Migration of bone marrow and cord blood mesenchymal stem cells in vitro is regulated by stromal-derived factor-1-CXCR4 and hepatocyte growth factor-c-met axes and involves matrix metalloproteinases. Stem Cells 2006,24(5):1254-1264.
    [29]Sainz J, Sata M. CXCR4, a key modulator of vascular progenitor cells. Arterioscler Thromb Vasc Biol 2007,27(2):263-265.
    [30]Hristov M, Zernecke A, Bidzhekov K, et al. Importance of CXC chemokine receptor 2 in the homing of human peripheral blood endothelial progenitor cells to sites of arterial injury. Circ Res 2007,100(4):590-597.
    [31]Ceradini DJ, Kulkarni AR, Callaghan MJ, et al. Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. Nat Med 2004,10(8):858-864.
    [32]Chen L, Wu F, Xia WH, et al. CXCR4 gene transfer contributes to in vivo reendothelialization capacity of endothelial progenitor cells. Cardiovasc Res, 88(3):462-470.
    [33]Smadja DM, Bieche I, Uzan G, et al. PAR-1 activation on human late endothelial progenitor cells enhances angiogenesis in vitro with upregulation of the SDF-1/CXCR4 system. Arterioscler Thromb Vasc Biol 2005, 25(11):2321-2327.
    [34]Walter DH, Rochwalsky U, Reinhold J, et al. Sphingosine-1-phosphate stimulates the functional capacity of progenitor cells by activation of the CXCR4-dependent signaling pathway via the S1P3 receptor. Arterioscler Thromb Vasc Biol 2007,27(2):275-282.
    [35]Oh BJ, Kim DK, Kim BJ, et al. Differences in donor CXCR4 expression levels are correlated with functional capacity and therapeutic outcome of angiogenic treatment with endothelial colony forming cells. Biochem Biophys Res Commun,398(4):627-633.
    [36]Seeger FH, Rasper T, Koyanagi M, et al. CXCR4 expression determines functional activity of bone marrow-derived mononuclear cells for therapeutic neovascularization in acute ischemia. Arterioscler Thromb Vasc Biol 2009, 29(11):1802-1809.
    [37]De Val S, Chi NC, Meadows SM, et al. Combinatorial regulation of endothelial gene expression by ets and forkhead transcription factors. Cell 2008,135(6):1053-1064.
    [38]Hayashi H, Sano H, Seo S, et al. The Foxc2 transcription factor regulates angiogenesis via induction of integrin beta3 expression. J Biol Chem 2008, 283(35):23791-23800.
    [39]Xue Y, Cao R, Nilsson D, et al. FOXC2 controls Ang-2 expression and modulates angiogenesis, vascular patterning, remodeling, and functions in adipose tissue. Proc Natl Acad Sci U S A 2008,105(29):10167-10172.
    [40]Hannenhalli S, Putt ME, Gilmore JM, et al. Transcriptional genomics associates FOX transcription factors with human heart failure. Circulation 2006,114(12):1269-1276.
    [41]Philip-Couderc P, Tavares NI, Roatti A, et al. Forkhead transcription factors coordinate expression of myocardial KATP channel subunits and energy metabolism. Circ Res 2008,102(2):e20-35.
    [42]Hayashi H, Kume T. Forkhead transcription factors regulate expression of the chemokine receptor CXCR4 in endothelial cells and CXCL12-induced cell migration. Biochem Biophys Res Commun 2008,367(3):584-589.
    [1]Asahara T, Murohara T, Sullivan A, et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science 1997,275(5302):964-967.
    [2]Peichev M, Naiyer AJ, Pereira D, et al. Expression of VEGFR-2 and AC 133 by circulating human CD34(+) cells identifies a population of functional endothelial precursors. Blood 2000,95(3):952-958.
    [3]Case J, Mead LE, Bessler WK, et al. Human CD34+AC133+VEGFR-2+cells are not endothelial progenitor cells but distinct, primitive hematopoietic progenitors. Exp Hematol 2007,35(7):1109-1118.
    [4]Ito H, Rovira, Ⅱ, Bloom ML, et al. Endothelial progenitor cells as putative targets for angiostatin. Cancer Res 1999,59(23):5875-5877.
    [5]Hill JM, Zalos G, Halcox JP, et al. Circulating endothelial progenitor cells, vascular function, and cardiovascular risk. N Engl J Med 2003, 348(7):593-600.
    [6]Rehman J, Li J, Orschell CM, et al. Peripheral blood "endothelial progenitor cells" are derived from monocyte/macrophages and secrete angiogenic growth factors. Circulation 2003,107(8):1164-1169.
    [7]Yoder MC, Mead LE, Prater D, et al. Redefining endothelial progenitor cells via clonal analysis and hematopoietic stem/progenitor cell principals. Blood 2007,109(5):1801-1809.
    [8]Kalka C, Masuda H, Takahashi T, et al. Transplantation of ex vivo expanded endothelial progenitor cells for therapeutic neovascularization. Proc Natl Acad Sci U S A 2000,97(7):3422-3427.
    [9]Timmermans F, Van Hauwermeiren F, De Smedt M, et al. Endothelial outgrowth cells are not derived from CD 133+ cells or CD45+ hematopoietic precursors. Arterioscler Thromb Vasc Biol 2007,27(7):1572-1579.
    [10]Gunsilius E, Duba HC, Petzer AL, et al. Evidence from a leukaemia model for maintenance of vascular endothelium by bone-marrow-derived endothelial cells. Lancet 2000,355(9216):1688-1691.
    [11]Rohde E, Malischnik C, Thaler D, et al. Blood monocytes mimic endothelial progenitor cells. Stem Cells 2006,24(2):357-367.
    [12]Rohde E, Bartmann C, Schallmoser K, et al. Immune cells mimic the morphology of endothelial progenitor colonies in vitro. Stem Cells 2007, 25(7):1746-1752.
    [13]Ingram DA, Mead LE, Tanaka H, et al. Identification of a novel hierarchy of endothelial progenitor cells using human peripheral and umbilical cord blood. Blood 2004,104(9):2752-2760.
    [14]Hur J, Yang HM, Yoon CH, et al. Identification of a novel role of T cells in postnatal vasculogenesis:characterization of endothelial progenitor cell colonies. Circulation 2007,116(15):1671-1682.
    [15]Hur J, Yoon CH, Kim HS, et al. Characterization of two types of endothelial progenitor cells and their different contributions to neovasculogenesis. Arterioscler Thromb Vasc Biol 2004,24(2):288-293.
    [16]Asosingh K, Aldred MA, Vasanji A, et al. Circulating angiogenic precursors in idiopathic pulmonary arterial hypertension. Am J Pathol 2008, 172(3):615-627.
    [17]Yoon CH, Hur J, Park KW, et al. Synergistic neovascularization by mixed transplantation of early endothelial progenitor cells and late outgrowth endothelial cells:the role of angiogenic cytokines and matrix metalloproteinases. Circulation 2005,112(11):1618-1627.
    [18]Hirschi KK, Ingram DA, Yoder MC. Assessing identity, phenotype, and fate of endothelial progenitor cells. Arterioscler Thromb Vasc Biol 2008, 28(9):1584-1595.
    [19]Vasa M, Fichtlscherer S, Adler K, et al. Increase in circulating endothelial progenitor cells by statin therapy in patients with stable coronary artery disease. Circulation 2001,103(24):2885-2890.
    [20]Vasa M, Fichtlscherer S, Aicher A, et al. Number and migratory activity of circulating endothelial progenitor cells inversely correlate with risk factors for coronary artery disease. Circ Res 2001,89(1):E1-7.
    [21]Dimmeler S, Aicher A, Vasa M, et al. HMG-CoA reductase inhibitors (statins) increase endothelial progenitor cells via the PI 3-kinase/Akt pathway. J Clin Invest 2001,108(3):391-397.
    [22]Zhang SJ, Zhang H, Wei YJ, et al. Adult endothelial progenitor cells from human peripheral blood maintain monocyte/macrophage function throughout in vitro culture. Cell Res 2006,16(6):577-584.
    [23]Fernandez Pujol B, Lucibello FC, Gehling UM, et al. Endothelial-like cells derived from human CD 14 positive monocytes. Differentiation 2000, 65(5):287-300.
    [24]Hassan NF, Campbell DE, Douglas SD. Purification of human monocytes on gelatin-coated surfaces. J Immunol Methods 1986,95(2):273-276.
    [25]Prokopi M, Pula G, Mayr U, et al. Proteomic analysis reveals presence of platelet microparticles in endothelial progenitor cell cultures. Blood 2009, 114(3):723-732.
    [26]Au P, Daheron LM, Duda DG, et al. Differential in vivo potential of endothelial progenitor cells from human umbilical cord blood and adult peripheral blood to form functional long-lasting vessels. Blood 2008, 111(3):1302-1305.
    [27]Bhattacharya V, McSweeney PA, Shi Q, et al. Enhanced endothelialization and microvessel formation in polyester grafts seeded with CD34(+) bone marrow cells. Blood 2000,95(2):581-585.
    [28]Melero-Martin JM, Khan ZA, Picard A, et al. In vivo vasculogenic potential of human blood-derived endothelial progenitor cells. Blood 2007, 109(11):4761-4768.
    [29]Sieveking DP, Buckle A, Celermajer DS, et al. Strikingly different angiogenic properties of endothelial progenitor cell subpopulations:insights from a novel human angiogenesis assay. J Am Coll Cardiol 2008,51(6):660-668.
    [30]Schatteman GC, Dunnwald M, Jiao C. Biology of bone marrow-derived endothelial cell precursors. Am J Physiol Heart Circ Physiol 2007, 292(1):H1-18.
    [1]Philip-Couderc P, Tavares NI, Roatti A, et al. Forkhead transcription factors coordinate expression of myocardial KATP channel subunits and energy metabolism. Circ Res 2008,102(2):e20-35.
    [2]Hayashi H, Kume T. Forkhead transcription factors regulate expression of the chemokine receptor CXCR4 in endothelial cells and CXCL12-induced cell migration. Biochem Biophys Res Commun 2008,367(3):584-589.
    [3]Omoteyama K, Mikami Y, Takagi M. Foxc2 induces expression of MyoD and differentiation of the mouse myoblast cell line C2C12. Biochem Biophys Res Commun 2007,358(3):885-889.
    [4]Jujo K, Hamada H, Iwakura A, et al. CXCR4 blockade augments bone marrow progenitor cell recruitment to the neovasculature and reduces mortality after myocardial infarction. Proc Natl Acad Sci U S A,107(24):11008-11013.
    [5]Ceradini DJ, Kulkarni AR, Callaghan MJ, et al. Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. Nat Med 2004,10(8):858-864.
    [6]Askari AT, Unzek S, Popovic ZB, et al. Effect of stromal-cell-derived factor 1 on stem-cell homing and tissue regeneration in ischaemic cardiomyopathy. Lancet 2003,362(9385):697-703.
    [7]Fadini GP, Sartore S, Schiavon M, et al. Diabetes impairs progenitor cell mobilisation after hindlimb ischaemia-reperfusion injury in rats. Diabetologia 2006,49(12):3075-3084.
    [8]De Falco E, Porcelli D, Torella AR, et al. SDF-1 involvement in endothelial phenotype and ischemia-induced recruitment of bone marrow progenitor cells. Blood 2004,104(12):3472-3482.
    [9]Abbott JD, Huang Y, Liu D, et al. Stromal cell-derived factor-1alpha plays a critical role in stem cell recruitment to the heart after myocardial infarction but is not sufficient to induce homing in the absence of injury. Circulation 2004, 110(21):3300-3305.
    [10]Hiasa K, Ishibashi M, Ohtani K, et al. Gene transfer of stromal cell-derived factor-1alpha enhances ischemic vasculogenesis and angiogenesis via vascular endothelial growth factor/endothelial nitric oxide synthase-related pathway: next-generation chemokine therapy for therapeutic neovascularization. Circulation 2004,109(20):2454-2461.
    [11]Walter DH, Haendeler J, Reinhold J, et al. Impaired CXCR4 signaling contributes to the reduced neovascularization capacity of endothelial progenitor cells from patients with coronary artery disease. Circ Res 2005, 97(11):1142-1151.
    [12]Sbaa E, Dewever J, Martinive P, et al. Caveolin plays a central role in endothelial progenitor cell mobilization and homing in SDF-1-driven postischemic vasculogenesis. Circ Res 2006,98(9):1219-1227.
    [13]Molino M, Woolkalis MJ, Prevost N, et al. CXCR4 on human endothelial cells can serve as both a mediator of biological responses and as a receptor for HIV-2. Biochim Biophys Acta 2000,1500(2):227-240.
    [14]Son BR, Marquez-Curtis LA, Kucia M, et al. Migration of bone marrow and cord blood mesenchymal stem cells in vitro is regulated by stromal-derived factor-1-CXCR4 and hepatocyte growth factor-c-met axes and involves matrix metalloproteinases. Stem Cells 2006,24(5):1254-1264.
    [15]Sainz J, Sata M. CXCR4, a key modulator of vascular progenitor cells. Arterioscler Thromb Vasc Biol 2007,27(2):263-265.
    [16]Hristov M, Zernecke A, Bidzhekov K, et al. Importance of CXC chemokine receptor 2 in the homing of human peripheral blood endothelial progenitor cells to sites of arterial injury. Circ Res 2007,100(4):590-597.
    [17]Chen L, Wu F, Xia WH, et al. CXCR4 gene transfer contributes to in vivo reendothelialization capacity of endothelial progenitor cells. Cardiovasc Res, 88(3):462-470.
    [18]Smadja DM, Bieche I, Uzan G, et al. PAR-1 activation on human late endothelial progenitor cells enhances angiogenesis in vitro with upregulation of the SDF-1/CXCR4 system. Arterioscler Thromb Vasc Biol 2005, 25(11):2321-2327.
    [19]Walter DH, Rochwalsky U, Reinhold J, et al. Sphingosine-1-phosphate stimulates the functional capacity of progenitor cells by activation of the CXCR4-dependent signaling pathway via the S1P3 receptor. Arterioscler Thromb Vasc Biol 2007,27(2):275-282.
    [20]Hamed S, Brenner B, Abassi Z, et al. Hyperglycemia and oxidized-LDL exert a deleterious effect on endothelial progenitor cell migration in type 2 diabetes mellitus. Thromb Res,126(3):166-174.
    [21]Shantsila E, Watson T, Lip GY. Endothelial progenitor cells in cardiovascular disorders. J Am Coll Cardiol 2007,49(7):741-752.
    [22]Pirro M, Bagaglia F, Paoletti L, et al. Hypercholesterolemia-associated endothelial progenitor cell dysfunction. Ther Adv Cardiovasc Dis 2008, 2(5):329-339.
    [23]Zhou B, Ma FX, Liu PX, et al. Impaired therapeutic vasculogenesis by transplantation of OxLDL-treated endothelial progenitor cells. J Lipid Res 2007,48(3):518-527.
    [24]Oh BJ, Kim DK, Kim BJ, et al. Differences in donor CXCR4 expression levels are correlated with functional capacity and therapeutic outcome of angiogenic treatment with endothelial colony forming cells. Biochem Biophys Res Commun,398(4):627-633.
    [25]Seeger FH, Rasper T, Koyanagi M, et al. CXCR4 expression determines functional activity of bone marrow-derived mononuclear cells for therapeutic neovascularization in acute ischemia. Arterioscler Thromb Vasc Biol 2009, 29(11):1802-1809.
    [26]De Val S, Chi NC, Meadows SM, et al. Combinatorial regulation of endothelial gene expression by ets and forkhead transcription factors. Cell 2008,135(6):1053-1064.
    [27]Hayashi H, Sano H, Seo S, et al. The Foxc2 transcription factor regulates angiogenesis via induction of integrin beta3 expression. J Biol Chem 2008, 283(35):23791-23800.
    [28]Xue Y, Cao R, Nilsson D, et al. FOXC2 controls Ang-2 expression and modulates angiogenesis, vascular patterning, remodeling, and functions in adipose tissue. Proc Natl Acad Sci U S A 2008,105(29):10167-10172.
    [29]Hayashi H, Kume T. Foxc transcription factors directly regulate D114 and Hey2 expression by interacting with the VEGF-Notch signaling pathways in endothelial cells. PLoS One 2008,3(6):e2401.
    [30]Hannenhalli S, Putt ME, Gilmore JM, et al. Transcriptional genomics associates FOX transcription factors with human heart failure. Circulation 2006,114(12):1269-1276.
    [31]Tang YL, Zhu W, Cheng M, et al. Hypoxic preconditioning enhances the benefit of cardiac progenitor cell therapy for treatment of myocardial infarction by inducing CXCR4 expression. Circ Res 2009,104(10): 1209-1216.
    [32]Shiba Y, Takahashi M, Hata T, et al. Bone marrow CXCR4 induction by cultivation enhances therapeutic angiogenesis. Cardiovasc Res 2009, 81(1):169-177.
    [33]Denning-Kendall P, Singha S, Bradley B, et al. Cytokine expansion culture of cord blood CD34+ cells induces marked and sustained changes in adhesion receptor and CXCR4 expressions. Stem Cells 2003,21(1):61-70.
    [34]Wu Q, Shao H, Darwin ED, et al. Extracellular calcium increases CXCR4 expression on bone marrow-derived cells and enhances pro-angiogenesis therapy. J Cell Mol Med 2009,13(9B):3764-3773.
    [35]Katoh M. Integrative genomic analyses of CXCR4:transcriptional regulation of CXCR4 based on TGFbeta, Nodal, Activin signaling and POU5F1, FOXA2, FOXC2, FOXH1, SOX 17, and GFI1 transcription factors. Int J Oncol, 36(2):415-420.
    [36]Cantley LC. The phosphoinositide 3-kinase pathway. Science 2002,296(5573): 1655-1657.
    [37]Fruman DA, Meyers RE, Cantley LC. Phosphoinositide kinases. Annu Rev Biochem 1998,67:481-507.
    [38]Llevadot J, Murasawa S, Kureishi Y, et al. HMG-CoA reductase inhibitor mobilizes bone marrow--derived endothelial progenitor cells. J Clin Invest 2001,108(3):399-405.
    [39]Hughes AD, Coady E, Raynor S, et al. Reduced endothelial progenitor cells in European and South Asian men with atherosclerosis. Eur J Clin Invest 2007, 37(1):35-41.
    [40]Andreou I, Tousoulis D, Tentolouris C, et al. Potential role of endothelial progenitor cells in the pathophysiology of heart failure:clinical implications and perspectives. Atherosclerosis 2006,189(2):247-254.
    [41]Kalka C, Masuda H, Takahashi T, et al. Vascular endothelial growth factor(165) gene transfer augments circulating endothelial progenitor cells in human subjects. Circ Res 2000,86(12):1198-1202.
    [42]Imanishi T, Hano T, Nishio I. Estrogen reduces endothelial progenitor cell senescence through augmentation of telomerase activity. J Hypertens 2005, 23(9):1699-1706.
    [43]Chavakis E, Carmona G, Urbich C, et al. Phosphatidylinositol-3-kinase-gamma is integral to homing functions of progenitor cells. Circ Res 2008, 102(8):942-949.
    [44]Zheng H, Fu G, Dai T, et al. Migration of endothelial progenitor cells mediated by stromal cell-derived factor-1alpha/CXCR4 via PI3K/Akt/eNOS signal transduction pathway. J Cardiovasc Pharmacol 2007,50(3):274-280.
    [45]Mallat Z. PI3Kgamma helps an SDF seeking home... for EPCs. Circ Res 2008, 102(8):871-872.
    [46]Dimmeler S, Aicher A, Vasa M, et al. HMG-CoA reductase inhibitors (statins) increase endothelial progenitor cells via the PI 3-kinase/Akt pathway. J Clin Invest 2001,108(3):391-397.
    [47]Bahlmann FH, DeGroot K, Duckert T, et al. Endothelial progenitor cell proliferation and differentiation is regulated by erythropoietin. Kidney Int 2003,64(5):1648-1652.
    [48]Ackah E, Yu J, Zoellner S, et al. Aktl/protein kinase Balpha is critical for ischemic and VEGF-mediated angiogenesis. J Clin Invest 2005,115(8): 2119-2127.
    [1]Iwakura A, Luedemann C, Shastry S, et al. Estrogen-mediated, endothelial nitric oxide synthase-dependent mobilization of bone marrow-derived endothelial progenitor cells contributes to reendothelialization after arterial injury. Circulation 2003,108(25):3115-3121.
    [2]Hirshfeld JW, Jr., Schwartz JS, et al. Restenosis after coronary angioplasty:a multivariate statistical model to relate lesion and procedure variables to restenosis. The M-HEART Investigators. J Am Coll Cardiol 1991, 18(3):647-656.
    [3]Serruys PW, Foley DP, Suttorp MJ, et al. A randomized comparison of the value of additional stenting after optimal balloon angioplasty for long coronary lesions:final results of the additional value of NIR stents for treatment of long coronary lesions (ADVANCE) study. J Am Coll Cardiol 2002,39(3):393-399.
    [4]van den Brand MJ, Rensing BJ, Morel MA, et al. The effect of completeness of revascularization on event-free survival at one year in the ARTS trial. J Am Coll Cardiol 2002,39(4):559-564.
    [5]Tepper OM, Galiano RD, Capla JM, et al. Human endothelial progenitor cells from type II diabetics exhibit impaired proliferation, adhesion, and incorporation into vascular structures. Circulation 2002,106(22):2781-2786.
    [6]Hill JM, Zalos G, Halcox JP, et al. Circulating endothelial progenitor cells, vascular function, and cardiovascular risk. N Engl J Med 2003, 348(7):593-600.
    [7]Dimmeler S, Leri A. Aging and disease as modifiers of efficacy of cell therapy. Circ Res 2008,102(11):1319-1330.
    [8]Walter DH, Haendeler J, Reinhold J, et al. Impaired CXCR4 signaling contributes to the reduced neovascularization capacity of endothelial progenitor cells from patients with coronary artery disease. Circ Res 2005, 97(11):1142-1151.
    [9]Hamed S, Brenner B, Abassi Z, et al. Hyperglycemia and oxidized-LDL exert a deleterious effect on endothelial progenitor cell migration in type 2 diabetes mellitus. Thromb Res,126(3):166-174.
    [10]Shantsila E, Watson T, Lip GY. Endothelial progenitor cells in cardiovascular disorders. J Am Coll Cardiol 2007,49(7):741-752.
    [11]Pirro M, Bagaglia F, Paoletti L, et al. Hypercholesterolemia-associated endothelial progenitor cell dysfunction. Ther Adv Cardiovasc Dis 2008, 2(5):329-339.
    [12]Zhou B, Ma FX, Liu PX, et al. Impaired therapeutic vasculogenesis by transplantation of OxLDL-treated endothelial progenitor cells. J Lipid Res 2007,48(3):518-527.
    [13]Britten MB, Abolmaali ND, Assmus B, et al. Infarct remodeling after intracoronary progenitor cell treatment in patients with acute myocardial infarction (TOPCARE-AMI):mechanistic insights from serial contrast-enhanced magnetic resonance imaging. Circulation 2003,108(18):2212-2218.
    [1]Asahara T, Murohara T, Sullivan A, et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science 1997,275(5302):964-967.
    [2]Verfaillie CM. Hematopoietic stem cells for transplantation. Nat Immunol 2002,3(4):314-317.
    [3]Bryder D, Rossi DJ, Weissman IL. Hematopoietic stem cells:the paradigmatic tissue-specific stem cell. Am J Pathol 2006,169(2):338-346.
    [4]Keller G.. Embryonic stem cell differentiation:emergence of a new era in biology and medicine. Genes Dev 2005,19(10):1129-1155.
    [5]Stump MM, Jordan GL, Jr., et al. Endothelium Grown from Circulating Blood on Isolated Intravascular Dacron Hub. Am J Pathol 1963,43:361-367.
    [6]Blann AD, Woywodt A, Bertolini F, et al. Circulating endothelial cells. Biomarker of vascular disease. Thromb Haemost 2005,93(2):228-235.
    [7]Peichev M, Naiyer AJ, Pereira D, et al. Expression of VEGFR-2 and AC133 by circulating human CD34(+) cells identifies a population of functional endothelial precursors. Blood 2000,95(3):952-958.
    [8]Shmelkov SV, St Clair R, Lyden D, et al. AC133/CD133/Prominin-1. Int J Biochem Cell Biol 2005,37(4):715-719.
    [9]Timmermans F, Plum J, Yoder MC, et al. Endothelial progenitor cells:identity defined? J Cell Mol Med 2009,13(1):87-102.
    [10]Bertolini F, Shaked Y, Mancuso P, et al. The multifaceted circulating endothelial cell in cancer:towards marker and target identification. Nat Rev Cancer 2006,6(11):835-845.
    [11]Jujo K, Ii M, Losordo DW. Endothelial progenitor cells in neovascularization of infarcted myocardium. J Mol Cell Cardiol 2008,45(4):530-544.
    [12]Pompilio G, Capogrossi MC, Pesce M, et al. Endothelial progenitor cells and cardiovascular homeostasis:clinical implications. Int J Cardiol 2009, 131(2):156-167.
    [13]Duda DG, Cohen KS, Scadden DT, et al. A protocol for phenotypic detection and enumeration of circulating endothelial cells and circulating progenitor cells in human blood. Nat Protoc 2007,2(4):805-810.
    [14]Case J, Mead LE, Bessler WK, et al. Human CD34+AC133+VEGFR-2+ cells are not endothelial progenitor cells but distinct, primitive hematopoietic progenitors. Exp Hematol 2007,35(7):1109-1118.
    [15]Timmermans F, Van Hauwermeiren F, De Smedt M, et al. Endothelial outgrowth cells are not derived from CD 133+ cells or CD45+ hematopoietic precursors. Arterioscler Thromb Vasc Biol 2007,27(7):1572-1579.
    [16]Hirschi KK, Ingram DA, Yoder MC. Assessing identity, phenotype, and fate of endothelial progenitor cells. Arterioscler Thromb Vasc Biol 2008,28(9):1584-1595.
    [17]Urbich C, Dimmeler S. Endothelial progenitor cells:characterization and role in vascular biology. Circ Res 2004,95(4):343-353.
    [18]Rafii S, Lyden D. Therapeutic stem and progenitor cell transplantation for organ vascularization and regeneration. Nat Med 2003,9(6):702-712.
    [19]Khakoo AY, Finkel T. Endothelial progenitor cells. Annu Rev Med 2005, 56:79-101.
    [20]Hristov M, Fach C, Becker C, et al. Reduced numbers of circulating endothelial progenitor cells in patients with coronary artery disease associated with long-term statin treatment. Atherosclerosis 2007,192(2):413-420.
    [21]Hristov M, Weber C. The therapeutic potential of progenitor cells in ischemic heart disease--Past, present and future. Basic Res Cardiol 2006,101(1):1-7.
    [22]Khan SS, Solomon MA, McCoy JP, et al. Detection of circulating endothelial cells and endothelial progenitor cells by flow cytometry. Cytometry B Clin Cytom 2005,64(1):1-8.
    [23]Ito H, Rovira, II, Bloom ML, et al. Endothelial progenitor cells as putative targets for angiostatin. Cancer Res 1999,59(23):5875-5877.
    [24]Hill JM, Zalos G, Halcox JP, et al. Circulating endothelial progenitor cells, vascular function, and cardiovascular risk. N Engl J Med 2003, 348(7):593-600.
    [25]Rehman J, Li J, Orschell CM, et al. Peripheral blood "endothelial progenitor cells" are derived from monocyte/macrophages and secrete angiogenic growth factors. Circulation 2003,107(8):1164-1169.
    [26]Yoder MC, Mead LE, Prater D, et al. Redefining endothelial progenitor cells via clonal analysis and hematopoietic stem/progenitor cell principals. Blood 2007,109(5):1801-1809.
    [27]Kalka C, Masuda H, Takahashi T, et al. Transplantation of ex vivo expanded endothelial progenitor cells for therapeutic neovascularization. Proc Natl Acad Sci U S A 2000,97(7):3422-3427.
    [28]Gunsilius E, Duba HC, Petzer AL, et al. Evidence from a leukaemia model for maintenance of vascular endothelium by bone-marrow-derived endothelial cells. Lancet 2000,355(9216):1688-1691.
    [29]Rohde E, Malischnik C, Thaler D, et al. Blood monocytes mimic endothelial progenitor cells. Stem Cells 2006,24(2):357-367.
    [30]Rohde E, Bartmann C, Schallmoser K, et al. Immune cells mimic the morphology of endothelial progenitor colonies in vitro. Stem Cells 2007, 25(7):1746-1752.
    [31]Ingram DA, Mead LE, Tanaka H, et al. Identification of a novel hierarchy of endothelial progenitor cells using human peripheral and umbilical cord blood. Blood 2004,104(9):2752-2760.
    [32]Hur J, Yang HM, Yoon CH, et al. Identification of a novel role of T cells in postnatal vasculogenesis:characterization of endothelial progenitor cell colonies. Circulation 2007,116(15):1671-1682.
    [33]Hur J, Yoon CH, Kim HS, et al. Characterization of two types of endothelial progenitor cells and their different contributions to neovasculogenesis. Arterioscler Thromb Vasc Biol 2004,24(2):288-293.
    [34]Asosingh K, Aldred MA, Vasanji A, et al. Circulating angiogenic precursors in idiopathic pulmonary arterial hypertension. Am J Pathol 2008, 172(3):615-627.
    [35]Yoon CH, Hur J, Park KW, et al. Synergistic neovascularization by mixed transplantation of early endothelial progenitor cells and late outgrowth endothelial cells:the role of angiogenic cytokines and matrix metalloproteinases. Circulation 2005,112(11):1618-1627.
    [36]Vasa M, Fichtlscherer S, Adler K, et al. Increase in circulating endothelial progenitor cells by statin therapy in patients with stable coronary artery disease. Circulation 2001,103(24):2885-2890.
    [37]Vasa M, Fichtlscherer S, Aicher A, et al. Number and migratory activity of circulating endothelial progenitor cells inversely correlate with risk factors for coronary artery disease. Circ Res 2001,89(1):E1-7.
    [38]Dimmeler S, Aicher A, Vasa M, et al. HMG-CoA reductase inhibitors (statins) increase endothelial progenitor cells via the PI 3-kinase/Akt pathway. J Clin Invest 2001,108(3):391-397.
    [39]Zhang SJ, Zhang H, Wei YJ, et al. Adult endothelial progenitor cells from human peripheral blood maintain monocyte/macrophage function throughout in vitro culture. Cell Res 2006,16(6):577-584.
    [40]Fernandez Pujol B, Lucibello FC, Gehling UM, et al. Endothelial-like cells derived from human CD 14 positive monocytes. Differentiation 2000, 65(5):287-300.
    [41]Hassan NF, Campbell DE, Douglas SD. Purification of human monocytes on gelatin-coated surfaces. J Immunol Methods 1986,95(2):273-276.
    [42]Prokopi M, Pula G, Mayr U, et al. Proteomic analysis reveals presence of platelet microparticles in endothelial progenitor cell cultures. Blood 2009, 114(3):723-732.
    [43]Lin Y, Weisdorf DJ, Solovey A, et al. Origins of circulating endothelial cells and endothelial outgrowth from blood. J Clin Invest 2000,105(1):71-77.
    [44]Au P, Daheron LM, Duda DG, et al. Differential in vivo potential of endothelial progenitor cells from human umbilical cord blood and adult peripheral blood to form functional long-lasting vessels. Blood 2008, 111(3):1302-1305.
    [45]Bhattacharya V, McSweeney PA, Shi Q, et al. Enhanced endothelialization and microvessel formation in polyester grafts seeded with CD34(+) bone marrow cells. Blood 2000,95(2):581-585.
    [46]Sieveking DP, Buckle A, Celermajer DS, et al. Strikingly different angiogenic properties of endothelial progenitor cell subpopulations:insights from a novel human angiogenesis assay. J Am Coll Cardiol 2008,51(6):660-668.
    [47]Voyta JC, Via DP, Butterfield CE, et al. Identification and isolation of endothelial cells based on their increased uptake of acetylated-low density lipoprotein. J Cell Biol 1984,99(6):2034-2040.
    [48]Suzuki K, Sakata N, Kitani A, et al. Characterization of human monocytic cell line, U937, in taking up acetylated low-density lipoprotein and cholesteryl ester accumulation. A flow cytometric and HPLC study. Biochim Biophys Acta 1990,1042(2):210-216.
    [49]Holthofer H, Virtanen I, Kariniemi AL, et al. Ulex europaeus I lectin as a marker for vascular endothelium in human tissues. Lab Invest 1982, 47(1):60-66.
    [50]Schwechheimer K, Weiss G, Schnabel P, et al. Lectin target cells in human central nervous system and the pituitary gland. Histochemistry 1984, 80(2):165-169.
    [51]Liu SM, Li CY. Immunohistochemical study of Ulex europaeus agglutinin 1 (UEA-1) binding of megakaryocytes in bone marrow biopsy specimens: demonstration of heterogeneity in staining pattern reflecting the stages of differentiation. Hematopathol Mol Hematol 1996,10(1-2):99-109.
    [52]Graziano M, St-Pierre Y, Potworowski EF. UEA-I-binding to thymic medullary epithelial cells selectively reduces numbers of cortical TCRalphabeta+ thymocytes in FTOCs. Immunol Lett 2001,77(3):143-150.
    [53]Werner N, Kosiol S, Schiegl T, et al. Circulating endothelial progenitor cells and cardiovascular outcomes. N Engl J Med 2005,353(10):999-1007.
    [54]Pelliccia F, Cianfrocca C, Rosano G, et al. Role of endothelial progenitor cells in restenosis and progression of coronary atherosclerosis after percutaneous coronary intervention:a prospective study. JACC Cardiovasc Interv 2010, 3(1):78-86.
    [1]Ceradini DJ, Kulkarni AR, Callaghan MJ, et al. Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. Nat Med 2004,10(8):858-864.
    [2]Massberg S, Konrad I, Schurzinger K, et al. Platelets secrete stromal cell-derived factor 1 alpha and recruit bone marrow-derived progenitor cells to arterial thrombi in vivo. J Exp Med 2006,203(5):1221-1233.
    [3]Abbott JD, Huang Y, Liu D, et al. Stromal cell-derived factor-1 alpha plays a critical role in stem cell recruitment to the heart after myocardial infarction but is not sufficient to induce homing in the absence of injury. Circulation 2004, 110(21):3300-3305.
    [4]Huo Y, Weber C, Forlow SB, et al. The chemokine KC, but not monocyte chemoattractant protein-1, triggers monocyte arrest on early atherosclerotic endothelium. J Clin Invest 2001,108(9):1307-1314.
    [5]Liehn EA, Schober A, Weber C. Blockade of keratinocyte-derived chemokine inhibits endothelial recovery and enhances plaque formation after arterial injury in ApoE-deficient mice. Arterioscler Thromb Vasc Biol 2004, 24(10):1891-1896.
    [6]Smith C, Damas JK, Otterdal K, et al. Increased levels of neutrophil-activating peptide-2 in acute coronary syndromes:possible role of platelet-mediated vascular inflammation. J Am Coll Cardiol 2006,48(8):1591-1599.
    [7]Wysocki SJ, Zheng MH, Smith A, et al. Monocyte chemoattractant protein-1 gene expression in injured pig artery coincides with early appearance of infiltrating monocyte/macrophages. J Cell Biochem 1996,62(3):303-313.
    [8]Spring H, Schuler T, Arnold B, et al. Chemokines direct endothelial progenitors into tumor neovessels. Proc Natl Acad Sci U S A 2005,102(50): 18111-18116.
    [9]Fujiyama S, Amano K, Uehira K, et al. Bone marrow monocyte lineage cells adhere on injured endothelium in a monocyte chemoattractant protein-1-dependent manner and accelerate reendothelialization as endothelial progenitor cells. Circ Res 2003,93(10):980-989.
    [10]Kalka C, Masuda H, Takahashi T, et al. Vascular endothelial growth factor(165) gene transfer augments circulating endothelial progenitor cells in human subjects. Circ Res 2000,86(12):1198-1202.
    [11]Palumbo R, Bianchi ME. High mobility group box 1 protein, a cue for stem cell recruitment. Biochem Pharmacol 2004,68(6):1165-1170.
    [12]Chavakis E, Hain A, Vinci M, et al. High-mobility group box 1 activates integrin-dependent homing of endothelial progenitor cells. Circ Res 2007, 100(2):204-212.
    [13]Vajkoczy P, Blum S, Lamparter M, et al. Multistep nature of microvascular recruitment of ex vivo-expanded embryonic endothelial progenitor cells during tumor angiogenesis. J Exp Med 2003,197(12):1755-1765.
    [14]Foubert P, Silvestre JS, Souttou B, et al. PSGL-1-mediated activation of EphB4 increases the proangiogenic potential of endothelial progenitor cells. J Clin Invest 2007,117(6):1527-1537.
    [15]Oh IY, Yoon CH, Hur J, et al. Involvement of E-selectin in recruitment of endothelial progenitor cells and angiogenesis in ischemic muscle. Blood 2007, 110(12):3891-3899.
    [16]Duan H, Cheng L, Sun X, et al. LFA-1 and VLA-4 involved in human high proliferative potential-endothelial progenitor cells homing to ischemic tissue. Thromb Haemost 2006,96(6):807-815.
    [17]Walter DH, Rittig K, Bahlmann FH, et al. Statin therapy accelerates reendothelialization:a novel effect involving mobilization and incorporation of bone marrow-derived endothelial progenitor cells. Circulation 2002, 105(25):3017-3024.
    [18]Schroeter MR, Leifheit M, Sudholt P, et al. Leptin enhances the recruitment of endothelial progenitor cells into neointimal lesions after vascular injury by promoting integrin-mediated adhesion. Circ Res 2008,103(5):536-544.
    [19]Carmona G, Chavakis E, Koehl U, et al. Activation of Epac stimulates integrin-dependent homing of progenitor cells. Blood 2008,111 (5):2640-2646.
    [20]Chavakis E, Aicher A, Heeschen C, et al. Role of beta2-integrins for homing and neovascularization capacity of endothelial progenitor cells. J Exp Med 2005,201(1):63-72.
    [21]van Weel V, Seghers L, de Vries MR, et al. Expression of vascular endothelial growth factor, stromal cell-derived factor-1, and CXCR4 in human limb muscle with acute and chronic ischemia. Arterioscler Thromb Vasc Biol 2007, 27(6):1426-1432.
    [22]Yamaguchi J, Kusano KF, Masuo O, et al. Stromal cell-derived factor-1 effects on ex vivo expanded endothelial progenitor cell recruitment for ischemic neovascularization. Circulation 2003,107(9):1322-1328.
    [23]Fadini GP, Sartore S, Schiavon M, et al. Diabetes impairs progenitor cell mobilisation after hindlimb ischaemia-reperfusion injury in rats. Diabetologia 2006,49(12):3075-3084.
    [24]Walter DH, Haendeler J, Reinhold J, et al. Impaired CXCR4 signaling contributes to the reduced neovascularization capacity of endothelial progenitor cells from patients with coronary artery disease. Circ Res 2005, 97(11):1142-1151.
    [25]Molino M, Woolkalis MJ, Prevost N, et al. CXCR4 on human endothelial cells can serve as both a mediator of biological responses and as a receptor for HIV-2. Biochim Biophys Acta 2000,1500(2):227-240.
    [26]Son BR, Marquez-Curtis LA, Kucia M, et al. Migration of bone marrow and cord blood mesenchymal stem cells in vitro is regulated by stromal-derived factor-1-CXCR4 and hepatocyte growth factor-c-met axes and involves matrix metalloproteinases. Stem Cells 2006,24(5):1254-1264.
    [27]Sainz J, Sata M. CXCR4, a key modulator of vascular progenitor cells. Arterioscler Thromb Vasc Biol 2007,27(2):263-265.
    [28]Hristov M, Zernecke A, Bidzhekov K, et al. Importance of CXC chemokine receptor 2 in the homing of human peripheral blood endothelial progenitor cells to sites of arterial injury. Circ Res 2007,100(4):590-597.
    [29]Tepper OM, Galiano RD, Capla JM, et al. Human endothelial progenitor cells from type Ⅱ diabetics exhibit impaired proliferation, adhesion, and incorporation into vascular structures. Circulation 2002,106(22):2781-2786.
    [30]Hill JM, Zalos G, Halcox JP, et al. Circulating endothelial progenitor cells, vascular function, and cardiovascular risk. N Engl J Med 2003, 348(7):593-600.
    [31]Dimmeler S, Leri A. Aging and disease as modifiers of efficacy of cell therapy. Circ Res 2008,102(11):1319-1330.
    [32]De Falco E, Porcelli D, Torella AR, et al. SDF-1 involvement in endothelial phenotype and ischemia-induced recruitment of bone marrow progenitor cells. Blood 2004,104(12):3472-3482.
    [33]Zernecke A, Schober A, Bot I, et al. SDF-1alpha/CXCR4 axis is instrumental in neointimal hyperplasia and recruitment of smooth muscle progenitor cells. Circ Res 2005,96(7):784-791.
    [34]Grunewald M, Avraham I, Dor Y, et al.VEGF-induced adult neovasculariza-tion:recruitment, retention, and role of accessory cells. Cell 2006, 124(1):175-189.
    [35]Aicher A, Zeiher AM, Dimmeler S. Mobilizing endothelial progenitor cells. Hypertension 2005,45(3):321-325.
    [36]Jin C, Fu WX, Xie LP, et al. SDF-lalpha production is negatively regulated by mouse estrogen enhanced transcript in a mouse thymus epithelial cell line. Cell Immunol 2003,223(1):26-34.
    [37]Semerad CL, Christopher MJ, Liu F, et al. G-CSF potently inhibits osteoblast activity and CXCL12 mRNA expression in the bone marrow. Blood 2005, 106(9):3020-3027.
    [38]Sbaa E, Dewever J, Martinive P, et al. Caveolin plays a central role in endothelial progenitor cell mobilization and homing in SDF-1-driven postischemic vasculogenesis. Circ Res 2006,98(9):1219-1227.
    [39]Katoh M. Integrative genomic analyses of CXCR4:transcriptional regulation of CXCR4 based on TGFbeta, Nodal, Activin signaling and POU5F1, FOXA2, FOXC2, FOXH1, SOX 17, and GFI1 transcription factors. Int J Oncol, 36(2):415-420.
    [40]Hayashi H, Kume T. Forkhead transcription factors regulate expression of the chemokine receptor CXCR4 in endothelial cells and CXCL12-induced cell migration. Biochem Biophys Res Commun 2008,367(3):584-589.
    [41]Powell TM, Paul JD, Hill JM, et al. Granulocyte colony-stimulating factor mobilizes functional endothelial progenitor cells in patients with coronary artery disease. Arterioscler Thromb Vasc Biol 2005,25(2):296-301.
    [42]Walter DH, Rochwalsky U, Reinhold J, et al. Sphingosine-1-phosphate stimulates the functional capacity of progenitor cells by activation of the CXCR4-dependent signaling pathway via the S1P3 receptor. Arterioscler Thromb Vasc Biol 2007,27(2):275-282.
    [43]Amara A, Gall SL, Schwartz O, et al. HIV coreceptor downregulation as antiviral principle:SDF-1alpha-dependent internalization of the chemokine receptor CXCR4 contributes to inhibition of HIV replication. J Exp Med 1997, 186(1):139-146.
    [44]Peled A, Petit I, Kollet O, et al. Dependence of human stem cell engraftment and repopulation of NOD/SCID mice on CXCR4. Science 1999, 283(5403):845-848.
    [45]Hiasa K, Ishibashi M, Ohtani K, et al. Gene transfer of stromal cell-derived factor-1alpha enhances ischemic vasculogenesis and angiogenesis via vascular endothelial growth factor/endothelial nitric oxide synthase-related pathway: next-generation chemokine therapy for therapeutic neovascularization. Circulation 2004,109(20):2454-2461.
    [46]Hamed S, Brenner B, Abassi Z, et al. Hyperglycemia and oxidized-LDL exert a deleterious effect on endothelial progenitor cell migration in type 2 diabetes mellitus. Thromb Res,126(3):166-174.
    [47]Shantsila E, Watson T, Lip GY. Endothelial progenitor cells in cardiovascular disorders. J Am Coll Cardiol 2007,49(7):741-752.
    [48]Pirro M, Bagaglia F, Paoletti L, et al. Hypercholesterolemia-associated endothelial progenitor cell dysfunction. Ther Adv Cardiovasc Dis 2008, 2(5):329-339.
    [49]Zhou B, Ma FX, Liu PX, et al. Impaired therapeutic vasculogenesis by transplantation of OxLDL-treated endothelial progenitor cells. J Lipid Res 2007,48(3):518-527.
    [50]Oh BJ, Kim DK, Kim BJ, et al. Differences in donor CXCR4 expression levels are correlated with functional capacity and therapeutic outcome of angiogenic treatment with endothelial colony forming cells. Biochem Biophys Res Commun,398(4):627-633.
    [51]Seeger FH, Rasper T, Koyanagi M, et al. CXCR4 expression determines functional activity of bone marrow-derived mononuclear cells for therapeutic neovascularization in acute ischemia. Arterioscler Thromb Vase Biol 2009, 29(11):1802-1809.
    [52]Tang YL, Zhu W, Cheng M, et al. Hypoxic preconditioning enhances the benefit of cardiac progenitor cell therapy for treatment of myocardial infarction by inducing CXCR4 expression. Circ Res 2009, 104(10):1209-1216.
    [53]Shiba Y, Takahashi M, Hata T, et al. Bone marrow CXCR4 induction by cultivation enhances therapeutic angiogenesis. Cardiovasc Res 2009, 81(1):169-177.
    [54]Denning-Kendall P, Singha S, Bradley B, et al. Cytokine expansion culture of cord blood CD34+ cells induces marked and sustained changes in adhesion receptor and CXCR4 expressions. Stem Cells 2003,21(1):61-70.
    [55]Wu Q, Shao H, Darwin ED, et al. Extracellular calcium increases CXCR4 expression on bone marrow-derived cells and enhances pro-angiogenesis therapy. J Cell Mol Med 2009,13(9B):3764-3773.
    [56]Chen L, Wu F, Xia WH, et al. CXCR4 gene transfer contributes to in vivo reendothelialization capacity of endothelial progenitor cells. Cardiovasc Res, 88(3):462-470.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700