向日葵染色体核型及其遗传转化的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
向日葵是世界上重要的油料作物和生物能源材料,在中国人民的饮食结构中是食用油的主要来源之一。由于向日葵是公认的难转化作物,其转化频率不高,并且重复性差,其主要原因是从转化的细胞或组织分化再生植株困难。因此,本研究主要内容之一是探讨向日葵离体培养再生难的问题,以促进向日葵植株再生技术日臻完善,不断提高植株再生频率。研究结果表明,向日葵不同基因型外植体在含适宜IAA、6-BA等激素的培养基中均较易形成愈伤组织;但愈伤组织分化不定芽的能力则较困难;不同基因型向日葵外植体的不定芽诱导率依次为子叶节>下胚轴>子叶>真叶;诱导子叶节不定芽分化的适宜6-BA浓度为1.2mg/L,下胚轴为1.8mg/L,子叶为0.6mg/L,真叶却未见到诱导出不定芽;幼胚大小为≤2mm时,体细胞胚发生频率较高(45.5%);体细胞胚胎发生的适宜培养基为MS+0.4mg/L 2,4-D+120g/L蔗糖。
     核型分析是细胞遗传学、染色体工程、基因定位、细胞分类学以及现代进化理论等学科的基本研究方法,对向日葵染色体核型进行分析,这将为向日葵的细胞学分类、选择杂交亲本组合、培育新品种及转基因向日葵的细胞学检测等方面提供细胞学依据。结果表明,8个基因型向日葵的染色体数均为2n =2x = 34,除了RHA266之外,都为中部着丝粒或近中部着丝粒染色体;8个基因型向日葵具有2种核型:1B和2B,这表明不同基因型间染色体核型确实存在差异。
     随着生物技术的发展,转基因植物产业将成为21世纪新的经济增长点。我们的设想是在21世纪里,向日葵的基因工程将从单基因性状向多基因发展。也就是说把抗虫、抗病、高产等多种基因都组合在一起,得到更好的向日葵品种。同时还想利用转基因工程,把有益健康的基因转移到向日葵中去,以改良向日葵的品质,使向日葵生产的食品成为健康食品、功能食品、营养食品。另外,通过向日葵转基因工程,人们还想尽快培育出抗旱、抗碱、抗土地贫瘠、抗重金属污染的向日葵。由此看来,对转基因向日葵的研究和开发其前景是非常远大的。关于对类胡萝卜素合成的有关酶基因转化向日葵的研究,无论是国外,还是国内至今有关这方面的研究报道较少。本实验通过农杆菌介导法和花粉管通道法,用类胡萝卜素生物合成代谢途径中关键酶PSY和LycB基因转化向日葵,以期获得类胡萝卜素含量较高的优质油用向日葵,达到改善向日葵品质的目的。研究结果表明:转化受体筛选剂Hyg使用浓度为8mg/L较适宜;共培养时间3d为宜;侵染时间8min为宜;重悬液浓度OD600以0.6为佳;以干燥处理4h的子叶节为外植体进行遗传转化,子叶节抗性芽率较不处理有明显的提高;柱头滴加法和子房注射法导入目的基因较适宜的时间为授粉后4-6h;柱头滴加法的抗性植株率低于子房注射法;PCR、Dot blot及Southern的分子检测证明,目的基因PSY和LycB已整合进向日葵基因组中。
Carotenoids,a kind of nutrition elements have various health benefits such as improving human's immunity, retarding the ageing process of organs, preventing cancer, reducing the risks of nyctalopia and infant amblyopia for lack of vitamin A.Human blood contains lycopene, xanthophyl,β-cryptoxanthin,α-carotene and other carotenoids although human body can not synthesize those, and take them from food. Fruit and vegetable, is the main source of carotenoids. Carotenoids are lipophilic soluble, which can’t be absorbed lack of lipid.β- carotene in albumen of“the golden rice”have gained a higher content, whereas, how much can be taken need a further research. Additionally, it is hard and poisonous to synthesize by chemical method, by which only a few kinds of carotenoids obtained and commercialized, such asβ- carotene, astaxanthin and canthaxanthin etc. In another way, we gotβ- carotene and astaxanthin by fermentation.
     Karyotype analysis is a basic method for investigating the cell genetics, chromosome engineering, gene location, cytotaxonomy and modern evolution theory. It also provides cytology proof for cytotaxonomy breeding, selecting parents of hybrid Combination and cytology test of trans-genes sunflower. Carotenoids synthase genes were applied to transformation some plants such as tobacco, cole, tomato and rice. Although it is usually called as golden rice and golden cole for higher carotenoid content by genetic transformation, no related research and report about sunflower was found.
     Sunflower, a kind of annual herbaceous plant belongs to composite family, which bears character of leanness, salt and drought resistance. Seed of Sunflower, the main source of protein and plant lipid, is one of the important biomass energy. Sunflower plays an important role in supplying lipid and protein and improving food structure as well as promoting development of animal husbandry and processing industry. Scientists aim to breed new breeds with high yield and good quality by modern biotechnology, whereas, sunflower is a generally acknowledged recalcitrant crop for transformation. So far no efficient and stable transformation system was set up because of frequency of plant regeneration.
     Researchers have attached importance to utilizing tissue culture and gene engineering to meliorate quality of sunflower since the 1980s, but most research focus on improving the method of plant regeneration and transformation as well as on promoting transformation efficiency. No satisfying result was reported, except single or multi-genes transformed sunflower and very few characters were altered.
     There will be significant economy and society benefit for health promotion and promoting the quality of sunflower through transformation of carotenoids synthase gene to enhance the carotenoids content.
     Karyotype analysis of eight genotypes of sunflower showed that chromosome numbers in the eight sunflowers were 2n = 2x = 34. All the chromosomes were median and submedian centromeric. Their karyotype formulas were F53: 2n=2x=34=24m+10sm、2603: 2n=2x=34=24m+10sm、2736: 2n=2x=34=26m+8sm、89B1: 2n=2x=34=22m+12sm、HA300: 2n=2x=34=28m+6sm、B7: 2n=2x=34=22m+ 12sm、RHA266: 2n=2x=34=30m+2sm+2st、PR29: 2n=2x=34=30m+4sm;The eight genotypes of sunflowers shared two karyotypes (1B and 2B), which indicated there were some karyotypes diversity within different genotypes of sunflowers.
     The regeneration frequency of induced bud with different explants in different culture medium was further researched by taking different genotypes sunflower as material. The result showed that, it is easy to form the callus that explants of different genotype sunflower in the culture medium which contain suitable endocrine such as IAA、6-BA and so on, but the possibility that callus forms bud is slim. The frequencies of induced bud which explants of different genotype sunflower are in turn as followed: cotyledenary node > hypocotyls> cotyledon> euphylla; the suitable concentration of 6-BA to induce the cotyledenary node to generate the bud is 1.2mg/l, hypocotyls is 1.8mg/l, cotyledon is 0.6mg/l, euphylla hasn’t been induced to form the bud. The capability of induced adventitious bud is very different with different genotypes of sunflower. The regenerated frequency of PR29 showed to be the highest.
     The young embryos of different genotype sunflower were also used as material. The rule of somatic embryogenesis was studied preliminarily, including the size of young embryo, the concentration of sucrose, carbohydrate, endocrine (2,4-D and 6-BA). The results showed that somatic embryogenesis was induced on callus or between or marginal of two cotyledons, but the most be on one side of the cotyledon in line. The somatic embryogenesis frequency showed the highest as sucrose (120 g/L) added into the medium. When the size of young embryo is less than 2mm, the frequency of the embryo to embryogenesis was suitable (45.5%). The optimum culture medium for somatic embryogenesis is Ms+0.4mg/l+2,4-D+120 mg/l sucrose. Except that, the somatic embryogenesis frequency varied with genotypes, and RHA266 gained the highest (38.4%), on the contrary 2736 got the lowest(10.1%).
     Cotyledonary nodes of three different genotypes of sunflowers (RHA266, PR29 and 2603) were transformed with Agrobracterium tumefaciens EHA101 carrying the PSY gene. Meanwhile the factors affecting transformation were studied. Transgenic sunflower’s plants were examined by PCR and Southern hybridiazation analysis. The results as follows: The Optimum concentration of Hyg is 8mg/L. The time of co-culture in 3 days might be suitable. Eight minutes is suitable for infection. The optimum range of OD600 is 0.6. PCR and PCR-Southern blot showed that the target LycB gene integrated into the genome of sunflower.
     Carotenoid biosynthesis enzyme gene (LycB) was transformed to 3 genotypes of sunflowers via pollen tube pathway technique. The results showed that stigma method affecting seed operated in 2~4 hrs pollinated, and 4hr later, no effect was observed. Meanwhile, times of operation had slim effect on seed. Ovary injection method gave more effect on seed, which brought a very low seed ratio in 2hrs, after that gained height in another 2hrs, whereas, seed ratio got no strong promotion in 8hrs. 40 mg/L kanamycin is the best density to select the positive via pollen tube pathway technique. Additionally, different induction methods gained distinguished positive ratio, that is to say, ovary injection method gave higher setting rate than stigma. The LycB gene has integrated into genome of sunflower testified by the analysis of Southern blot.
引文
[1] 蔡联炳, 冯海生. 披碱草属3个种的核型分析. 西北植物学报, 1997, 17(2): 238~241
    [2] 陈大明. 胡萝卜茄红素 β-和 ε-环化酶及辣椒红/辣椒玉红素合成酶基因的分离及特性研究. [博士后学位论文]. 北京: 中国科学院植物研究所, 2001
    [3] 陈瑞阳, 安祝平, 宋文芹, 等. 植物染色体G-带的初步研究. 武汉植物学研究, 1986, 4(2) : 111~117
    [4] 陈瑞阳. 中国主要经济植物基因组染色体图谱. 科学出版社, 2003
    [5] 陈晓静. 福建3个产地水仙的核型分析. 植物资源与环境学报, 2004, 13 (4): 28~31
    [6] 谌志伟, 张飞雄, 胡东. 六倍体莜麦染色体的核型分析. 首都师范大学学报(自然科学版), 1997, 18 (4): 66~69
    [7] 曹家树, 曹寿椿, 宋运淳. 芸薹类蔬菜(n=10)染色体G-带研究. 园艺学报, 1994, 21 (3): 257~263
    [8] 崔秋华, 蔚荣海, 韩立军. 向日葵(H.annus.L)染色体核型分析. 吉林农业大学学报, 1989, 11(2): 23~25
    [9] 戴秀梅, 傅大雄, 徐如宏, 等. 硬粒小麦2偏凸山羊草六倍体的核型分析. 麦类作物学报, 2000, 20 (2): 8~12
    [10] 邓德旺, 郭三堆, 杨志民. 棉花花粉管通道法转基因的分子细胞学机理研究. 中国农业科学, 1999, 32(6): 113~114
    [11] 丁国华, 徐仲, 朱祥春, 等. 花粉管通道法导入抗赤星病烤烟总 DNA D1 代性状变异的研究. 东北农业大学学报, 2000, 31(2): 173~179
    [12] 丁毅, 宋运淳. 大麦G-显带核型的研究. 植物学报, 1989, 31 (9): 684~688
    [13] 丁毅, 宋运淳. 大麦G-带变动性以及与染色粒的一致性分析. 遗传学报, 1996, 23 (4): 268~275
    [14] 顾铭洪, 等. 植物遗传学. 北京农业大学出版社, 1991
    [15] 郭三堆, 崔洪志, 夏兰芹, 等. 双价抗虫转基因棉花研究. 中国农业科学, 1999, 32(3): 1~7
    [16] 郭运玲, 熊和平, 唐守伟, 等. 亚麻(Linum usitatissimum L.) 染色体核型分析. 中国麻业, 2001, 23 (3): 9~11
    [17] 韩雅珊. 类胡萝卜素功能的研究进展. 中国农业大学学报, 1999, 4(1): 5~9
    [18] 贺昌锐, 宋运淳, 刘立华. 高梁三系及其杂交F1G-带核型的比较研究. 遗传学报, 1995, 22 (5): 400~ 405
    [19] 贺昌锐, 宋运淳, 刘立华. 高粱不同品种的核型分析. 武汉植物学研究, 1997 , 15 (3): 277~278
    [20] 洪德元. 植物细胞分类学. 北京:科学出版社, 1990
    [21] 洪德元. 中国和日本产竹叶子(亚种)(鸭跖草)核型的一致性. 植物分类学报,1986, 34(4): 264~267
    [22] 黄邦全, 薛小桥, 居超民, 等. 桂竹香的核型分析. 湖北大学学报(自然科学版) , 1999 , 21 (1): 79~80
    [23] 贾勇炯, 曹有龙, 林宏辉, 等. 高矮秆水稻品种的核型分析及Giemsa染色区的比较研究. 四川大学学报(自然科学版) , 1998 , 35 (5): 759~763
    [24] 孔照胜, 李贵全, 岳爱琴. 兵豆的核型分析. 山西农业大学学报, 1999 , 19 (1): 63~64
    [25] 李长缨, 简元才. 花粉管通道法在植物遗传转化中的应用. 生物学杂志, 2000, 17(1): 9~10
    [26] 李国泰. 轮叶百合染色体核型分析. 通化师范学院学报, 2004 , 25 (2) : 74~75
    [27] 李国珍. 染色体及其研究方法. 北京:科学出版社, 1985 , 109~130
    [28] [28]李贵全. 细胞学研究基础. 北京: 中国林业出版社, 2001: 79~99
    [29] 李懋学, 陈瑞阳. 关于植物核型分析的标准化问题. 武汉植物学研究, 1985,3(4): 297 – 302
    [30] 李继红. 几丁质酶和β~1,3-葡聚糖酶基因的克隆及转化番茄的研究: [博士学位论文]. 华南热带农业大学, 1997
    [31] 李懋学, 张赞平. 作物染色体及其研究技术. 北京: 中国农业出版社, 1996, 1~60
    [32] 李宗芸. 水稻几个BAC克隆和重复序列的细胞遗传学作图: [博士学位论文] 武汉: 武汉大学, 2002
    [33] 刘 宝, 顾德锋, 邬信康. 向日葵(Helianthus annuus L.)自交系的组织培养和芽的分化. 吉林农业大学学报, 1991, 13(1): 6~10
    [34] 刘海学, 王罡, 季静,等. 向日葵(Helianthus annuus L.)不同外植体组织培养及其再生的研究. 中国农业科学, 2006, 39(11): 2208~2213
    [35] 刘涤,胡之壁. 植物类异戊二烯生物合成途径的调节. 植物生理学通讯,1998, 34: 1~9
    [36] 刘德璞, 袁鹰, 唐克轩, 等. 大豆花粉管通道技术转化雪花莲凝集素(GNA)基因. 分子植物育种, 2006, 4(5): 663~669
    [37] 刘惠荣, 曾子申, 利容千. 向日葵(H.annus L.)三个品种的染色体组型分析.中国油料, 1984, 21(3): 22~26
    [38] 刘兆明, 张敏琦. 短瓣金莲花的核型分析. 高师理科学刊, 2000 , 20 (4) : 51~52
    [39] 梁燕,王鸣,陈杭,等. 茄红素—β—环化酶反义 RNA 基因对烟草的遗传转化. 西北农林科技大学学报, 2003, 31: 73~76
    [40] 马国斌. 西瓜甜瓜体细胞无性系的发生、变异与遗传转化研究:[博士学位论文]. 陕西杨陵:西北农林科技大学,1997
    [41] 马盾, 黄乐平, 黄全生, 等. 花粉管通道法在棉花转基因上的应用. 新疆农业科学, 2003, 41(1): 29~30
    [42] 马雪霞, 蓝海燕, 宋 荣. 向日葵(Helianthus annuus L.)的组织培养及芽分化的研究. 新疆农业科学, 2002, 39(1): 23~24
    [43] 齐志广, 秘彩莉. 不同预处理对有丝分裂的影响. 河北师范大学学报(自然科学版), 2003, 27(1): 88~91
    [44] 钱晓薇. 硫酸铜对蚕豆根尖细胞有丝分裂的影响. 细胞生物学杂志, 2004, 6(1): 171~176
    [45] 邱爱军, 魏凌基, 吴玲, 等. 粗柄独尾草染色体核型分析. 石河子大学学报(自然科学版) , 2004, 22 (5): 415~416
    [46] 佘朝文, 宋运淳, 刘立华. 普通小麦和节节麦G-带核型的研究. 武汉大学学报(自然科学版) , 1999, 45(4): 485~ 488
    [47] 宋运淳, 刘立华. 玉米染色体G-带带型研究. 遗传学报, 1990, 17(4): 282~ 288
    [48] 孙彦, 周禾, 史德宽. 新麦草有丝分裂及核型分析. 草地学报, 2000, 8 (3): 193~197
    [49] 邵剑文, 李晓红, 韩露, 等. 5 种珍珠菜属植物的核型分析. 云南植物研究, 2004, 26 (4): 427~433
    [50] 王冰, 杨怀林, 郑太坤, 等. 金挖耳的核型分析. 中药材, 1999, 22(4): 163~165
    [51] 王罡, 张艳贞, 魏松红, 等. 花粉管通道法将Bt毒蛋白基因导入优良玉米自交系. 吉林农业大学学报, 2002, 4(4): 40~44
    [52] 王关林, 方宏筠. 植物基因工程. 北京: 科学出版社, 2002: 481~496
    [53] 王彦芹, 朱天生, 魏凌基, 等. 大蒜染色体的核型分析. 塔里木农垦大学学报, 2003, 15 (4): 29~31
    [54] 温海霞, 陶澜. 植物染色体C显带技术及其在小麦育种中的应用研究进展. 种子, 2002, (3): 40~42
    [55] 翁坚, 沈慰芳, 王自芬, 等. 外源 DNA 导入棉花的分子验证. 生物化学与生物物理学报, 1984, 16(3): 325~327
    [56] 吴桂容. 细胞分类学研究进展. 广西梧州师范高等专科学校学报, 2004, 20(2): 75~79
    [57] 吴玲, 张霞, 马淼, 等. 新疆独尾草属植物核型分析. 全国第二届甘草学术讨论会第二届植物资源开发、利用与保护学术讨论会会议论文摘要集. 北京: 中国植物学会, 2004, 72~78
    [58] 吴梅, 黄向旭. 葫芦苏铁的核型分析. 热带亚热带植物学报, 1999, 7(3) : 207~209
    [59] 韦松基, 温标才. 桂平魔芋染色体及核型分析. 中药材, 2003, 26(11): 773~774
    [60] 香香, 施季森, 刘晓健. 两种预处理方法对杉木核型的影响. 南京农业大学学报, 2001, 25 (1) : 23~26
    [61] 熊大胜, 郭春秋, 张伏安. 白花败酱染色体的核型分析. 中国野生植物资源, 2004, 23 (3): 39~40
    [62] 熊玉兰. 橘红心白菜和普通大白菜类胡萝卜素代谢途径主要酶基因的表达分析. 首都师范大学硕士学位论文,2002. 5
    [63] 徐昌杰,张上隆. 柑橘类胡萝卜素合成关键酶基因研究进展. 园艺学报,2002, 29(增刊): 619~623
    [64] 徐进, 陈天华, 王章荣. 马尾松染色体荧光带型的研究. 武汉植物学研究, 1998, 16(2): 167 – 170
    [65] 徐培洲, 吴先军, 胡保民, 等. 油葵子叶外植体不定芽再生体系的建立. 中国油料作物学报, 2004, 26(4): 16~19
    [66] 许青,李石. 类胡萝卜素研究进展. 国外医学: 生理、病理科学与临床分册, 1996, 16(4):249~251
    [67] 阎新甫, 刘文轩, 王胜军, 等. 大麦 DNA 导入小麦产生抗白粉病变异的遗传研究, 遗传, 1994, 16(1): 26~30
    [68] 姚青, 宋运淳, 刘立华. 水稻染色体G-带的研究. 遗传学报, 1990, 17(4) :301~ 307
    [69] 游兰英, 刘广发, 林建明. 杜氏藻同步化生长及核型分析. 厦门大学学报(自然科学版) , 1997, 36 (2) : 276~281
    [70] 余桂荣, 尹钧, 任江萍, 等. 小麦花粉管通道法转基因研究. 麦类作物学报, 2004, 24(2): 15~19
    [71] 余先觉, 李渝成. 中国淡水鱼类染色体. 北京:科学出版社, 1989
    [72] 殷秀杰, 王明玖, 石凤翎. 高加索染色体的核型分析. 牧草种质、育种与生理, 2001 (9) : 465
    [73] 岳爱琴, 李贵全, 杜维俊, 等. 豆类植物三种类型染色体(大、中、小)核型分析方法的研究. 山西农业大学学报, 2001, 21 (2) : 118~120
    [74] 曾君祉, 李番. 小麦受精过程中花粉管入胚囊的研究, 见:余传隆, 主编, 生命科学进展—理论、技术、应用, 1993, 456~468
    [75] 翟中和. 细胞生物学. 北京: 高等教育出版社, 1995
    [76] 赵东利, 胡学军, 徐红梅. 海绿豆(Phaseol us demissus)的染色体核型分析初报. 北京农学院学报, 1999, 20 (4): 1~4
    [77] 庄南生, 郑成木. 植物特异性DNA 探针的制备与应用研究进展. 遗传, 2002 , 24(4): 507~514
    [78] 朱徵. 植物染色体及染色体技术. 北京: 科学出版社, 1982
    [79] 张新玲, 张佩玲, 尹杰. 6 个向日葵品种的核型分析. 八一农学院学报, 1995, 18(3): 100~103
    [80] 张玉玲. 薏苡和薏米的染色体倍数鉴定及核型分析. 辽宁农业职业技术学院学报, 2003 , 5 (4) : 14~16
    [81] 张自立, 杨晓峰, 黑麦染色体G-带的探索. 植物学报, 1986, 28(6) : 595~ 598
    [82] Al-Allaf S, Godward M B E. Karyotype analysis of four varieties of Helianthus annuus L. Cytologia. 1979, 44: 319-323
    [83] Albrecht M, Klein A, Hugueney P, et al. Molecular cloning and functionalexpession in E.Coli of a novel plant enzyme mediating Zeta-carotene desaturation.FEBS Lett. 1995, 372: 199-202
    [84] Allen R D, Arnott H J, Nessler G L. Effect of the embryonic axis and exogenous growth regulators on sunflower cotyledon storage protein mobilization. Physiol. Plant. 1984, 62: 375–383
    [85] Alibert G, Aslane-Chanabé C and Burrus M. Sunflower tissue and cell cultures and their use in biotechnology. Plant Physiol. Biochem., 1994, 32: 31-44
    [86] Alibert B, Lucas O, Le Gall V, et al. Pectolytic enzyme treatment of sunflower explants prior to wounding and cocultivation with Agrobacterium tumefaciens, enhances efficiency of transient β-glucuronidase expression , Physiol. Plant. 1999 , 106: 232-237
    [87] Arano H. Cytological studies in subfamily carduoideae (Compositae) of Japan, IX. The karyotype analysis and phylogentic considerations on Pertya and A insliaca (2). Bot. Mag. Tokyo , 1963, 76: 32-39
    [88] Armstrong G A,Alberiti M, Leach F, et al. Nucleotide sequence, organization and nature of the protein products of the carotenoid biosynthesis gene cluster of Rhodobacter capsulatus. Mol Gen Genet, 1989, 216(3): 254-268
    [89] Attree S M ,Fowke L C. Embryogeny of gymnosperms :advances in seed technology of conifer.Plant Cell Tiss Org Cult 1993, 35: 1- 35
    [90] Bartley G E, Viitanen P V, Bacot K O, et al. A tomato gene expressed during fruit ripening encodes an enzyme of the carotenoid biosynthesis pathway .J Biol Chem, 1992, 267: 5056-5039
    [91] Bartleyg E, Scolnik PA. cDNA cloning, expression during development and genome mapping of PSY2, a second tomato gene encoding phytoene synthase. J Biol Chem,1993, 268: 5718-25721
    [92] Bartley G E, Scolnik P A. Plant carotenoid: pigment for photoprotection, visualattraction and human health. Plant cell, 1995, 7: 1027-1038
    [93] Baker CM, Wetzstein H. Influence of auxin type and concertration on peanut somatic embryogenesis. Plant Cell Tiss Org Cult 1994, 36: 361- 368
    [94] Baker M C, Munoz-Fernandes N and Carter C D. Improved shoot development and rooting from mature cotyledons of sunflower. Plant Cell Tiss.Org. Cult., 1999, 58: 39-49
    [95] Bentzer B, Bothmer R, Engstrang L, et al. Some sources of error in the determination of arm ratios of chromosomes. Bot Not.1971, 124: 65-74
    [96] Berrios E, Gentzbittiel L, Alibert Y, et al. Genetic control of in vitro-organogenesis in recombinant inbred lines of sunflower (H. annuus L.). Plant Breed, 1999, 118: 359-361
    [97] Bidney D, Scelonge C, Martich J, et al. Microprojectile bombardment of plant tissues increases transformation frequency by Agrobacterium tumefaciens. Plant Mol. Biol., 1992, 18: 301-313
    [98] Bidney D, Scelonge C. Sunflower Biotechnology. In: Schneiter, A.A.(ed.), Sunflower Technology and Production. Agronomy, Madison, Wisconsin, USA, pp. 1997, 59-593
    [99] Bidney D, Scelonge C and Wang, L. Recovery of transformed plants without selectable markers by nodal culture and enrichment of transgenic sectors. WO 1998, 98/51806
    [100] Bidney D. Expression of ?-glucuronidase in sunflower apical meristems following microprojectile bombardment. In Abstracts 7th International Congress on Plant Tissue and Cell Culture, Amsterdam, 1990, P. 48
    [101] Bird C R,Ray J A,Fletcher J D, et al. Using antisense RNA to study gene function :Inhibition of carotenoid biosynthesis in transgenic tomatoes.Bio.Technol, 1991, 9: 635-639
    [102] Blumberg J B. Considerations of the scientific substantiation for antioxidant vitamins and beta-carotene in disease prevention. Am J Clin Nutr, 1995, 62: 1521-1526
    [103] Bonner J. Studies on the growth factor requirements of isolated roots. Am. J.Bot., 1940, 27: 629-701
    [104] Botella-Pavia P, Besumbes O, Phillips MA, et al. Regulation of carotenoid biosynthesis in plants: evidence for a key role of hydroxymethylbutenyl diphosphate reductase in controlling the supply of plastidial isoprenoid precursors, Plant J, 2004, 40: 188-199
    [105] Bouvier F, Hugueney P, Harlingue A, etal. Xanthophyll biosynthesis in chromoplasts:Isolation and molecular cloning of an enzyme catalyzing the conversion of 5, 6-epoxycarotenoid into ketocarotenoid.Plant J, 1994, 6: 45-54
    [106] Bramley P, Teulieres C, Blain I, et al. Biochemical characterization of transgenic tomato plant in which carotenoid synthesis has been inhibited through the exprssion of antisense RNA to pToM5. Plant J, 1992, 2: 343-349
    [107] Braun A C. Development of secondary tumors strands in the crown gall of sunflower. Phytopathology, 1941, 31: 135-149
    [108] Bronsema F B F, Ostveenvan W J F. Lammeren van AAM.Influence of 2,4-D ,TIBA and 3,5-D on the growth response of cultured maize embryos. Plant Cell Tiss Org Cult 2001, 65: 45- 56
    [109] Buckner B, Miguel P S, Janick-Buckner D, et al. The y1 gene of maize codes for phytoene synthase. Genetics, 1996, 143 (1), 479-488
    [110] Burkhardt P K, Beyer P, Wunn J, et al. Transgenic rice (Oryza sativa) endosperm expressing daffodil (Narcissus pseudonarcissus) phytoene synthase accumulates phytoene, a key intermediate of provitamin A biosynthesis. PlantJ, 1997, 11 (5): 1071-1078
    [111] Burrus M, Chanabe C, Alibert G, et al. Regeneration of fertile plants from protoplasts of sunflower (Helianthus annuus L.) Plant Cell Rep, 1991, 10: 161-166
    [112] Burrus M., Bidney D, Garnaat C, et al. Plant regeneration and transient gene expression in sunflower (Helianthus annuus L.) protoplasts. In Abstracts 7th International Congress on Plant tissue and Cell Culture, Amsterdam, 1990, 49
    [113] Burrus M, Rousselin P, Knittel N, et al. Transformation of sunflower: an overview. Different approaches, their difficulties, how to overcome them, and first results. In: Proceeding 14th International Sunflower Conference, 12-20 June 1996. Beijing/Shenyang, China, 1996a, pp. 1064-1068
    [114] Burrus M, Molinier J, Himbe C, et al. Agrobacterium-mediated transformation of sunflower (Helianthus annuus) shoot apices: transformation patterns. Mol. Breed, 1996b, 2: 329-338
    [115] Cao Y L, Jia Y J, Chen F. Somatic Embryogenesis and Plant Regeneration from Suspension Anther Cell of Lycium barbarum. 1999, 21(3): 346-350
    [116] Carola M, Trabace T, Sunseri F. High frequency of plant regeneration in sunflower from cotyledons via somatic embryogenesis. Plant cell Rep, 1997, 16: 295-298
    [117] Caretto S, Bray S E, Fachechi C, et al. Enchancement of vitamin E production in sunflower cell cultures. Plant Cell Reports, 2004, 4(24)
    [118] Ceriani M F, Hopp H E, Hahne G, et al. Cotyledons: an explant for routine regeneration of sunflower plants. Plant Cell Physiol, 1992, 33: 157-164
    [119] Chamovitz D, Pecker I, Hirschberg J. The molecular basis of resistance to the herbicide norflurazon. Plant mol Biol, 1991, 16: 967-974
    [120] Changhe Y, Shu H, Chunxian C, et al. Factors affectingAgrobacterium-mediated transformation and regeneration of sweet orange and citrange. Plant Cell Tiss. Org. Cult, 2002, 71: 147-155
    [121] Chappell J. Biochemistry and molecular biology of the isoprenoid biosynthetic pathway in plants. Annu Rev Plant Physiol Plant Mol Biol, 1995, 46: 521-547
    [122] Charrière F, Hahne G. Induction of embryogenesis versus caulogenesis on in vitro cultured sunflower (Helianthus annuus L.) immature zygotic embryos: role of plant growth regulators. Plant Science, 1998, 37: 63-71
    [123] Charrière F, Sotta B, Miginiac, E, et al. Induction of advintitious shoots or somatic embryos on in vitro cultured embryos of Helianthus annuus: variation of endogenous hormone levels. Plant physiol. Biochem, 1999, 7: 751-757
    [124] Chee P P, Fober A K, Slightom L J. Transformation of soybean (Glycine max (L.) Merrill) by infecting germinating seeds with Agrobacterium tumefaciens. Plant Physiology, 1989, 91: 1212- 1218
    [125] Chen P Y, Chen-Kuen W, Shaw-Ching S, et al. Complete sequence of the binary vector pBI121 and its application in cloning T-DNA insertion from transgenic plants. Molecular Breed., 2003, 11: 287-293
    [126] Cheng Y L, Huang M J, Diao F Q. Effects of Sucrose Regulation Culture on Endogenous ABA Levels of Carrot Somatic Embryo. Chinese Bulletin of Botany , 1999, 41 (7): 761- 765
    [127] Cheng Z C R, Buell R A, Wing M, et al. Toward a cytological characterization of the rice genome. Genome research, 2001, 11(12): 2133 – 2141
    [128] Chraibi K M B, Castelle J C, Latche A, et al. A genotype-independent system of regeneration from cotyledons of sunflower (Helianthus annuus L.). The role of ethylene. Plant Sci., 1992, 86: 215-221
    [129] Cleland R E. Oenothera: Cytogenetics and Evolution, New York: Axademic Press,1972
    [130] Cui K R, Chen K M, Wang X Z, et al. Current reseach on plant somatic embryogenesis. Chinese Bulletin of Botany. 1993, 10(3): 14- 20
    [131] Cui K R , Dai R L. The molecular biology of the plant somaclones occurrence. Beijing : Science Publisher, 2000, 50 -171
    [132] Cui K R, Xing G S, Liu X M, et al. Signal transduction and plant somatio embryogenesis.Chinese Bulletin of Life Sciences 2002, 14(3): 171- 176
    [133] Cunningham F X, P ogson B, Sun Z R, et al. Functional analysis of the β and εlycopene cyclase enzymes of Arabidopsis reveals a mechanism for control of cyclic carotenoid formation .Plant Cell, 1996, 8: 1613-1626
    [134] Dahka N and Kothari S L. Phenylacetic acid improves bud elongation and in vitro plant regeneration efficiency in Helianthus annuus L Plant Cell Rep, 2002, 21: 29- 34
    [135] De Ropp, R S. The response of normal plant tissues and of crown-gall tumor tissues to synthetic growth hormones. Am. J Bot, 1947, 4: 53-62
    [136] Dixon R A. Plant cell culture a practical approach published in the Practical Approach Series.1987
    [137] Ducreux L J, Morris W L, Hedley P E et al. Metabolic engineering of high carotenoid potato tubers containing enhanced levels of beta-carotene and lutein. J Exp Bot 2005, 56: 81-89
    [138] Durante M, Vannozzi G P, Pugliesi C, et al. The role of bitechnologies in the development of sunflower cultures in the world. Helia, 2002, 25: 1-28
    [139] Escandón A S and Hahne G. Genotype and composition of culture medium are factors important for transformed sunflower (Helianthus annuus L) callus.Physiol Plant, 1991, 1: 367-376
    [140] Espinasse A and Lay C. Shoot regeneration of callus derived from globular to torpedo embryos from 59 sunflower genotypes. Crop Sci., 1989, 29: 201-205
    [141] Espinasse A, Lay C and Volin J. Effect of growth regulator concentration and explant size on shoot organogenesis from callus derived from zygotic embryos of sunflower (Helianthus annuus L.). Plant Cell Tiss. Org. Cult, 1989, 17: 171-181
    [142] Everett N P, Robinson K E P and Mascarenhas D. Genetic engineering of sunflower (Helianthus annuus L.) Biotechnology, 5: 1987, 1201-1204
    [143] Fambrini M, Cionini G, Pugliesi C. Acquisition of high embryogenic potential in regenerated plants of Helianthus annuus L. × H. tuberosus. plant Cell Tissue Org Cult, 1997, 51: 103-110
    [144] Finer J J. Direct somatic embryogenesis and plant regeneration from immature embryos of hybrid sunflower (Helianthus annuus L.) on a high sucrose-containing medium. Plant Cell Rep, 1987, 6: 372-374
    [145] Fiore M C, Trabac T and Sunseri F. High frequency of plant regeneration in sunflower from cotyledons via somatic embryogenesis. Plant Cell Rep, 1997, 16: 295-298
    [146] Fraser P D, Kiano J W, Truesdale M R, et al. Phytoene synthase-2 enzyme activity in tomatodoes not contribute to carotenoid synthesis in ripeningfruit. Plant Mol Biol, 1999,40(4): 687-698
    [147] Fraser P D, Truesdale M R, Bird C R, et al. Carotenoid biosynthesis during tomato fruitdevelopment: Evidence for tissue-specific geneexpression. Plant Physiol, 1994, 105 (1): 405-413
    [148] Fray RG, Wallace A, Fraser PD, et al. Constitutive expression of a fruit phytoene synthase gene in transgenic tomatoes causes dwarfism by redirecting metabolites from the gibberellin pathway. Plant J, 1995, 8: 693-701
    [149] Freyssinet M , Freyssinet G. Fertile plant regeneration from sunflower (Helianthus annuus L.) immature embryos. Plant Sci. 1988, 56: 177–181
    [150] Geneviève J, Bronner R, Hahne G. Somatic embryogenesis and organogenesis induced in the immature zygotic embryo of sunflower (Helianthus annuus L.) cultived in vitro: role of the sugar. Plant Cell Rep, 1995, 15: 200-204
    [151] Goldsborough P B, Gelvin S B and Larkins B A. Expression of maize gene in transformed sunflower cells. Mol. Gen. Genet, 1986 , 202: 374-381
    [152] Graves A C F, Goldman S L. The transformation of Zea mays seedlings with Agrobacterium tumefaciens. Plant Molecular Biology, 1986, 7: 43- 50
    [153] Grayburn W S and Vick B A. Transformation of sunflower (Helianthus annuus L.) following wounding with glass beads. Plant Cell Rep, 1995, 14: 285-289
    [154] Gregco B, Tanzarella A, Carrozzo G, et al. Callus induction and shoot regeneration in sunflower (Helianthus annuus L.) Plant Sci, 1984, 36: 73-77
    [155] Gürel E and Kazan K. Development of an efficient plant regeneration system in sunflower (Helianthus annuus L.). Tr. J. of Botany, 1998, 22: 381- 387
    [156] Gürel E and Kazan K. Evaluation of various sunflower (Helianthus annuus L.) genotypes for Agrobacterium tumefaciens-mediated gene transfer. Tr. J. of Botany, 1999, 23: 171-177
    [157] Hadlaczky G Y, Belea A. C-banding in wheat evolutionary cytogenetics. Plant Sci, Letters, 1994, (4): 85 – 88
    [158] Han K H, Meilan C, Ma C, et al. An Agrobacterium tumefaciens transformation protocol effective on a variety of cottonwood hybrid (genus Populus). Plant Cell Rep, 2000, 19: 315-320
    [159] Hartman C L. Agrobacterium transformation in sunflower. In sunflower research workshop, Fargo, North Dakota, USA, 1991, 35-39
    [160] Hartman C L, Donald P A, Secor G A, et al. Sunflower tissue culture and use in selection for resistance to Phoma Macdonaldii and white mold (Sclerotinia sclerotiorum). In Proceedings of the 12th International Sunflower Conference, II, Novi Sad, Yuguslavia, 1988, 347-351
    [161] Heaton T. Multiple plants from embryo culture of sunflower, Helianthus,annuus L, In Sunflower research workshop, Fargo, North Dakota, USA, 1983, 14-15
    [162] Helmer G, Casadaban M, Bevan M, et al. A new chimeric gene as a marker for plant transformation: The expression of Echerichia coli β-Galactosidase in sunflower and tobacco cells. Biotechnology, 1984, 2: 520-527
    [163] Henderson J H M, Durrel M E and Bonner J. The culture of normal sunflower stem callus. Am. J. Bot., 1952, 39: 473-476
    [164] Hendrickson C E. The flowering of sunflower explants in aseptic culture. Plant Physiol., 1954, 29: 536-538
    [165] Heneen W R, Runemark H. Chromosomal polymorphism in isolations of Elymus(Agropyrom) in the Awgean. Bot Not.1972, 125: 419-429
    [166] Henn H J, Erstellung. Regeneration und Charakterisierung von Somatischen Hybriden aus H. annuus L. und Sclerotinia resistenten Helianthus Wildarten. Ph.D. Thesis, Faculty of Agric., Institute of Botany, Bonn Uni. 1998
    [167] Henn H J, Wingender R and Schnabl H. Regeneration of fertile interspecific hybrids from protoplast fusions between Helianthus annuus L. and wild Helianthus species. Plant Cell Rep, 1998, 18: 220-224
    [168] Hewezi T, Jardinaud F, Alibert G, et al. A new approach for efficient regeneration of a recalcitrant genotype of sunflower (Helianthus annuus L.) by organogenesis induction on split embryonic axes. Plant Cell Tiss. Org. Cult.,2003, 73: 81-86
    [169] Hewezi T, Perrault A, Alibert G, et al. Dehydrating immature embryo split apices and rehydrating with Agrobacterium tumefaciens: A new method for genetically transforming recalcitrant sunflower. Plant Mol. Biol. Rep.,2002, 20: 335-345
    [170] Hewezi T, Kallerhoff J and Alibert G. Genetic transformation of a poor tissue-culture responding genotype of sunflower. In: Proceedings of the 5th European Conference on Sunflower Biotechnology , Nov. 4-8, 2001, San Giuliano Terme, Italy, 2001, p. 31
    [171] Hirschberg J, Cohen M, Harker M, et al. Molecular genetics of the carotenoid biosynthesis pathway in plants and algae.Pure Appl Chem, 1997, 69(10): 2151-2158
    [172] Hoa T T, Salim Al-Babili,Schaub P, et al. Golden Indica and Japonica Rice Lines Amenable to Deregulation1. Plant Physiol, 2003, 133: 161-169
    [173] Hoekema A, Hirsch P R, Hooykaas P J J and Schilperoort R A. A binary plant vector strategy based on separation of vir-and T-region of the Agrobacterium tumefaciens Ti plasmid. Nature, 303: 1983, 179-180
    [174] Hood E E, Helmer G L and Fraley R T. The hypervirulence of Agrobacterium tumefaciens A281 is encoded in a region of pTBo542 outside of TDNA.J. Bact., 1986, 168: 129-131
    [175] Hsu T C. An Atalas of mammalian chromosomes. New York: Springer Verlag Berlin. Heidelberg 1969
    [176] Hu SY. Angiosperm Embryology.Beijing: The Advanced Education Publishing House. 1982, 237- 247
    [177] Hugueney P,Romer S,Kuntz M. Characterization and molecular cloning of flavoprotein catalyzing the synthesis of phytofluene and zeta-carotene in capsicum chromoplasts. Eur. J. Biochem. 1992, 209: 399-407
    [178] Hunold R, Burrus M, Bronner R, et al. Transient gene expression in sunflowe (Helianthus annuus L.) following microprojectile bombardment. Plant Sci, 1995, 105: 95-109
    [179] Grayburn W S and Vick B A. Transformation of sunflower (Helianthus annuus L.) following wounding with glass beads. Plant Cell Rep, 1995, 14: 285-289
    [180] Gregco B, Tanzarella A, Carrozzo G, et al. Callus induction and shoot regeneration in sunflower (Helianthus annuus L.) Plant Sci., 1984, 36: 73-77
    [181] Gürel E and Kazan K. Development of an efficient plant regeneration system in sunflower (Helianthus annuus L.). Tr. J. of Botany, 1998, 22: 381- 387
    [182] Jeannin G, Hahne G. Donor plant growth conditions and regeneration of fertile plants from somatic embryos induced on immature zygotic embryos of sunflower (Helianthus annuus L.). Plant Breed. 1991, 107: 280–287
    [183] Jez J M, Noel J P. A kaleidoscope of carotenoids. Nature Biotechnology, 2000, 18: 825-826
    [184] Jones K, Kenton A, Hunt D R. Contributions to the cytotaxonomy of the Commelinaceae Chromosome evolution in Tradescuntiu scction. Bot J Linn Soc.1981, 83: 157-188
    [185] Kajiwara S, Fraser P D, Kondo K, et al. Expression of an exogenous isopentenyl diphosphate isomerase gene enhance isoprenoid biosynthesis in Escherichid coli.Biochem J, 1997, 324: 421-426
    [186] Kartha K K. in Plant Tissue Culture-Methods and Applications in Agriculture, Thorpe, T.A. (ed), Academic Press, New York, 1981, p.181
    [187] Katoh A, Chen A T, Murata N. Sudies on gene involved in the isomerization from violaxanthin to neoxanthin in Chlamydomonas reinhardtii,Plant cell physiol, 1997, 38(Suppl): 118
    [188] Kirches E, Frey N and Schnabl H. Transient gene expression in sunflower mesophyll protoplasts. Bot. Acta, 1991, 104: 212-216
    [189] Knittel N, Gruger V, Hahne G, et al. Transformation of sunflower (Helianthus annuus L. ): A reliable protocol. Plant Cell Rep, 1994 ,14: 81-86
    [190] Knittel N, Lenee P and Ben Tahar S. Transformation of sunflower (Helianthus annuus. L.) Du gène à l’entreprise, Forum jeunes chercheurs, Amiens, France, 1992, 122
    [191] Knittel N, Escandon A S and Hahne G. Plant regeneration at high frequency from mature sunflower cotyledons. Plant Sci., 1991, 73: 219-226
    [192] Knopp E and Mix G. In vitro Spross undwurzel regeneration aus Geweveteilen der Sonnenblume (Helianthus annuus L.). Landbauforschung Volkenrode, 36: 1986, 127-129
    [193] Koncz Cs and Schell J. The promoter of TL-DNA gene 5 controls the tissuespecific expression of chimeric genes carried by a novel type of Agrobacterium binary vector. Mol. Gen. Genet, 1986, 204: 383-396
    [194] Krasnyanski S and Menczel L. Somatic embryogenesis and plant regeneration from hypocotyls protoplasts of sunflower (Helianthus annuus L.). Plant Cell Rep, 1993, 12: 260-263
    [195] Krasnyanski S, Polgar Z, Nemeth G, et al. Plant regeneration from callus and protoplast cultures of Helianthus giganteus L. Plant Cell Rep, 1992, 11: 7-10
    [196] Kr?uter R. and Friedt W. Propagation and multiplication of sunflower lines (Helianthus annuus L.) by tissue culture in vitro. Helia, 1991, 14: 117-122
    [197] Kuntz M,Romer S,Suire C, et al. Identification of a cDNA for the plastid-located geranylgeranyl pyrophosphate synthase from Capsicum annum: Correlative increase in enzyme activity and transcript level during fruit ripening. Plant J, 1992, 2:25-34
    [198] Kuo S R ,W ang T T , Huang T C. Karyotype analysis of some for mosangym nosperm s. Taiw ania, 1972, 17: 66
    [199] Kyo W. Application of tissue culture to plant breeding.Inst Agr Sci (Series D). 1982, 33: 121- 200 Laparra H, Bronner R, Hahne G. Histological analysis of somatic embryogenesis induced in leaf explants of Helianthus annuus H. Protiplasma1, 1997, 96: 1-11
    [200] Laparra H, Burrus M, Huonold R, et al. Expression of foreign genes in sunflower (Helianthus annuus L.) evaluation of three gene transfer methods. Euphytica, 1995, 85: 63-74
    [201] Levan A. Nomenclature for cent romeric position on chromosome . Hereditas, 1964 (52): 201
    [202] Levan A, Fredga K, Sandberg A A. Nomenclacture for centromeric position on chromosomes . Hereditas, 1964 (52): 201-220
    [203] Levitsky G A.The Karyoytpe in systematics. Bull Appl Bot Genet Pl Breed, 1931, 27: 220-240
    [204] Levine M. Response of fibrous roots of sunflower and tobacco tissue cultures to plant growth substances. Bot. Gaz., 1951, 112: 281-289
    [205] Libbenga K R, Mennes A M. Plant hormones. In: Davies PJ(ed). Physiology, Biochemistry and Molecular Biology. Dordrech, the Netherlands: Kluwer Academic Pub, 1995, 270- 275
    [206] Lucas O, Kallerhoff J and Alibert G. Production of stable transgenic sunflowers (Helianthus annuus L.) from wounded immature embryos by particle bombardment and co-cultivation with Agrobacterium tumefaciens. Mol. Breed, 2000, 6: 476-487
    [207] Luo Z X and Wu R. A simple method for the transformation of rice via the pollen-tubepathway,PlantMol.Bio.Rep, 1988, 6: 165-174
    [208] Lupi MC, Bennici A, Locci F, et al. Plantlet formation from callus and shoot-tip culture of Helianthus annuus L. Plant Cell Tiss. Org. Cult, 1987, 11: 47-55
    [209] Malone-Schoneberg J, Scelonge C J, Burrus M, et al. Stable transformation of sunflower using Agrobacterium and split embryonic axis explants. Plant Sci. 1994, 103: 199-207
    [210] Malone-Schoneberg J, Bidney D, Scelonge C J, et al. Recovery of stable transformants from Agrobacterium tumefaciens treated split shoot axis. In: Proceedings of the '1991 World Congress on Cell and Tissue Culture', Anahein, USA. 1991
    [211] Mann V, Harker M, pecker I, et al. Metabolic engineer of astaxanthin production in tobacco flowers. Nat Biotechnol, 2000, 18: 888
    [212] Masirevic S N, Secor G A and Gulya T T. Use of cell culture to screen sunflower germplasm for resistance to Phomopsis brown-gay stem spot. Plant Cell Rep, 1988, 7: 528-530
    [213] Matzke M A, Susani N, Lewis E D, et al. Transcription of a zein gene introduced into sunflower using Ti plasmid vector.EMBO J, 1984, 3: 1525-1531
    [214] Misawa N, Nakagawa M, Kobayashi K, et al. Elucidation of the Erwinia uredovora carotenoid biosynthetic pathway by functional analysis of gene products expressed in Escherichia coli. J Bacterial, 1990, 172 (12): 6704-6712
    [215] Misawa N,Yamano S, Linden H, et al. Functional expression of the Erwinia uredevora cartenoid biosynthesis gene crtl in transgenic plants showing an increase of beta-carotene biosynthesis activity and resistance to the bleaching herbicide norflurazon.Plant J, 1993, 4: 833-840
    [216] Moehs C P, Tian L, Osteryoung K W, et al. Analysis of carotenoidbiosynthetic gene expression during marigold petal development. Plant Mol Biol, 2001, 45 (3): 281-293
    [217] Mol J N M, Vander Krol A R, Van Tunen A J, et al. Regulation of plant gene expression by antisense RNA. FEBS Lett, 1990, 268: 427-430
    [218] Molinier J, Thomas C, Brignou M, et al. Transient expression of ipt gene enhances regeneration and transformation rates of sunflower shoot apices (Helianthus annuus L. ). Plant Cell Rep, 2002, 21: 251-256
    [219] Moore D M. The chromosomes and taxonomy. In: Street H Eeds. Essays in Plant Taxomomy, London: Academic Press, 1978, 39-56
    [220] Moyne A L, Thor V, Pelissier B, et al. Callus and embryoid formation from protoplasts of Helianthus annuus L. Plant Cell Rep, 1988, 7: 427-440
    [221] Moyne A L, Tagu D, Thor V, et al. Transformation calli obtained by direct gene transfer into sunflower protoplast.Plant Cell Rep, 1989, 8: 97-100
    [222] Murai N, Sutter D, Murray M, et al. Phaseolin gene from bean is expressed after transfer to sunflower via tumor inducing plasmid vectors. Science, 1983 , 222: 476-481
    [223] Murashige T and Skoog F. A revised medium for rapid growth and bioassay with tobacco tissue cultures. Physiol. Plant, 1962, 15: 473-497
    [224] Müller A, Iser M and Hess D. Stable transformation of sunflower (H. annuus L.) using a non-meristematic regeneration protocol and green fluorescent protein as a vital marker. Trans. Res, 2001, 10: 435-444
    [225] Narayan R K J, Durrant A. DNA distribution in the chromosome of Lathyrus, Genetica, 1983, 61: 47-53
    [226] Nataradja and Ganapath, T R. In vitro plantlet regeneration from cotyledons of Helianthus annuus cv. Modern (sunflower). Indian J. Exp. Biol, 1989, 27: 777-779
    [227] Nedev T, Vassilevska-Ivanova R and Tzekova Z. Regeneration potential of sunflower hybrids. Helia, 1998, 21: 1-6
    [228] Nenova N, Cristov M and Ivanov P. Anther culture regeneration from some wild Helianthus species. Helia, 2000, 23: 65-72
    [229] Niyogi K K. Photoprotection revisited.Annu Rev Plant Physiol Plant Mol Biol, 1999, 50: 391-417
    [230] Niyogi K K, Bjorkman O, Grossman A R. The roles of specific xanthophylls in photoprotection.Proc.Natl.Acad.Sci USA,1997, 94: 14162-1416
    [231] Nutter R, Everett N, Pierce D, et al. Factors affecting the level of Kanamycin resistance in transformed sunflower cells.Plant Physiol, 1987, 84: 1185-1192
    [232] Ohta Y. High-efficiency genetic transformation of maize by a mixture of pollen and exogenous DNA,Proc.Nat.Acad.Sci., 1986, 83(3): 715-719
    [233] OIson J A, Krinsky N T. The colorful, fascinating world of the carotenoids: important physiologic modulators. FASEB J, 1995, 9(15): 1547-1550
    [234] Paine J A, Shipton C A, Chaggar S, et al. Improving the nutritional value of Golden Rice through increased pro-vitamin A content. Nat Biotechnol, 2005, 23 : 482-487
    [235] Pall H A, Kurnik E and Szabo L. Plantlet regeneration from in vitro shoottip culture of sunflower. Novenytermeles, 1981,30: 201-208
    [236] Pan R Z. Plant Tissue Culture. Guangzhou: Guangdong the Advanced Education Publishing House. 2000, 20- 59
    [237] Paterson K E, Everett N P. Regeneration of Helianthus annuus inbred plants from callus. Plant Sci, 1985, 42: 125-132
    [238] Paterson K E. Shoot tip culture of Helianthus annuus-flowering and development of adventitious and multiple shoots. Am. J. Bot, 1984, 71: 925-931
    [239] Pawlowski S H. A method of obtaining genetically identical sunflower plants.Can. J. Bot, 1963, 41: 743-746
    [240] Peerbolte R and Dek G J. The Everett transformation-protocol for sunflower hypocotyls. Why doesn't it work? In: Proceedings of the first International Sympsium on 'Sunflower Biotechnology in Europe', Cell Biology, Mittelwihr,France, 1991, P. 3
    [241] Penuelas J, Munne-Bosch S. Isoprenoids: an evolutionary pool for photoprotection. Trends Plant Sci, 2005, 10: 166-169
    [242] Potrykus I. Gene transfer to cereals: an assessment,Biotechnology, 1990, 8: 535-542
    [243] Power C J. Organogenesis from Helianthus annuus inbreds and hybrids from the cotyledons of zygotic embryos. Amer. J. Bot, 1987, 74: 497-503
    [244] Prado E, Berville A. Induction of somatic embryo development by liquid culture in sunflower (Helianthus annuus L.). Plant Sci, 1990, 67: 73-82
    [245] Pugliesi C, Cecconi F, Mandolfo A, et al. Plant regeneration and genetic variability from tissue cultures of sunflower (Helianthus annuus L. ).Plant Breed, 1991,106: 114-121
    [246] Pugliesi C, Biasini M G, Fambrini M, et al. Genetic transformation by Agrobacterium tumefaciens in the interspecific hybrid Helianthus annuus x Helianthus tuberosus . Plant Sci, 1993, 93: 105-115
    [247] Rao K S and Rohini V K. Agrobacterium-mediated transformation of sunflower (Helianthus annuus L.): A simple protocol. Annals of Botany, 1999, 83: 347-354
    [248] Ravanello M P, Dangyang K, Julie A, et al. Coordinate expression multiple bacterial carotenoid genes in canola leading to altered carotenoid production. Metab Eng, 2003, 5: 255-263
    [249] Ray J A,Bird C R, Maunders M, et al. Sequence of pTOM5,a ripening related cDNA from tomato. Nucl Acid Res, 1987, 24: 10587-10590
    [250] Robinson K E P and Everett NP. Sunflower (Helianthus annuus L. ):Establishment of culture, transformation, and the regeneration of plants. Biotechnol. in Agriculture and Forestry, 1990, 10: 434-452
    [251] Romer S, Fraser P D, Kiano Jw, et al. Elevation of the provitamin A content of transgenic tomato plants. Nat Biotechnol, 2000, 18(6): 666-669
    [252] Romer S, Lubeck J, Kauder F, et al. Genetic engineering of a zeaxanthin-rich potato by antisense inactivation and co-suppression of carotenoid epoxidation. Meta Eng, 2002, 4 (3): 263-272
    [253] Rothfels K, Sexsmith E, Heimberrger M. Chromosome size ang DNA content in Anemone and related genera. Chromosoma, 1966, 20: 54-74
    [254] Rousselin P, Molinier J, Himber C, et al. Modification of sunflower oil quality by seed-specific expression of a heterologous △9-stearoy (△-acyI carrier protein)desaturase gene. Plant Breeding, 2002, 121: 108-116
    [255] Schwartz S H, Tan B C, Gage D A, et al. Specific oxidative cleavage of carotenoids by VP14 of maizae.Science, 1997, 276: 1872-1874
    [256] Sadhu K. Effect of different auxins on growth and differentiation in callus tissue from sunflower stem pith. Indian J. Exp Biol., 1974, 12: 110-111
    [257] Saji K V, Sujatha M. Embryogenesis and plant regeneration in anther culture of sunflower (Helianthus annuus L.). Euphytica, 1998, 103: 1-7
    [258] Sambrook J, Fritsch E F and Maniatis T. Molecular cloning: A laboratory Manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y, 1989
    [259] Sarrafi A, Roustan J P, Fallot J, Alibert G. Genetic analysis of organogenesis from the cotyledons of zygotic embryos in sunflower (Helianthus annuus L.).Theor Appl Genet, 1996, 92: 225-229
    [260] Scelonge C, Wang L, Bidney D, et al. Transgenic Sclerotinia resistance in sunflower (Helianthus annuus L.). In: Proceedings of the 15th International Sunflower Conference, 12-15 June 2000. Toulouse, France, 2000, pp. 66-71
    [261] Schettler R and Mix G. Multiple shoot production of different explants of sunflower. In Proceedings of the 12th International Sunflower Conference, II, Novi Sad, Yuguslavia, 1988, 315
    [262] Schrammeijer B, Sijmons P C, van den Elzen P J M, et al. Meristem transformation of sunflower via Agrobacterium. Plant Cell Rep, 1990, 9: 55-60
    [263] Scolnik P A,Bartley G E. Nucleotide sequence of Arabidopsis cDNA for phytoene synthase.Plant Physiol, 1994, 104: 1471-1472
    [264] Scott R J, Draper J. Transformation of carrot tissues derived from proembryogenic suspension cells:a useful model system for gene expression studies in plants. Plant.Mol.Biol. 1987, 8: 265-274
    [265] Sharp W R, Sondahl M R, Caldas L S. The physiology of invitro asexual embryogenesis. Hort Rev 1980, 2 : 268-310
    [266] Shewmaker C K, Sheehy J A, Daley M, et al. Seed specific overexpression of phytoene synthase: increase in carotenoids and other metabolic effects. Plant J, 1999, 20 (4): 401-412
    [267] Sharon M K and Lineberger R D. Genotypic differences in morphogenic capacity of cultured leaf explants of tomato. J. Amer. Soc. Hort. Sci., 1983, 108: 710-714
    [268] Song Y C, J P Gustafson. Physical mapping of 5SrDNA gene complex in rice (Oryza sative). Genome. 1993, 36(4): 658 – 661
    [269] Stebbins G L. Chromosomal evolution in higher plants.London : EdwardArnold, 1971, 85-104
    [270] Suhaileh A I. Karyotype Analysis of four varieties of Helianthus annus L., Cytologia.1979, (44): 319-323
    [271] Sujatha M, Prabakaran A J. High frequency embryogenesis in immature zygotic embryos of sunflower. Plant Cell Tiss Org Cult, 2001, 65: 23- 29
    [272] Sun Z R,Cunningham F X, Gantt E. Differential expression of two isopentenyl pyrophosphate isomerases and enhanced carotenoid accumulation in a unicellular chlorophyte.Proc Natl Acad Sci USA, 1998, 95: 11482-11488
    [273] Sun Z R, Cunningham F X, Gantt E. Cloning and functional analysis of theβ-carotene hydroxylase of Arabidopsis thaliana.J Biol Chem, 1996, 271: 24349-24352
    [274] Tang H R, Wang Y Q, Ren ZL. Somatic embryogeresis in fruit crops, Journal of Sichuan Agricultural University 1999, 17 (1) : 69 - 79
    [275] Trifi M, Mezghani S and Marrakchi M. Multiplication végétative du tournesol Helianthus annuus L. parculture in vitro. Physiol. Vég, 1981, 19: 99-102
    [276] Uozu S, Ikehashi H, Ohmido N, et al. Repetitive sequence: Cause for variation in genome size and chromosome morphology in the genus Oryza. Plant Mol Biol, 1997, 35(6): 791- 799
    [277] Van Dien S J, Marx C J, O'Brien B N, et al. Genetic Characterization of the Carotenoid Biosynthetic Pathway in Methylobacterium extorquens AM1 and Isolation of a Colorless Mutant.Appl Environ Microbiol, 2003, 69: 7563-7566
    [278] Vischi M, Marchetti G, Quagliaro O, et al. A focusing device for biolistic transformation of sunflower (Helianthus annuus L.) cotyledons. Helia, 1999, 22: 71-80
    [279] Weber S, Friedt W, Landes N, et al. Improved Agrobacteriummediated transformation of sunflower (Helianthus annuus L.): assessment of maceratingenzymes and sonication. Plant Cell Rep, 2003, 21: 475-482
    [280] Wetherell D F. Enhanced adventive embryogenesis resulting from plasmolysis of cultured wild carrot cells. Plant Cell Tiss. Org. Cult. 1984, 3: 221–227
    [281] White P R. Cultivation of excised roots of dicotyledonous plants. Am. J. Bot. 1938, 25: 348-356
    [282] Wilcox A W. A system for the regeneration of Helianthus annuus inbred lines from immature embryos. In Proceedings of the 12th International Sunflower Conference, II, Novi Sad, Yuguslavia, 1988, 309
    [283] Wingender R, Henn J, Barth S, et al. A regeneration protocol for sunflower (Helianthus annuus L.) protoplasts. Plant Cell Rep, 1996, 15: 742-745
    [284] Witrzens B, Scowcroft W R, Downes R W, et al. Tissue culture and plant regeneration from sunflower (Helianthus annuus) and interspecific hybrids (H. tuberosus × H. annuus). Plant Cell Tiss. Org. Cult. 1988, 13: 61-76
    [285] Yan C J. Tissue Culture of Field Crop. Shanghai: Shanghai Scientific and Technical Publishers. 1991, 283- 299
    [286] Ye X, Al-Babili S, Kloti A, et al. Engineering the provitamin A (β-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm. Science, 2000, 287: 303-305
    [287] Zezul T G, Gorbatenko E, Raldugina G N. Regeneration of sunflower (Helianthus annuus L.) plants via somatic embryogenesis in vitro. Russian J Genet, 1995, 3: 197-202
    [288] Zimmermann A. Vergleichende Untersuchung an Genotype der Sonnenblume (H. annuus L.) hinsichtlich Regenerationspotentials unter Anwendung Biotechnologischer Methoden. Dipl. Ing. Agric. Thesis, Faculty of Agric., Institute of Botany, Bonn Uni. 1999
    [289] Zhou Z Y, Guo F X. Actions of cytokinins and cytokinin-like substances insomatic embryogenesis of plant Plant Physiology Communications, 1996, 32(4): 247-253
    [290] Zhou G Y, Weng J, Zeng Y S, et al. Introduction of exogenous DNA into cotton embryos, Methods Enzymol, 1983, 101: 433-481
    [291] Zhu T, Mogensen H L, Smith S E. Quantiative, three dimensional analysis of alfalfa egg cells in two genotypes: implication for biparental plastid inheritance. Planta, 1993, 100: 143-150

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700