POMC神经元在回肠转位术缓解2型糖尿病中的作用和机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分回肠转位术对非肥胖2型糖尿病的缓解作用
     背景
     2型糖尿病(Type2diabetes mellitus, T2DM)是在世界范围内广泛流行的危害人类健康的重要疾病,目前全球患者人数估计在2.8亿人左右,并且发病率逐年上升,预计到2030年时患者人数将超过3.6亿人。到目前为止还没有根治2型糖尿病的方法,当前的治疗方法包括饮食,运动,口服降糖药,注射胰岛素等措施目的在于控制血糖,预防并发症的发生。尽管通过严格地控制血糖,能明显降低糖尿病并发症的发生率,但是由于患者依从性的差异,糖尿病仍造成较高的致残率和致死率。越来越多的动物及临床研究表明各种减肥手术,特别是回肠转位术对2型糖尿病有较好的缓解作用。但是其机制目前还不明确,主要的解释有:减肥效果带来的抗糖尿病作用和不依赖减肥效果的抗糖尿病作用。后者是指胃肠道结构改变引起的胃肠道激素的变化所造成的血糖的改善,还可分为前肠假说和后肠假说。每种解释都相互独立,各有倾向。目前越来越多的2型糖尿病是非肥胖或者是不伴有病态肥胖的患者,对于非肥胖2型糖尿病患者,回肠转位术是否仍然存在确切的改善作用呢?没有了明显的减肥效果,其血糖的改善到底是哪种机制主导的呢?其之间有没有相互作用?
     为了探讨回肠转位术是否对非肥胖2型糖尿病有缓解作用,并讨论其缓解机制,本研究构建了非肥胖2型糖尿病回肠转位术动物模型。通过手术组与假手术组动物模型的比较,观察糖尿病的改善状况。并通过对代表各个机制假说重要激素等指标变化的对比与分析,讨论术后糖尿病改善的机制。
     方法
     本研究采用非肥胖2型糖尿病GK大鼠作为动物模型,随机分为3组:回肠转位术组(IT组)、回肠转位假手术组(S-IT组)、及空白对照组。回肠转位术是将距离回盲部5cm的一段10cm的回肠上提到距离Treiz韧带10cm处吻合;假手术组给予同样的横断位置,但是原位吻合。然后比较术前及术后各个实验组之间大鼠的摄食量及体重的变化、血糖状况、β细胞功能、瘦素水平、GLP-1水平及GIP水平等检测指标的变化。
     结果
     1.术后IT组和S-IT组大鼠的进食量和体重都明显下降(P<0.05),但是S-IT组大鼠的摄食量和体重在术后迅速回升,到术后第8周时与空白对照组无统计学差异(P>0.05)。而IT组大鼠的摄食量及体重一直维持在较低水平,始终低于S-IT组及空白对照组(P<0.05)。
     2.术后2周内IT组和S-IT组的血糖及口服葡萄糖耐量实验的AUCOGTT(?)低于术前(P<0.05),但是S-IT组的血糖后期与空白对照组无统计学差异(P>0.05),而IT组大鼠的血糖及AUCOGTT都显著低于S-IT组及空白对照组(P<0.05)。
     3.对胰岛素耐量实验各个时间点血糖的比较,术后IT组非肥胖2型糖尿病大鼠的胰岛素抵抗得到显著的改善(P<0.05);S-IT组大鼠的胰岛素抵抗无明显改善,并进行性恶化,与空白对照组无统计学差异(P>0.05)。
     4.通过空腹C-肽、空腹胰岛素的酶联免疫吸附试验(ELISA)检测及葡萄糖-胰岛素释放实验发现:IT组非肥胖2型糖尿病大鼠p细胞分泌胰岛素的量增加(P<0.05),而S-IT组和空白对照组在术前术后无统计学差异(P>0.05)。
     5.IT组非肥胖2型糖尿病大鼠术后的空腹GLP-1水平增高,糖负荷后GLP-1分泌量增多(P<0.05)。而S-IT组和空白对照组在术前术后无统计学差异(P>0.05)。
     6.3组大鼠的空腹GIP及糖负荷后GIP分泌量术前及术后均无统计学差异(P>0.05)。
     7.IT组非肥胖2型糖尿病大鼠术前及术后的空腹瘦素均无统计学差异(P>0.05),但是糖负荷后AUCLeptin升高明显(P<0.05)。空白对照组术后36周的空腹瘦素比术前高(P<0.05)。
     结论
     本部分实验证实:
     1.回肠转位术对非肥胖2型糖尿病大鼠有明显、持久的抑制摄食的作用,使其体重增加得缓慢。
     2.回肠转位术对非肥胖2型糖尿病大鼠的血糖有迅速、明显、持久的改善作用。
     3.探究回肠转位术对非肥胖2型糖尿病大鼠血糖改善的作用机制发现:回肠转位术对非肥胖2型糖尿病大鼠的胰岛素抵抗有显著和持久的改善作用,并且对非肥胖2型糖尿病大鼠的β细胞有改善作用,使胰岛素分泌量增加。
     4.对相关激素检测发现:回肠转位术后非肥胖2型糖尿病大鼠的血GLP-1水平增高,GIP分泌量术前及术后相比无统计学差异,瘦素分泌量的变化不大,但是瘦素分泌的敏感性改善了。统计学分析,GLP-1水平的升高对血糖的影响较大,呈线性相关。GIP及瘦素的改变对IT手术改善血糖的影响无统计学意义。
     上述发现表明,回肠转位术能显著改善非肥胖2型糖尿病患者的血糖,改善胰岛素抵抗,增加p细胞的胰岛素分泌量。对有关参与回肠转位术改善血糖机制可能激素的统计学分析显示,手术引起的GLP-1分泌增加发挥着主要作用。有关GLP-1的作用机制及下一步作用位点,尚待更深入的研究。
     第二部分下丘脑POMC神经元在回肠转位术缓解非肥胖2型糖尿病中的作用
     背景
     代谢综合征是多种代谢成分异常聚集的病理状态,葡萄糖代谢异常是其中一种表现。生理状态下哺乳动物的个体都处于精确的能量自动平衡中。下丘脑是调节机体能量活动的重要部位,有着许多的神经核团,参与着复杂的神经生理活动。POMC神经元作为存在于下丘脑的一类重要的神经元,可以抑制肥胖,产生较强的厌食感,被认为是食欲相关肽神经元,调控着摄食和机体能量平衡。该神经元分泌的POMC及其衍生肽等被认为是抑制摄食和增加能量消耗的肽类物质。POMC缺陷的大鼠常常伴有肥胖及糖尿病的症状。生理状态下POMC神经元可以被升高的GLP-1所激活,也能被降低的血糖水平所抑制。回肠转位术使得非肥胖2型糖尿病大鼠术后GLP-1的水平升高,但是血糖水平降低。其POMC (?)中经元是被激活还是抑制?回肠转位术对2型糖尿病的改善作用是不是通过POMC (?)中经元发挥作用的?到目前为止还没有相关的报道。
     因此本研究通过构建好的2型糖尿病回肠转位术模型,观察下丘脑中激活的POMC神经元数量及POMC翻译和表达的量。通过对回肠转位手术组与其他组动物模型的比较,探讨POMC神经元在2型糖尿病血糖改善中的作用,为揭示2型糖尿病发病机制及回肠转位术缓解2型糖尿病机制提供线索。
     方法
     将本实验第一部分存活的3组GK大鼠,在术后36周时处死,采集下丘脑组织和脑脊液等标本。免疫组织化学染色观察POMC神经元,对比组间大鼠下丘脑POMC神经元的个数;测量下丘脑POMC的mRNA转录量和POMC多肽的表达量;测量脑脊液中GLP-1、胰岛素和瘦素的含量,比较组间是否有统计学差异。
     结果
     1.接受回肠转位术的非肥胖2型糖尿病大鼠,术后36周下丘脑组织POMC mRNA的量比S-IT组和空白对照组都高(P<0.05),而S-IT组与空白对照组相比没有显著的差异(P>0.05)。
     2.IT组大鼠下丘脑POMC多肽含量比S-IT组高1.5倍(P<0.05),比空白对照组高1.6倍(P<0.05),S-IT组与空白对照组相比没有显著的差异(P>0.05)。
     3.IT组大鼠丘脑的POMC神经元个数多于假手术组和空白对照组(P<0.05)。
     4.经过ELISA检测,IT组大鼠脑脊液中GLP-1的浓度显著高于S-IT组大鼠及空白对照组大鼠(P<0.05)。
     5.IT组、S-IT组和空白对照组大鼠脑脊液中胰岛素的浓度无统计学差异(P>0.05)。
     6.IT组、S-IT组和空白对照组大鼠脑脊液中瘦素水平无统计学差异(P>0.05)。
     结论
     本部分实验证实:
     1.回肠转位术后非肥胖2型糖尿病大鼠下丘脑组织POMC mRNA的转录增多,POMC多肽表达增多。
     2.接受回肠转位术的非肥胖2型糖尿病大鼠下丘脑组织POMC神经元的数量增多。根据POMC神经元及POMC的作用,它可能参与回肠转位术改善血糖的机制。
     3.进一步探讨POMC被激活的原因,回肠转位术引起的GLP-1分泌增加可能发挥着主要作用。
     该实验首次将神经元作用与回肠转位术改善糖尿病联系在一起,发现其改变及可能的机制,为研究2型糖尿病及手术改善糖尿病提供新的思路。
     第三部分下丘脑POMC神经元在回肠转位术缓解非肥胖2型糖尿病中的机制
     背景
     POMC神经元被认为是食欲相关肽神经元,调控着摄食和机体能量平衡。它能够接受来自外周的信号,如:迷走神经传导的来自口咽、胃肠牵张感觉及肝脏代谢活动等所形成的刺激作用;循环中胃肠道分泌的脑肠肽及各种营养物质本身等。通过对这些信号的感知、整合反馈成脑内神经因子的形式。这些神经因子与其他的神经元相互联系,形成网络调控,对机体实时精确的应答反应。前部分实验发现IT手术后的大鼠血及脑脊液中GLP-1的水平明显增高。鉴于GLP-1可以通过自由扩散穿过血脑屏障,并且POMC神经元上有GLP-1的受体,因此可以推断POMC神经元可能被升高的GLP-1所激活。但是非肥胖2型糖尿病被回肠转位术所缓解的机制是否有激活的POMC (?)神经元参与呢?
     为了更好地探讨下丘脑POMC神经元在回肠转位术缓解非肥胖2型糖尿病中的机制,我们在接受侧脑室置管的非肥胖2型糖尿病大鼠中重新构建了回肠转位术模型。比较术前及术后脑脊液中多个时间点GLP-1水平的变化及血糖的变化,并且在大鼠侧脑室中给予GLP-1受体的拮抗齐(?) Exendin(9-39),观察拮抗后大鼠2型糖尿病的症状及POMC (?)神经元的变化。
     方法
     采用非肥胖2型糖尿病GK大鼠作为动物模型,给予大鼠侧脑室置管术,将存活的GK大鼠随机分为如下2组:IT组和S-IT组。术前及术后各个时间点监测体重、摄食、血糖及GLP-1等多个指标。
     在回肠转位术后4周时,对两组大鼠同时进行侧脑室GLP-1拮抗剂Exendin(9-39)的注射,然后比较两组大鼠的血糖及摄食等指标,观察GLP-1受体被拮抗后回肠转位术改善血糖的效果有无改变。术后6周处死所有大鼠,处死之前对IT组大鼠给同样剂量的Exendin(9-39),收集大鼠下丘脑等组织,组间观察比较GLP-1受体被拮抗后POMC神经元的状态。
     结果
     1.接受侧脑室置管的非肥胖2型糖尿病大鼠给予回肠转位术和假回肠转位术,术后4周IT组大鼠7只大鼠S-IT组5只大鼠一直存活到实验结束,但是IT手术组仅有6只大鼠的统计数据。
     2.两组大鼠术前的体重及摄食量无统计学差异(P>0.05)。回肠转位术后IT组大鼠的进食量显著低于S-IT组大鼠,体重也明显低于S-IT大鼠(P<0.05)。
     3.两组大鼠的血糖及AUCOGTT术前无显著性差异(P>0.05),回肠转位术后都出现了不同程度的血糖下降。IT组大鼠的血糖下降后始终处于较为平稳的状态,低于术前血糖水平(P<0.05);S-IT组大鼠的血糖下降后呈现缓慢回升的趋势,与术前比较无统计学差异(P>0.05)。AUCOGTT曲线变化同血糖变化一致。IT组大鼠的AUCOGTT在下降后始终处于较低的状态,而S-IT组大鼠的AUCOGTT降低的不明显(P>0.05)。验证了回肠转位术对非肥胖2型糖尿病的缓解作用。
     4.回肠转位术后IT组大鼠脑脊液GLP-1水平不断升高,显著高于术前水平(P<0.05)。但是S-IT组GLP-1的水平波动不大,术后与术前水平相比无统计学意义(P>0.05)。
     5.回肠转位术后4周注射Exendin(9-39)前,IT组大鼠的摄食量比S-IT组大鼠少(P<0.05)。注射后IT组大鼠的摄食量明显增加(P<0.05),与S-IT组大鼠的摄食量相比无统计学差异(P>0.05)。S-IT组大鼠的摄食量与注射前相比无统计学差异(P>0.05)。注射前后两组大鼠的体重均无统计学变化(P>0.05)。
     6.注射Exendin(9-39)前,IT组大鼠的血糖低于S-IT组大鼠的血糖(P<0.05)。注射Exendin(9-39)后,IT组大鼠的血糖升高(P<0.05),与S-IT组无统计学差异(P>0.05)。S-IT组大鼠的血糖注射前后相比无统计学差异(P>0.05)。OGTT实验也发现注射Exendin(9-39)后,IT组大鼠的血糖峰值与S-IT组大鼠无统计学差异(P>0.05)。
     7.回肠转位术后6周注射Exendin(9-39)后IT组大鼠的下丘脑组织POMC mRNA的量比S-IT组低(P<0.05)。
     8.术后6周注射Exendin(9-39)后IT组大鼠的下丘脑组织POMC多肽含量比S-IT组低(P<0.05)。
     9.术后6周注射Exendin(9-39)后IT组大鼠丘脑的POMC神经元个数少于S-IT组(P<0.05)。
     10.术后6周注射Exendin(9-39)后IT组大鼠脑脊液中GLP-1的浓度高于S-IT组大鼠(P<0.05)。胰岛素的浓度无统计学差异(P>0.05)。
     结论
     本部分的实验结果表明:
     1.通过建立侧脑室置管的非肥胖2型糖尿病大鼠回肠转位术和假回肠转位术模型,再一次证实了回肠转位术对非肥胖2型糖尿病的治疗作用。摄食量减少,血糖及AUCOGTT得到明显的改善。
     2.回肠转位术后非肥胖2型糖尿病大鼠脑脊液GLP-1随术后时间不断升高,显著高于术前水平。
     3.术后注射GLP-1受体拮抗剂Exendin(9-39)能使非肥胖2型糖尿病大鼠已经改善的糖尿病症状恶化,血糖升高,摄食量增加。
     4.术后注射Exendin(9-39)可以明显抑制非肥胖2型糖尿病大鼠下丘脑组织POMC神经元。使其mRNA的表达减少,POMC多肽含量降低。但大鼠脑脊液中GLP-1的浓度仍高于S-IT组大鼠。
     因此非肥胖2型糖尿病大鼠下丘脑POMC神经元在回肠转位术后是被GLP-1所激活的,并且激活的POMC神经元在回肠转位术缓解非肥胖2型糖尿病中发挥重要作用。这为回肠转位术应用于临床以及进一步研究2型糖尿病提供一定的实验基础。
Part1:the remission of type2diabetes mellitus of non-obese rats after ileal transposition
     Background
     Type2diabetes mellitus (T2DM) presently afflicts more than280million people worldwide, and the morbidity is increasing year by year. It was expected that there would be more than360million persons by2030. However, there is no radical treatment on type2diabetes so far. Current therapies, including diet, exercise, and medication, could control plasma glucose and reduce the incidence of the complications, but the morbidity and mortality are increasing gradually because of poor compliance of patients. Interestingly, Bariatric surgeries, especially ileal transposition (IT), are shown to be an effective means of improving T2DM, but the mechanism is still unclear. The main explanations indicate that the remarkable anti-diabetic effects result from weight loss and a yet uncharacterized weight-independent mechanism. The latter is believed to be related to the hormonal changes caused by obvious physiological alterations of distal ileum after surgery. Previous studies about excluding foregut and interposing hindgut lead to the "foregut hypothesis" and "hindgut hypothesis". These explanations are all supported by mounting evidences and not mutually exclusive. However, more and more T2DM patients are not obese and have no excessive weight to loss. Could ileal transposition improve non-obese T2DM? Which mechanism is dominant without the effect of weight loss? And is there synergistic effect of these hypotheses?
     To confirm the effect of ileal transposition on non-obese T2DM and investigate the mechanism of remission, the non-obese T2DM rats received ileal transposition and sham procedures. Then the changes in glucose homeostasis, insulin sensitivity,(3-cell function and many hormonal levels in plasma were compared between groups.
     Methods
     Non-obese diabetic Goto-Kakizaki (GK) rats were assigned to three groups randomly:IT, sham IT (S-IT) and control group. IT was performed as described:a10cm ileal segment5cm proximal to the ileocecal valve was transected, transposed and anastomosed isoperistaltically with the jejunal10cm distal to the ligament of Treitz. Sham surgeries involved the same abdominal incisions, transections and re-anastomosis of the gastrointestinal tract at multiple sites corresponding to IT, except no ileum transposition. Subsequently, the weight, food intake, beta-cell function, the level of glucose, leptin, glucagon-like peptide-1(GLP-1) and glucose-dependent insulinotropic peptide (GIP) were measured and compared between groups.
     Results
     1. The food intake and weight of IT group and S-IT group significantly decreased after operation (P<0.05), but those of S-IT group restored in2weeks. There were no statistic differences in food intake and weight between S-IT group and control group at postoperative week-8(P>0.05). While the food intake and weight of IT group kept low and stable level, were less than those of the other two groups (P<0.05).
     2. The glucose and AUCOGTT of IT group and S-IT group significantly decreased after operation (P<0.05), but those of S-IT group restored in2weeks. After that the glucose and AUCOGTT of IT group were significantly less than those of S-IT group and control group (P<0.05).
     3. The insulin sensitivity was improved after operation in IT group but S-IT group (P<0.05). There were no statistic differences in insulin sensitivity between S-IT group and control group (P>0.05).
     4. The secreted insulin was more after ileal transposition in IT group but S-IT group (P<0.05), while there were no statistic differences in secreted insulin before and after operation in S-IT and control groups (P>0.05).
     5. The fasting GLP-1level in IT group rats was higher after operation (P<0.05), while there were no statistic differences before and after operation in S-IT group and control group (P>0.05).
     6. There were no statistic differences in GIP level between3groups before and after operation (P>0.05).
     7. The fasting leptin level in control group at postoperative week-36was higher than that before operation (P<0.05). There were no statistic differences in IT group before and after operation (P>0.05).
     Conclusions
     This study provides experimental evidences that ileal transposition could restrain food intake, control the weight and improve the glucose of non-obese T2DM rats. After ileal transposition, the insulin resistance and status of beta-cells are improved. These improvements might result from higher GLP-1level in plasma, and there were no statistic changes in GIP and leptin level in plasma before and after operation.
     Part2:the changes of POMC neurons in non-obese type2diabetes mellitus rats received ileal transposition
     Background
     The metabolic syndrome is a pathological state of accumulation of a variety of metabolic components, and always leads to type2diabetes mellitus. Actually every mammalian individual could keep a precise automatic energy balance in physiological state. The pro-opiomelanocortin (POMC) neurons, a specific population of arcuate nucleus neurons in the hypothalamus, are typical neurons involved in fuel balance. Along with other central neurons, they regulate energy homeostasis, balance energy intake, expenditure and storage. POMC neurons secrete POMC, which are considered as signal peptides which could decrease food intake and increase expenditure of energy by receiving and integrating afferent neural and metabolic signals conveying information about the energy status of the body. POMC-null mutation exists with obesity and type2diabetes mellitus. Studies showed that rising glucose level and GLP-1could increase POMC neurons firing, and further affect liver glucose homeostasis and insulin action. However, the glucose level of plasma decrease and GLP-1increase after ileal transposition in T2DM rats. What would be the subsequent changes of POMC neurons? Do the POMC neurons play a role in the remission of non-obese T2DM after ileal transposition? So far, the related studies are rare.
     Given the role of POMC neurons in energy balance, we sought to investigate the changes of POMC neurons and its potential roles after ileal transposition. It might give clues to reveal the mechanism of T2DM and the remission after IT.
     Methods
     The rat models of part1were sacrificed at post-operative week-36. The cerebrospinal fluid (CSF) and hypothalamus were collected. Subsequently the quantity of POMC mRNA and POMC in hypothalamus and the number of POMC neurons were compared between IT group, S-IT group and control group. The level of GLP-1, insulin and leptin in CSF were also measured and compared.
     Results
     1. The expression of POMC mRNA in hypothalamus of rats of IT group was more than that of S-IT group and control group (P<0.05). And there was no statistic difference in expression of POMC mRNA between S-IT group and control group (P>0.05).
     2. The POMC peptides in hypothalamus of rats of IT group was1.5times more than that of S-IT group and1.6times more than that of control group (P<0.05). And there was no statistic difference in POMC peptides between S-IT group and control group (P>0.05).
     3. The number of POMC neurons in hypothalamus of rats of IT group was more than that of S-IT group and control group (P<0.05).
     4. The concentration of GLP-1in CSF of rats of IT group was higher than that of S-IT group and control group by ELISA analysis (P<0.05).
     5. There was no statistic difference in insulin level in CSF between three groups (P>0.05).
     6. There was no statistic difference in leptin level in CSF between three groups (P<0.05), though the leptin level in CSF of control group was more than that of the other two groups.
     Conclusion
     The study of part2finds that POMC neurons of hypothalamus are activated after ileal transposition, and the transcription of POMC mRNA and expression of POMC are enhanced. These might result from the higher GLP-1level caused by ileal transposition. Given the role of POMC neurons in energy balance, the activated POMC neurons might play an important role in the treatment of ileal transposition on non-obese T2DM rats.
     Part3:the role of POMC neurons in the remission of type2diabetes mellitus after ileal transposition
     Background
     The POMC neurons, located in arcuate nucleus of hypothalamus, are considered as orexia related neurons and involved in energy balance. They accurately regulate energy homeostasis, balance energy intake, expenditure and storage by receiving and integrating afferent neural and metabolic signals. These signals convey the information about the energy status of the body, and include the stretch of oropharyngeal and gastrointestinal, metabolic activity of liver, brain-gut peptides secreted by gastrointestine and various nutrients itself. In the study of part2, the POMC neurons of non-obese T2DM rats were activated after ileal transposition. And this might result from the significantly increased GLP-1level in CSF. However, it is still not known that whether the activated POMC neurons are involved in the remission of T2DM after ileal transposition, and what would happen when the GLP-1receptors are blocked.
     In order to further investigate the role of POMC neurons in the remission of T2DM after ileal transposition, we made the models of non-obese T2DM received the lateral ventricle catheter before ileal transposition. The level of GLP-1was measured and compared between groups. Subsequently, Exendin (9-39), the antagonist of GLP-1receptor, was injected into the lateral ventricle of model rats. The changes of glucose tolerance, food intake, body weight and POMC neurons were compared between groups.
     Methods
     The model rats of non-obese T2DM received the lateral ventricle catheter before operation and then were assigned to two groups randomly:IT and sham IT (S-IT) group. Ileal transposition or sham operation was performed. Exendin (9-39), the antagonist of GLP-1receptor, was injected into the lateral ventricle of model rats at postoperative week-4. The weight, food intake, glucose and GLP-1at baseline, different time points before and after injection were recorded. And the rats were sacrificed at postoperative week-6after Exendin injection. POMC mRNA, POMC, the number of POMC neurons, the level of GLP-1, insulin and leptin in CSF were also measured and compared between groups.
     Results
     1. There were7rats survived in IT group and5rats survived in S-IT group at postoperative week-4.
     2. There were no statistic differences in food intake and weight between IT group and S-IT group before surgery (P>0.05). However, the food intake and weight of IT group significantly decreased after ileal transposition, and were less than those of S-IT groups (P<0.05).
     3. The glucose and AUCOGTT of IT group and S-IT group significantly decreased after ileal transposition (P<0.05), but those of S-IT group restored in2weeks. The glucose and AUCOGTT of IT group were significantly less than those of S-IT group (P<0.05).
     4. The GLP-1level in IT group rats was higher after ileal transposition and increasing over time (P<0.05). There were no statistic differences in S-IT group before and after operation (P>0.05).
     5. The food intake of IT group rats increased significantly after injection of Exendin (P<0.05), while there were no statistic differences in S-IT group before and after surgery (P>0.05). The weight of two groups rats did not change significantly after injection (P>0.05).
     6. The fasting glucose of IT group rats increased significantly after injection of Exendin (P<0.05), while there were no statistic differences in S-IT group before and after surgery (P>0.05). Furthermore, there were no statistic differences in peak glucose value of OGTT between groups (P>0.05).
     7. The expression of POMC mRNA in hypothalamus of IT group rats was less than that of S-IT group after injection of Exendin at postoperative week-6(P<0.05).
     8. The quantity of POMC peptides in hypothalamus of rats of IT group was less than that of S-IT group after injection of Exendin at postoperative week-6(P<0.05).
     9. The number of POMC neurons in hypothalamus of rats of IT group was less than that of S-IT group after injection of Exendin (P<0.05).
     10. The concentration of GLP-1in CSF of rats of IT group was still higher than that of S-IT group after injection of Exendin at postoperative week-6(P<0.05).
     Conclusion
     The models received lateral ventricle catheter and ileal transposition confirm that ileal transposition could restrain food intake, control the weight and improve the glucose of non-obese T2DM rats. The GLP-1level in plasma and CSF is higher after ileal transposition and increases over time. When Exendin, the antagonist of GLP-1receptor, is injected into the lateral ventricle, the improvement of glucose and the control of food intake will lose. The POMC neurons of hypothalamus are inhibited, and the transcription of POMC mRNA and the expression of POMC decrease significantly, although the level of GLP-1in CSF is still high. Therefore, the higher GLP-1level activates the POMC neurons, which lead to the remission of T2DM after ileal transposition.
引文
1. Wild S, Roglic G, Green A, Sicree R, King H. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care.2004 May;27(5):1047-53.
    2. Yang W, Lu J, Weng J, Jia W, Ji L, Xiao J, Shan Z, Liu J, Tian H, Ji Q, Zhu D, Ge J, Lin L, Chen L, Guo X, Zhao Z, Li Q, Zhou Z, Shan G, He J. Prevalence of diabetes among men and women in China. N Engl J Med.2010 Mar 25;362(12):1090-101.
    3. Detournay B, Cros S, Charbonnel B, Grimaldi A, Liard F, Cogneau J, Fagnani F, Eschwege E. Managing type 2 diabetes in France:the ECODIA survey. Diabetes Metab.2000 Nov;26(5):363-9.
    4. Brolin RE. Update:NIH consensus conference. Gastrointestinal surgery for severe obesity. Nutrition.1996 Jun;12(6):403-4.
    5. Buchwald H, Estok R, Fahrbach K, Banel D, Jensen MD, Pories WJ, Bantle JP, Sledge I. Weight and type 2 diabetes after bariatric surgery:systematic review and meta-analysis. Am J Med.2009 Mar;122(3):248-56 e5.
    6. Dixon JB, Zimmet P, Alberti KG, Rubino F. Bariatric surgery:an IDF statement for obese Type 2 diabetes. Diabet Med.2011 Jun;28(6):628-42.
    7. Wang TT, Hu SY, Gao HD, Zhang GY, Liu CZ, Feng JB, Frezza EE. Heal transposition controls diabetes as well as modified duodenal jejunal bypass with better lipid lowering in a nonobese rat model of type II diabetes by increasing GLP-1. Ann Surg.2008 Jun;247(6):968-75.
    8. Rubino F, Gagner M. Potential of surgery for curing type 2 diabetes mellitus. Ann Surg.2002 Nov;236(5):554-9.
    9. Thaler JP, Cummings DE. Minireview:Hormonal and metabolic mechanisms of diabetes remission after gastrointestinal surgery. Endocrinology.2009 Jun;150(6):2518-25.
    10. Maedler K, Sergeev P, Ehses JA, Mathe Z, Bosco D, Berney T, Dayer JM, Reinecke M, Halban PA, Donath MY. Leptin modulates beta cell expression of IL-1 receptor antagonist and release of IL-1beta in human islets. Proc Natl Acad Sci U S A. 2004 May 25;101(21):8138-43.
    11. Kimberly MM, Cooper GR, Myers GL. An overview of inflammatory markers in type 2 diabetes from the perspective of the clinical chemist. Diabetes Technol Ther. 2006 Feb;8(1):37-44.
    12. Strader AD, Vahl TP, Jandacek RJ, Woods SC, D'Alessio DA, Seeley RJ. Weight loss through ileal transposition is accompanied by increased ileal hormone secretion and synthesis in rats. Am J Physiol Endocrinol Metab.2005 Feb;288(2):E447-53.
    13. Schauer PR, Burguera B, Ikramuddin S, Cottam D, Gourash W, Hamad G, Eid GM, Mattar S, Ramanathan R, Barinas-Mitchel E, Rao RH, Kuller L, Kelley D. Effect of laparoscopic Roux-en Y gastric bypass on type 2 diabetes mellitus. Ann Surg.2003 Oct;238(4):467-84; discussion 84-5.
    14. Aguirre V, Stylopoulos N, Grinbaum R, Kaplan LM. An endoluminal sleeve induces substantial weight loss and normalizes glucose homeostasis in rats with diet-induced obesity. Obesity (Silver Spring).2008 Dec;16(12):2585-92.
    15. Drucker DJ. The role of gut hormones in glucose homeostasis. J Clin Invest.2007 Jan;117(1):24-32.
    16.柳志余ELISA方法在牛结核病诊断的应用.辽宁农业职业技术学院学报,2008,10(1):4-5.
    17.杨剑.非小细胞肺癌相关多肽IgY抗体的制备及其ELISA检测研究:[硕士学位论文].上海:华东大学,2010.
    18. Folsom AR. Kushi LH, Anderson KE. Mink PJ. Olson JE, Hong CP, Sellers TA. Lazovich D. Prineas RJ. Associations of general and abdominal obesity with multiple health outcomes in older women:the Iowa Women's Health Study. Arch Intern Med. 2000 Jul 24;160(14):2117-28.
    19. Chow WH, Gridley G, Fraumeni JF, Jr., Jarvholm B. Obesity, hypertension, and the risk of kidney cancer in men. N Engl J Med.2000 Nov 2;343(18):1305-11.
    20. DeFronzo RA. Insulin resistance:a multifaceted syndrome responsible for NIDDM, obesity, hypertension, dyslipidaemia and atherosclerosis. Neth J Med.1997 May;50(5):191-7.
    21. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment:insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia.1985 Jul;28(7):412-9.
    22. Matsuda M, DeFronzo RA. Insulin sensitivity indices obtained from oral glucose tolerance testing:comparison with the euglycemic insulin clamp. Diabetes Care.1999 Sep;22(9):1462-70.
    23. Rubino F, Marescaux J. Effect of duodenal-jejunal exclusion in a non-obese animal model of type 2 diabetes:a new perspective for an old disease. Ann Surg.2004 Jan;239(1):1-11.
    24. DeFronzo RA, Tobin JD, Andres R. Glucose clamp technique:a method for quantifying insulin secretion and resistance. Am J Physiol.1979 Sep;237(3):E214-23.
    25. Culnan DM, Albaugh V, Sun M, Lynch CJ, Lang CH, Cooney RN. Ileal interposition improves glucose tolerance and insulin sensitivity in the obese Zucker rat. Am J Physiol Gastrointest Liver Physiol.2010 Sep;299(3):G751-60.
    26. Kjems LL, Holst JJ, Volund A, Madsbad S. The influence of GLP-1 on glucose-stimulated insulin secretion:effects on beta-cell sensitivity in type 2 and nondiabetic subjects. Diabetes.2003 Feb;52(2):380-6.
    27. Baggio LL, Drucker DJ. Biology of incretins:GLP-1 and GIP. Gastroenterology. 2007 May;132(6):2131-57.
    28. Stoffers DA, Kieffer TJ, Hussain MA, Drucker DJ, Bonner-Weir S, Habener JF, Egan JM. Insulinotropic glucagon-like peptide 1 agonists stimulate expression of homeodomain protein IDX-1 and increase islet size in mouse pancreas. Diabetes. 2000 May;49(5):741-8.
    29. Kwon G, Pappan KL, Marshall CA. Schaffer JE, McDaniel ML. cAMP Dose-dependently prevents palmitate-induced apoptosis by both protein kinase A- and cAMP-guanine nucleotide exchange factor-dependent pathways in beta-cells. J Biol Chem.2004 Mar 5;279(10):8938-45.
    30. Elliott RM, Morgan LM, Tredger JA, Deacon S, Wright J, Marks V. Glucagon-like peptide-1 (7-36)amide and glucose-dependent insulinotropic polypeptide secretion in response to nutrient ingestion in man:acute post-prandial and 24-h secretion patterns. J Endocrinol.1993 Jul;138(1):159-66.
    31. Vilsboll T, Krarup T, Deacon CF, Madsbad S, Hoist JJ. Reduced postprandial concentrations of intact biologically active glucagon-like peptide 1 in type 2 diabetic patients. Diabetes.2001 Mar;50(3):609-13.
    32. Xiao Q, Boushey RP, Drucker DJ, Brubaker PL. Secretion of the intestinotropic hormone glucagon-like peptide 2 is differentially regulated by nutrients in humans. Gastroenterology.1999 Jul;117(1):99-105.
    33. Ranganath LR, Beety JM, Morgan LM, Wright JW, Howland R, Marks V. Attenuated GLP-1 secretion in obesity:cause or consequence? Gut.1996 Jun;38(6):916-9.
    34. Ranganath L, Norris F, Morgan L, Wright J, Marks V. Inhibition of carbohydrate-mediated glucagon-like peptide-1 (7-36)amide secretion by circulating non-esterified fatty acids. Clin Sci (Lond).1999 Apr;96(4):335-42.
    35. Vaag A A, Holst JJ, Volund A, Beck-Nielsen HB. Gut incretin hormones in identical twins discordant for non-insulin-dependent diabetes mellitus (NIDDM)--evidence for decreased glucagon-like peptide 1 secretion during oral glucose ingestion in NIDDM twins. Eur J Endocrinol.1996 Oct;135(4):425-32.
    36. Vilsboll T, Agerso H, Krarup T, Holst JJ. Similar elimination rates of glucagon-like peptide-1 in obese type 2 diabetic patients and healthy subjects. J Clin Endocrinol Metab.2003 Jan;88(1):220-4.
    37. Trumper A, Trumper K. Horsch D. Mechanisms of mitogenic and anti-apoptotic signaling by glucose-dependent insulinotropic polypeptide in beta(INS-1)-cells. J Endocrinol.2002 Aug;174(2):233-46.
    38. Flatt PR. Effective surgical treatment of obesity may be mediated by ablation of the lipogenic gut hormone gastric inhibitory polypeptide (GIP):evidence and clinical opportunity for development of new obesity-diabetes drugs? Diab Vase Dis Res.2007 Jun;4(2):151-3.
    39. Miyawaki K, Yamada Y, Ban N, Ihara Y, Tsukiyama K, Zhou H, Fujimoto S, Oku A, Tsuda K, Toyokuni S, Hiai H, Mizunoya W, Fushiki T, Holst JJ, Makino M, Tashita A, Kobara Y, Tsubamoto Y, Jinnouchi T, Jomori T, Seino Y. Inhibition of gastric inhibitory polypeptide signaling prevents obesity. Nat Med.2002 Jul;8(7):738-42.
    40. Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM. Positional cloning of the mouse obese gene and its human homologue. Nature.1994 Dec 1;372(6505):425-32.
    41. Considine RV, Sinha MK, Heiman ML, Kriauciunas A, Stephens TW, Nyce MR, Ohannesian JP, Marco CC, McKee LJ, Bauer TL, et al. Serum immunoreactive-leptin concentrations in normal-weight and obese humans. N Engl J Med.1996 Feb 1;334(5):292-5.
    1. Schwartz GJ. Brainstem integrative function in the central nervous system control of food intake. Forum Nutr.2010;63:141-51.
    2. Morton GJ, Cummings DE, Baskin DG, Barsh GS, Schwartz MW. Central nervous system control of food intake and body weight. Nature.2006 Sep 21;443(7109):289-95.
    3. Stanley S, Wynne K, McGowan B, Bloom S. Hormonal regulation of food intake. Physiol Rev.2005 Oct;85(4):1131-58.
    4. Kawauchi H, Kawazoe I, Adachi Y, Buckley DI, Ramachandran J. Chemical and biological characterization of salmon melanocyte-stimulating hormones. Gen Comp Endocrinol.1984 Jan;53(1):37-48.
    5. Iwen KA, Senyaman O, Schwartz A, Drenckhan M, Meier B, Hadaschik D, Klein J. Melanocortin crosstalk with adipose functions:ACTH directly induces insulin resistance, promotes a pro-inflammatory adipokine profile and stimulates UCP-1 in adipocytes. J Endocrinol.2008 Mar;196(3):465-72.
    6. Munzberg H, Huo L, Nillni EA, Hollenberg AN, Bjorbaek C. Role of signal transducer and activator of transcription 3 in regulation of hypothalamic proopiomelanocortin gene expression by leptin. Endocrinology.2003 May; 144(5):2121-31.
    7. Cone RD. The Central Melanocortin System and Energy Homeostasis. Trends Endocrinol Metab.1999 Aug; 10(6):211-6.
    8. Zhou L. Sutton GM. Rochford JJ. Semple RK. Lam DD, Oksanen LJ, Thornton-Jones ZD, Clifton PG. Yueh CY Evans ML, McCrimmon RJ, Elmquist JK, Butler AA, Heisler LK. Serotonin 2C receptor agonists improve type 2 diabetes via melanocortin-4 receptor signaling pathways. Cell Metab.2007 Nov;6(5):398-405.
    9. Nogueiras R, Wiedmer P, Perez-Tilve D, Veyrat-Durebex C, Keogh JM, Sutton GM, Pfluger PT, Castaneda TR, Neschen S, Hofmann SM, Howles PN, Morgan DA, Benoit SC, Szanto I, Schrott B, Schurmann A, Joost HG, Hammond C, Hui DY, Woods SC, Rahmouni K, Butler AA, Farooqi IS, O'Rahilly S, Rohner-Jeanrenaud F, Tschop MH. The central melanocortin system directly controls peripheral lipid metabolism. J Clin Invest.2007 Nov;117(11):3475-88.
    10. Hochgeschwender U, Costa JL, Reed P, Bui S, Brennan MB. Altered glucose homeostasis in proopiomelanocortin-null mouse mutants lacking central and peripheral melanocortin. Endocrinology.2003 Dec;144(12):5194-202.
    11. Jackson RS, Creemers JW, Ohagi S, Raffin-Sanson ML, Sanders L, Montague CT, Hutton JC, O'Rahilly S. Obesity and impaired prohormone processing associated with mutations in the human prohormone convertase 1 gene. Nat Genet.1997 Jul;16(3):303-6.
    12. Trevaskis JL, Butler AA. Double leptin and melanocortin-4 receptor gene mutations have an additive effect on fat mass and are associated with reduced effects of leptin on weight loss and food intake. Endocrinology.2005 Oct;146(10):4257-65.
    13. Coll AP, Farooqi IS, Challis BG, Yeo GS, O'Rahilly S. Proopiomelanocortin and energy balance:insights from human and murine genetics. J Clin Endocrinol Metab. 2004 Jun;89(6):2557-62.
    14. Frezza EE, Wachtel MS, Chiriva-Internati M. The multiple faces of glucagon-like peptide-1-- obesity, appetite, and stress:what is next? A review. Dig Dis Sci.2007 Mar;52(3):643-9.
    15. Larsen PJ, Tang-Christensen M, Jessop DS. Central administration of glucagon-like peptide-1 activates hypothalamic neuroendocrine neurons in the rat. Endocrinology.1997 Oct;138(10):4445-55.
    16. Pocai A, Lam TK, Gutierrez-Juarez R, Obici S, Schwartz GJ, Bryan J, Aguilar-Bryan L, Rossetti L. Hypothalamic K(ATP) channels control hepatic glucose production. Nature.2005 Apr 21;434(7036):1026-31.
    17. Ibrahim N, Bosch MA, Smart JL, Qiu J, Rubinstein M, Ronnekleiv OK, Low MJ, Kelly MJ. Hypothalamic proopiomelanocortin neurons are glucose responsive and express K(ATP) channels. Endocrinology.2003 Apr; 144(4):1331-40.
    18. Wang R, Liu X, Hentges ST, Dunn-Meynell AA, Levin BE, Wang W, Routh VH. The regulation of glucose-excited neurons in the hypothalamic arcuate nucleus by glucose and feeding-relevant peptides. Diabetes.2004 Aug;53(8):1959-65.
    19. Parton LE, Ye CP, Coppari R, Enriori PJ, Choi B, Zhang CY, Xu C, Vianna CR, Balthasar N, Lee CE, Elmquist JK, Cowley MA, Lowell BB. Glucose sensing by POMC neurons regulates glucose homeostasis and is impaired in obesity. Nature. 2007 Sep 13;449(7159):228-32.
    20. Mobbs CV, Isoda F, Makimura H, Mastaitis J, Mizuno T, Shu IW, Yen K, Yang XJ. Impaired glucose signaling as a cause of obesity and the metabolic syndrome:the glucoadipostatic hypothesis. Physiol Behav.2005 May 19;85(1):3-23.
    21. Kang L, Dunn-Meynell AA, Routh VH, Gaspers LD, Nagata Y, Nishimura T, Eiki J, Zhang BB, Levin BE. Glucokinase is a critical regulator of ventromedial hypothalamic neuronal glucosensing. Diabetes.2006 Feb;55(2):412-20.
    22. Bady I, Marty N, Dallaporta M, Emery M, Gyger J, Tarussio D, Foretz M, Thorens B. Evidence from glut2-null mice that glucose is a critical physiological regulator of feeding. Diabetes.2006 Apr;55(4):988-95.
    23.黄旭Mithramycin A对大肠癌细胞株骨桥蛋白OPN、转录因子Sp1表达影响的实验研究:[硕士学位论文].福州:福建医科大学,2008.
    24.庞永涛.重度创伤骨折术后IL-2、IL-6动态变化及相关性研究:[硕士学位论文].济南:山东大学,2004.
    25.李小军PPARγ、VEGF、VEGFC在人胃癌的表达以及罗格列酮对胃癌细胞生长、新生血管形成和淋巴管形成影响及其机制:[博士学位论文].成都:四川大学,2007.
    26. Gao J, Knutsen A. Arbman G. Carstensen J, Franlund B, Sun XF. Clinical and biological significance of angiogenesis and lymphangiogenesis in colorectal cancer. Dig Liver Dis.2009 Feb;41 (2):116-22.
    27. Bemardis LL, Bellinger LL. The lateral hypothalamic area revisited:ingestive behavior. Neurosci Biobehav Rev.1996 Summer;20(2):189-287.
    28. Schwartz MW, Woods SC, Porte D, Jr., Seeley RJ, Baskin DG. Central nervous system control of food intake. Nature.2000 Apr 6;404(6778):661-71.
    29. Flier JS. Obesity wars:molecular progress confronts an expanding epidemic. Cell. 2004 Jan 23;116(2):337-50.
    30. Schwartz MW, Porte D, Jr. Diabetes, obesity, and the brain. Science.2005 Jan 21;307(5708):375-9.
    31. Breen TL, Conwell IM, Wardlaw SL. Effects of fasting, leptin, and insulin on AGRP and POMC peptide release in the hypothalamus. Brain Res.2005 Jan 25;1032(1-2):141-8.
    32. Shu IW, Lindenberg DL, Mizuno TM, Roberts JL, Mobbs CV. The fatty acid synthase inhibitor cerulenin and feeding, like leptin, activate hypothalamic pro-opiomelanocortin (POMC) neurons. Brain Res.2003 Sep 19;985(1):1-12.
    33. Endo D, Park MK. Molecular characterization of the leopard gecko POMC gene and expressional change in the testis by acclimation to low temperature and with a short photoperiod. Gen Comp Endocrinol.2004 Aug;138(1):70-7.
    34. Shen ST, Lu LM, Chen JR, Chien JT, Yu JY. Molecular cloning of proopiomelanocortin (POMC) cDNA from mud turtle, Pelodiscus sinensis. Gen Comp Endocrinol.2003 Apr; 131(2):192-201.
    35. Lee M, Kim A, Chua SC, Jr., Obici S, Wardlaw SL. Transgenic MSH overexpression attenuates the metabolic effects of a high-fat diet. Am J Physiol Endocrinol Metab.2007 Jul;293(1):E121-31.
    36. Challis BG, Coll AP, Yeo GS, Pinnock SB, Dickson SL, Thresher RR, Dixon J, Zahn D, Rochford JJ, White A, Oliver RL, Millington G, Aparicio SA, Colledge WH, Russ AP, Carlton MB, O'Rahilly S. Mice lacking pro-opiomelanocortin are sensitive to high-fat feeding but respond normally to the acute anorectic effects of peptide-YY(3-36). Proc Natl Acad Sci U S A.2004 Mar 30;101(13):4695-700.
    37. Drucker DJ. Biologic actions and therapeutic potential of the proglucagon-derived peptides. Nat Clin Pract Endocrinol Metab.2005 Nov;1(1):22-31.
    38. Bucinskaite V, Tolessa T, Pedersen J, Rydqvist B, Zerihun L, Holst JJ, Hellstrom PM. Receptor-mediated activation of gastric vagal afferents by glucagon-like peptide-1 in the rat. Neurogastroenterol Motil.2009 Sep;21(9):978-e78.
    39. Nishizawa M, Nakabayashi H, Kawai K, Ito T, Kawakami S, Nakagawa A, Niijima A, Uchida K. The hepatic vagal reception of intraportal GLP-1 is via receptor different from the pancreatic GLP-1 receptor. J Auton Nerv Syst.2000 Apr 12;80(1-2):14-21.
    40. Ruttimann EB, Arnold M, Hillebrand JJ, Geary N, Langhans W. Intrameal hepatic portal and intraperitoneal infusions of glucagon-like peptide-1 reduce spontaneous meal size in the rat via different mechanisms. Endocrinology.2009 Mar; 150(3):1174-81.
    41. Goke R, Larsen PJ, Mikkelsen JD, Sheikh SP. Distribution of GLP-1 binding sites in the rat brain:evidence that exendin-4 is a ligand of brain GLP-1 binding sites. Eur J Neurosci.1995 Nov 1;7(11):2294-300.
    42. Kesty NC, Roth JD, Maggs D. Hormone-based therapies in the regulation of fuel metabolism and body weight. Expert Opin Biol Ther.2008 Nov;8(11):1733-47.
    43. Maljaars PW, Peters HP, Mela DJ, Masclee AA. Heal brake:a sensible food target for appetite control. A review. Physiol Behav.2008 Oct 20;95(3):271-81.
    44. Belgardt BF, Husch A, Rother E, Ernst MB, Wunderlich FT, Hampel B, Klockener T, Alessi D, Kloppenburg P, Bruning JC. PDK1 deficiency in POMC-expressing cells reveals FOXOl-dependent and-independent pathways in control of energy homeostasis and stress response. Cell Metab.2008 Apr;7(4):291-301.
    45. Kitamura T. Feng Y, Kitamura YI, Chua SC, Jr., Xu AW, Barsh GS, Rossetti L, Accili D. Forkhead protein FoxO1 mediates Agrp-dependent effects of leptin on food intake. Nat Med.2006 May;12(5):534-40.
    46. Plum L, Lin HV, Dutia R, Tanaka J, Aizawa KS, Matsumoto M, Kim AJ, Cawley NX, Paik JH, Loh YP, DePinho RA, Wardlaw SL, Accili D. The obesity susceptibility gene Cpe links FoxOl signaling in hypothalamic pro-opiomelanocortin neurons with regulation of food intake. Nat Med.2009 Oct; 15(10):1195-201.
    47. Hill JW, Xu Y, Preitner F, Fukuda M, Cho YR, Luo J, Balthasar N, Coppari R, Cantley LC, Kahn BB, Zhao JJ, Elmquist JK. Phosphatidyl inositol 3-kinase signaling in hypothalamic proopiomelanocortin neurons contributes to the regulation of glucose homeostasis. Endocrinology.2009 Nov;150(11):4874-82.
    48. Ahima RS, Flier JS. Leptin. Annu Rev Physiol.2000;62:413-37.
    49. Coppari R, Ichinose M, Lee CE, Pullen AE, Kenny CD, McGovern RA, Tang V, Liu SM, Ludwig T, Chua SC, Jr., Lowell BB, Elmquist JK. The hypothalamic arcuate nucleus:a key site for mediating leptin's effects on glucose homeostasis and locomotor activity. Cell Metab.2005 Jan;1(1):63-72.
    50. Enriori PJ, Evans AE, Sinnayah P, Jobst EE, Tonelli-Lemos L, Billes SK, Glavas MM, Grayson BE, Perello M, Nillni EA, Grove KL, Cowley MA. Diet-induced obesity causes severe but reversible leptin resistance in arcuate melanocortin neurons. Cell Metab.2007 Mar;5(3):181-94.
    51. Ellacott KL, Halatchev IG, Cone RD. Characterization of leptin-responsive neurons in the caudal brainstem. Endocrinology.2006 Jul; 147(7):3190-5.
    52. Perello M, Stuart RC, Nillni EA. Differential effects of fasting and leptin on proopiomelanocortin peptides in the arcuate nucleus and in the nucleus of the solitary tract. Am J Physiol Endocrinol Metab.2007 May;292(5):E1348-57.
    53. Dhillon H, Zigman JM, Ye C, Lee CE, McGovern RA, Tang V, Kenny CD, Christiansen LM, White RD, Edelstein EA, Coppari R, Balthasar N, Cowley MA, Chua S, Jr., Elmquist JK, Lowell BB. Leptin directly activates SF1 neurons in the VMH, and this action by leptin is required for normal body-weight homeostasis. Neuron.2006 Jan 19:49(2):191-203.
    1. Stanley S, Wynne K, McGowan B, Bloom S. Hormonal regulation of food intake. Physiol Rev.2005 Oct;85(4):1131-58.
    2. Endo D, Park MK. Molecular characterization of the leopard gecko POMC gene and expressional change in the testis by acclimation to low temperature and with a short photoperiod. Gen Comp Endocrinol.2004 Aug;138(1):70-7.
    3. Shen ST, Lu LM, Chen JR, Chien JT, Yu JY. Molecular cloning of proopiomelanocortin (POMC) cDNA from mud turtle, Pelodiscus sinensis. Gen Comp Endocrinol.2003 Apr; 131(2):192-201.
    4. Lee M, Kim A, Chua SC, Jr., Obici S, Wardlaw SL. Transgenic MSH overexpression attenuates the metabolic effects of a high-fat diet. Am J Physiol Endocrinol Metab.2007 Jul;293(1):E121-31.
    5. Tung YC, Piper SJ, Yeung D, O'Rahilly S, Coll AP. A comparative study of the central effects of specific proopiomelancortin (POMC)-derived melanocortin peptides on food intake and body weight in pomc null mice. Endocrinology.2006 Dec;147(12):5940-7.
    6. Yaswen L, Diehl N, Brennan MB, Hochgeschwender U. Obesity in the mouse model of pro-opiomelanocortin deficiency responds to peripheral melanocortin. Nat Med.1999 Sep;5(9):1066-70.
    7. Pierroz DD. Ziotopoulou M, Ungsunan L, Moschos S, Flier JS, Mantzoros CS. Effects of acute and chronic administration of the melanocortin agonist MTII in mice with diet-induced obesity. Diabetes.2002 May;51(5):1337-45.
    8. Goke R. Larsen PJ, Mikkelsen JD, Sheikh SP. Distribution of GLP-1 binding sites in the rat brain:evidence that exendin-4 is a ligand of brain GLP-1 binding sites. Eur J Neurosci.1995 Nov 1;7(11):2294-300.
    9. Ahima RS, Flier JS. Leptin. Annu Rev Physiol.2000;62:413-37.
    10. Belgardt BF, Husch A, Rother E, Ernst MB, Wunderlich FT, Hampel B, Klockener T, Alessi D, Kloppenburg P, Bruning JC. PDK1 deficiency in POMC-expressing cells reveals FOXO1-dependent and-independent pathways in control of energy homeostasis and stress response. Cell Metab.2008 Apr;7(4):291-301.
    11. Kitamura T, Feng Y, Kitamura YI, Chua SC, Jr., Xu AW, Barsh GS, Rossetti L, Accili D. Forkhead protein FoxO1 mediates Agrp-dependent effects of leptin on food intake. Nat Med.2006 May;12(5):534-40.
    12. Larsen PJ, Tang-Christensen M, Jessop DS. Central administration of glucagon-like peptide-1 activates hypothalamic neuroendocrine neurons in the rat. Endocrinology.1997 Oct;138(10):4445-55.
    13. Pocai A, Lam TK, Gutierrez-Juarez R, Obici S, Schwartz GJ, Bryan J, Aguilar-Bryan L, Rossetti L. Hypothalamic K(ATP) channels control hepatic glucose production. Nature.2005 Apr 21;434(7036):1026-31.
    14. Ibrahim N, Bosch MA, Smart JL, Qiu J, Rubinstein M, Ronnekleiv OK, Low MJ, Kelly MJ. Hypothalamic proopiomelanocortin neurons are glucose responsive and express K(ATP) channels. Endocrinology.2003 Apr; 144(4):1331-40.
    15. Wang R, Liu X, Hentges ST, Dunn-Meynell AA, Levin BE, Wang W, Routh VH. The regulation of glucose-excited neurons in the hypothalamic arcuate nucleus by glucose and feeding-relevant peptides. Diabetes.2004 Aug;53(8):1959-65.
    16. Parton LE, Ye CP, Coppari R, Enriori PJ, Choi B, Zhang CY, Xu C, Vianna CR, Balthasar N, Lee CE, Elmquist JK, Cowley MA, Lowell BB. Glucose sensing by POMC neurons regulates glucose homeostasis and is impaired in obesity. Nature. 2007 Sep 13;449(7159):228-32.
    17.黄旭Mithramycin A对大肠癌细胞株骨桥蛋白OPN、转录因子Spl表达影响的实验研究:[硕士学位论文].福州:福建医科大学,2008.
    18.庞永涛.重度创伤骨折术后IL-2、IL-6动态变化及相关性研究:[硕士学位论文].济南:山东大学,2004.
    19.李小军.PPARγ、VEGF、VEGFC在人胃癌的表达以及罗格列酮对胃癌细胞生长、新生血管形成和淋巴管形成影响及其机制:[博士学位论文].成都:四川大学,2007.
    20. Gonzalez MC, Abreu P, Barroso-Chinea P, Cruz-Muros I, Gonzalez-Hernandez T. Effect of intracerebro ventricular injection of lipopolysaccharide on the tuberoinfundibular dopaminergic system of the rat. Neuroscience.2004;127(1):251-9.
    21. Xia Y, Krukoff TL. Differential neuronal activation in the hypothalamic paraventricular nucleus and autonomic/neuroendocrine responses to I.C.V. endotoxin. Neuroscience.2003;121(1):219-31.
    22. Hodgson DM, Yirmiya R, Taylor AN. Intracerebro ventricular interleukin-lbeta impairs clearance of tumor cells from the lungs:role of brain prostaglandins. J Neuroimmunol.2001 Sep 3;119(1):57-63.
    23. Wallenius K, Wallenius V, Sunter D, Dickson SL, Jansson JO. Intracerebroventricular interleukin-6 treatment decreases body fat in rats. Biochem Biophys Res Commun.2002 Apr 26;293(1):560-5.
    24. Sunter D, Hewson AK, Dickson SL. Intracerebroventricular injection of apelin-13 reduces food intake in the rat. Neurosci Lett.2003 Dec 15;353(1):1-4.
    25. Cone RD. The Central Melanocortin System and Energy Homeostasis. Trends Endocrinol Metab.1999 Aug;10(6):211-6.
    26. Zhou L, Sutton GM, Rochford JJ, Semple RK, Lam DD, Oksanen LJ, Thornton-Jones ZD, Clifton PG, Yueh CY, Evans ML, McCrimmon RJ, Elmquist JK, Butler AA, Heisler LK. Serotonin 2C receptor agonists improve type 2 diabetes via melanocortin-4 receptor signaling pathways. Cell Metab.2007 Nov;6(5):398-405.
    27. Nogueiras R, Wiedmer P, Perez-Tilve D, Veyrat-Durebex C, Keogh JM, Sutton GM. Pfluger PT. Castaneda TR, Neschen S. Hofmann SM. Howles PN, Morgan DA, Benoit SC, Szanto I, Schrott B, Schumann A, Joost HG, Hammond C. Hui DY, Woods SC, Rahmouni K, Butler AA, Farooqi IS, O'Rahilly S, Rohner-Jeanrenaud F, Tschop MH. The central melanocortin system directly controls peripheral lipid metabolism. J Clin Invest.2007 Nov;117(11):3475-88.
    28. Garza JC, Kim CS, Liu J, Zhang W, Lu XY. Adeno-associated virus-mediated knockdown of melanocortin-4 receptor in the paraventricular nucleus of the hypothalamus promotes high-fat diet-induced hyperphagia and obesity. J Endocrinol. 2008 Jun;197(3):471-82.
    29. Balthasar N, Dalgaard LT, Lee CE, Yu J, Funahashi H, Williams T, Ferreira M, Tang V, McGovern RA, Kenny CD, Christiansen LM, Edelstein E, Choi B, Boss O, Aschkenasi C, Zhang CY, Mountjoy K, Kishi T, Elmquist JK, Lowell BB. Divergence of melanocortin pathways in the control of food intake and energy expenditure. Cell. 2005 Nov 4;123(3):493-505.
    30. Lu XY, Barsh GS, Akil H, Watson SJ. Interaction between alpha-melanocyte-stimulating hormone and corticotropin-releasing hormone in the regulation of feeding and hypothalamo-pituitary-adrenal responses. J Neurosci.2003 Aug 27;23(21):7863-72.
    31. Marsh DJ, Hollopeter G, Huszar D, Laufer R, Yagaloff KA, Fisher SL, Burn P, Palmiter RD. Response of melanocortin-4 receptor-deficient mice to anorectic and orexigenic peptides. Nat Genet.1999 Jan;21(1):119-22.
    32. Kublaoui BM, Holder JL, Jr., Gemelli T, Zinn AR. Siml haploinsufficiency impairs melanocortin-mediated anorexia and activation of paraventricular nucleus neurons. Mol Endocrinol.2006 Oct;20(10):2483-92.
    33. Sabatier N, Caquineau C, Dayanithi G, Bull P, Douglas AJ, Guan XM, Jiang M, Van der Ploeg L, Leng G. Alpha-melanocyte-stimulating hormone stimulates oxytocin release from the dendrites of hypothalamic neurons while inhibiting oxytocin release from their terminals in the neurohypophysis. J Neurosci.2003 Nov 12;23(32):10351-8.
    34. Oh IS, Shimizu H, Satoh T, Okada S, Adachi S, Inoue K, Eguchi H, Yamamoto M, Imaki T, Hashimoto K, Tsuchiya T, Monden T, Horiguchi K, Yamada M, Mori M. Identification of nesfatin-1 as a satiety molecule in the hypothalamus. Nature.2006 Oct 12;443(7112):709-12.
    35. Duan W, Guo Z, Jiang H, Ware M, Mattson MP. Reversal of behavioral and metabolic abnormalities, and insulin resistance syndrome, by dietary restriction in mice deficient in brain-derived neurotrophic factor. Endocrinology.2003 Jun;144(6):2446-53.
    36. Yeo GS, Connie Hung CC, Rochford J, Keogh J, Gray J, Sivaramakrishnan S, O'Rahilly S, Farooqi IS. A de novo mutation affecting human TrkB associated with severe obesity and developmental delay. Nat Neurosci.2004 Nov;7(11):1187-9.
    37. Grill HJ, Ginsberg AB, Seeley RJ, Kaplan JM. Brainstem application of melanocortin receptor ligands produces long-lasting effects on feeding and body weight. J Neurosci.1998 Dec 1;18(23):10128-35.
    38. Fan W, Ellacott KL, Halatchev IG, Takahashi K, Yu P, Cone RD. Cholecystokinin-mediated suppression of feeding involves the brainstem melanocortin system. Nat Neurosci.2004 Apr;7(4):335-6.
    39. Bariohay B, Roux J, Tardivel C, Trouslard J, Jean A, Lebrun B. Brain-derived neurotrophic factor/tropomyosin-related kinase receptor type B signaling is a downstream effector of the brainstem melanocortin system in food intake control. Endocrinology.2009 Jun;150(6):2646-53.
    40. Ste Marie L, Miura GI. Marsh DJ, Yagaloff K, Palmiter RD. A metabolic defect promotes obesity in mice lacking melanocortin-4 receptors. Proc Natl Acad Sci U S A. 2000 Oct 24;97(22):12339-44.
    41. Butler AA, Marks DL, Fan W, Kuhn CM, Bartolome M, Cone RD. Melanocortin-4 receptor is required for acute homeostatic responses to increased dietary fat. Nat Neurosci.2001 Jun;4(6):605-11.
    42. Farooqi IS, Keogh JM, Yeo GS, Lank EJ, Cheetham T, O'Rahilly S. Clinical spectrum of obesity and mutations in the melanocortin 4 receptor gene. N Engl J Med. 2003 Mar 20;348(12):1085-95.
    43. Krakoff J, Ma L, Kobes S, Knowler WC, Hanson RL, Bogardus C, Baier LJ. Lower metabolic rate in individuals heterozygous for either a frameshift or a functional missense MC4R variant. Diabetes.2008 Dec;57(12):3267-72.
    44. Williams DL, Bowers RR, Bartness TJ, Kaplan JM, Grill HJ. Brainstem melanocortin 3/4 receptor stimulation increases uncoupling protein gene expression in brown fat. Endocrinology.2003 Nov;144(11):4692-7.
    45. Elmquist JK. Hypothalamic pathways underlying the endocrine, autonomic, and behavioral effects of leptin. Physiol Behav.2001 Nov-Dec;74(4-5):703-8.
    46. Nicholson JR, Peter JC, Lecourt AC, Barde YA, Hofbauer KG. Melanocortin-4 receptor activation stimulates hypothalamic brain-derived neurotrophic factor release to regulate food intake, body temperature and cardiovascular function. J Neuroendocrinol.2007 Dec;19(12):974-82.
    47. Kishi T, Aschkenasi CJ, Lee CE, Mountjoy KG, Saper CB, Elmquist JK. Expression of melanocortin 4 receptor mRNA in the central nervous system of the rat. J Comp Neurol.2003 Mar 10;457(3):213-35.
    48. Skibicka KP, Grill HJ. Energetic responses are triggered by caudal brainstem melanocortin receptor stimulation and mediated by local sympathetic effector circuits. Endocrinology.2008 Jul;149(7):3605-16.
    49. Zhang ZH, Felder RB. Melanocortin receptors mediate the excitatory effects of blood-borne murine leptin on hypothalamic paraventricular neurons in rat. Am J Physiol Regul Integr Comp Physiol.2004 Feb;286(2):R303-10.
    50. Voss-Andreae A, Murphy JG, Ellacott KL, Stuart RC, Nillni EA, Cone RD, Fan W. Role of the central melanocortin circuitry in adaptive thermogenesis of brown adipose tissue. Endocrinology.2007 Apr; 148(4):1550-60.
    51. Song CK, Vaughan CH, Keen-Rhinehart E, Harris RB, Richard D, Bartness TJ. Melanocortin-4 receptor mRNA expressed in sympathetic outflow neurons to brown adipose tissue:neuroanatomical and functional evidence. Am J Physiol Regul Integr Comp Physiol.2008 Aug;295(2):R417-28.
    52. Bartolomucci A, Possenti R, Levi A, Pavone F, Moles A. The role of the vgf gene and VGF-derived peptides in nutrition and metabolism. Genes Nutr.2007 Nov;2(2):169-80.
    53. Legradi G, Lechan RM. Agouti-related protein containing nerve terminals innervate thyrotropin-releasing hormone neurons in the hypothalamic paraventricular nucleus. Endocrinology.1999 Aug;140(8):3643-52.
    54. Sawchenko PE, Swanson LW. Immunohistochemical identification of neurons in the paraventricular nucleus of the hypothalamus that project to the medulla or to the spinal cord in the rat. J Comp Neurol.1982 Mar 1;205(3):260-72.
    55. Hahm S, Fekete C, Mizuno TM, Windsor J, Yan H, Boozer CN, Lee C, Elmquist JK, Lechan RM, Mobbs CV, Salton SR. VGF is required for obesity induced by diet, gold thioglucose treatment, and agouti and is differentially regulated in pro-opiomelanocortin-and neuropeptide Y-containing arcuate neurons in response to fasting. J Neurosci.2002 Aug 15;22(16):6929-38.
    56. Coll AP. Effects of pro-opiomelanocortin (POMC) on food intake and body weight:mechanisms and therapeutic potential? Clin Sci (Lond).2007 Aug; 113(4):171-82.
    57. Kumar KG, Sutton GM, Dong JZ, Roubert P, Plas P, Halem HA, Culler MD, Yang H, Dixit VD, Butler AA. Analysis of the therapeutic functions of novel melanocortin receptor agonists in MC3R-and MC4R-deficient C57BL/6J mice. Peptides.2009 Oct;30(10):1892-900.
    58. Sutton GM, Trevaskis JL, Hulver MW, McMillan RP, Markward NJ, Babin MJ, Meyer EA, Butler AA. Diet-genotype interactions in the development of the obese, insulin-resistant phenotype of C57BL/6J mice lacking melanocortin-3 or-4 receptors. Endocrinology.2006 May; 147(5):2183-96.
    59. Garruti G, Cotecchia S, Giampetruzzi F, Giorgino F, Giorgino R. Neuroendocrine deregulation of food intake, adipose tissue and the gastrointestinal system in obesity and metabolic syndrome. J Gastrointestin Liver Dis.2008 Jun; 17(2):193-8.
    60. Leoni G, Patel HB, Sampaio AL, Gavins FN, Murray JF, Grieco P, Getting SJ, Perretti M. Inflamed phenotype of the mesenteric microcirculation of melanocortin type 3 receptor-null mice after ischemia-reperfusion. FASEB J.2008 Dec;22(12):4228-38.
    61. Robbins LS, Nadeau JH, Johnson KR, Kelly MA, Roselli-Rehfuss L, Baack E, Mountjoy KG, Cone RD. Pigmentation phenotypes of variant extension locus alleles result from point mutations that alter MSH receptor function. Cell.1993 Mar 26;72(6):827-34.
    62. Chida D, Nakagawa S, Nagai S, Sagara H, Katsumata H, Imaki T, Suzuki H, Mitani F, Ogishima T, Shimizu C, Kotaki H, Kakuta S, Sudo K, Koike T, Kubo M, Iwakura Y. Melanocortin 2 receptor is required for adrenal gland development, steroidogenesis, and neonatal gluconeogenesis. Proc Natl Acad Sci U S A.2007 Nov 13;104(46):18205-10.
    63. Chen W, Kelly MA, Opitz-Araya X, Thomas RE, Low MJ, Cone RD. Exocrine gland dysfunction in MC5-R-deficient mice:evidence for coordinated regulation of exocrine gland function by melanocortin peptides. Cell.1997 Dec 12;91(6):789-98.
    64. Chida D, Sato T, Sato Y, Kubo M, Yoda T, Suzuki H, Iwakura Y. Characterization of mice deficient in melanocortin 2 receptor on a B6/Balbc mix background. Mol Cell Endocrinol.2009 Mar 5;300(1-2):32-6.
    65. Clark AJ, Metherell LA. Mechanisms of disease:the adrenocorticotropin receptor and disease. Nat Clin Pract Endocrinol Metab.2006 May;2(5):282-90.
    66. Sturm RA. Skin colour and skin cancer-MC1R, the genetic link. Melanoma Res. 2002 Oct;12(5):405-16.
    67. Chagnon YC, Chen WJ, Perusse L, Chagnon M, Nadeau A, Wilkison WO, Bouchard C. Linkage and association studies between the melanocortin receptors 4 and 5 genes and obesity-related phenotypes in the Quebec Family Study. Mol Med. 1997 Oct;3(10):663-73.
    68. An JJ, Rhee Y, Kim SH, Kim DM, Han DH, Hwang JH, Jin YJ, Cha BS, Baik JH, Lee WT, Lim SK. Peripheral effect of alpha-melanocyte-stimulating hormone on fatty acid oxidation in skeletal muscle. J Biol Chem.2007 Feb 2;282(5):2862-70.
    69. Bray GA, Champagne CM. Obesity and the Metabolic Syndrome:implications for dietetics practitioners. J Am Diet Assoc.2004 Jan;104(1):86-9.
    1. Stanley S, Wynne K, McGowan B, Bloom S. Hormonal regulation of food intake. Physiol Rev.2005 Oct;85(4):1131-58.
    2. Endo D, Park MK. Molecular characterization of the leopard gecko POMC gene and expressional change in the testis by acclimation to low temperature and with a short photoperiod. Gen Comp Endocrinol.2004 Aug;138(1):70-7.
    3. Shen ST, Lu LM, Chen JR, Chien JT, Yu JY. Molecular cloning of proopiomelanocortin (POMC) cDNA from mud turtle, Pelodiscus sinensis. Gen Comp Endocrinol.2003 Apr;131(2):192-201.
    4. Lee M, Kim A, Chua SC, Jr., Obici S, Wardlaw SL. Transgenic MSH overexpression attenuates the metabolic effects of a high-fat diet. Am J Physiol Endocrinol Metab.2007 Jul;293(1):E121-31.
    5. Tung YC, Piper SJ, Yeung D, O'Rahilly S, Coll AP. A comparative study of the central effects of specific proopiomelancortin (POMC)-derived melanocortin peptides on food intake and body weight in pomc null mice. Endocrinology.2006 Dec;147(12):5940-7.
    6. Yaswen L, Diehl N, Brennan MB, Hochgeschwender U. Obesity in the mouse model of pro-opiomelanocortin deficiency responds to peripheral melanocortin. Nat Med.1999 Sep;5(9):1066-70.
    7. Pierroz DD, Ziotopoulou M, Ungsunan L, Moschos S, Flier JS, Mantzoros CS. Effects of acute and chronic administration of the melanocortin agonist MTII in mice with diet-induced obesity. Diabetes.2002 May;51(5):1337-45.
    8. Challis BG. Coll AP, Yeo GS, Pinnock SB, Dickson SL, Thresher RR, Dixon J, Zahn D, Rochford JJ, White A, Oliver RL. Millington G, Aparicio SA. Colledge WH. Russ AP, Carlton MB, O'Rahilly S. Mice lacking pro-opiomelanocortin are sensitive to high-fat feeding but respond normally to the acute anorectic effects of peptide-YY(3-36). Proc Natl Acad Sci U S A.2004 Mar 30;101(13):4695-700.
    9. Goke R, Larsen PJ, Mikkelsen JD, Sheikh SP. Distribution of GLP-1 binding sites in the rat brain:evidence that exendin-4 is a ligand of brain GLP-1 binding sites. Eur J Neurosci.1995 Nov 1;7(11):2294-300.
    10. Ahima RS, Flier JS. Leptin. Annu Rev Physiol.2000;62:413-37.
    11. Belgardt BF, Husch A, Rother E, Ernst MB, Wunderlich FT, Hampel B, Klockener T, Alessi D, Kloppenburg P, Bruning JC. PDK1 deficiency in POMC-expressing cells reveals FOXO 1-dependent and-independent pathways in control of energy homeostasis and stress response. Cell Metab.2008 Apr;7(4):291-301.
    12. Kitamura T, Feng Y, Kitamura YI, Chua SC, Jr., Xu AW, Barsh GS, Rossetti L, Accili D. Forkhead protein FoxO1 mediates Agrp-dependent effects of leptin on food intake. Nat Med.2006 May;12(5):534-40.
    13. Larsen PJ, Tang-Christensen M, Jessop DS. Central administration of glucagon-like peptide-1 activates hypothalamic neuroendocrine neurons in the rat. Endocrinology.1997 Oct;138(10):4445-55.
    14. Pocai A, Lam TK, Gutierrez-Juarez R, Obici S, Schwartz GJ, Bryan J, Aguilar-Bryan L, Rossetti L. Hypothalamic K(ATP) channels control hepatic glucose production. Nature.2005 Apr 21;434(7036):1026-31.
    15. Ibrahim N, Bosch MA, Smart JL, Qiu J, Rubinstein M, Ronnekleiv OK, Low MJ, Kelly MJ. Hypothalamic proopiomelanocortin neurons are glucose responsive and express K(ATP) channels. Endocrinology.2003 Apr;144(4):1331-40.
    16. Wang R, Liu X, Hentges ST, Dunn-Meynell AA, Levin BE, Wang W, Routh VH. The regulation of glucose-excited neurons in the hypothalamic arcuate nucleus by glucose and feeding-relevant peptides. Diabetes.2004 Aug;53(8):1959-65.
    17. Parton LE, Ye CP, Coppari R, Enriori PJ, Choi B, Zhang CY, Xu C, Vianna CR, Balthasar N, Lee CE, Elmquist JK, Cowley MA, Lowell BB. Glucose sensing by POMC neurons regulates glucose homeostasis and is impaired in obesity. Nature. 2007 Sep 13;449(7159):228-32.
    18.黄旭.Mithramycin A对大肠癌细胞株骨桥蛋白OPN、转录因子Sp1表达影响的实验研究:[硕士学位论文].福州:福建医科大学,2008.
    19.庞永涛.重度创伤骨折术后IL-2、IL-6动态变化及相关性研究:[硕士学位论 文].济南:山东大学,2004.
    20.李小军.PPAR γ、VEGF、VEGFC在人胃癌的表达以及罗格列酮对胃癌细胞生长、新生血管形成和淋巴管形成影响及其机制:[博士学位论文].成都:四川大学,2007.
    21. Gonzalez MC, Abreu P, Barroso-Chinea P, Cruz-Muros I, Gonzalez-Hernandez T. Effect of intracerebroventricular injection of lipopolysaccharide on the tuberoinfundibular dopaminergic system of the rat. Neuroscience.2004;127(1):251-9.
    22. Xia Y, Krukoff TL. Differential neuronal activation in the hypothalamic paraventricular nucleus and autonomic/neuroendocrine responses to I.C.V. endotoxin. Neuroscience.2003; 121 (1):219-31.
    23. Hodgson DM, Yirmiya R, Taylor AN. Intracerebroventricular interleukin-1beta impairs clearance of tumor cells from the lungs:role of brain prostaglandins. J Neuroimmunol.2001 Sep 3;119(1):57-63.
    24. Wallenius K, Wallenius V, Sunter D, Dickson SL, Jansson JO. Intracerebroventricular interleukin-6 treatment decreases body fat in rats. Biochem Biophys Res Commun.2002 Apr 26;293(1):560-5.
    25. Sunter D, Hewson AK, Dickson SL. Intracerebroventricular injection of apelin-13 reduces food intake in the rat. Neurosci Lett.2003 Dec 15;353(1):1-4.
    26. Cone RD. The Central Melanocortin System and Energy Homeostasis. Trends Endocrinol Metab.1999 Aug;10(6):211-6.
    27. Zhou L, Sutton GM, Rochford JJ, Semple RK, Lam DD, Oksanen LJ, Thornton-Jones ZD, Clifton PG, Yueh CY, Evans ML, McCrimmon RJ, Elmquist JK, Butler AA, Heisler LK. Serotonin 2C receptor agonists improve type 2 diabetes via melanocortin-4 receptor signaling pathways. Cell Metab.2007 Nov;6(5):398-405.
    28. Nogueiras R, Wiedmer P, Perez-Tilve D, Veyrat-Durebex C, Keogh JM, Sutton GM, Pfluger PT, Castaneda TR, Neschen S, Hofmann SM, Howles PN, Morgan DA, Benoit SC, Szanto I, Schrott B, Schurmann A, Joost HG, Hammond C, Hui DY, Woods SC, Rahmouni K, Butler AA, Farooqi IS, O'Rahilly S, Rohner-Jeanrenaud F, Tschop MH. The central melanocortin system directly controls peripheral lipid metabolism. J Clin Invest.2007 Nov;117(11):3475-88.
    29. Garza JC, Kim CS, Liu J, Zhang W, Lu XY. Adeno-associated virus-mediated knockdown of melanocortin-4 receptor in the paraventricular nucleus of the hypothalamus promotes high-fat diet-induced hyperphagia and obesity. J Endocrinol. 2008 Jun;197(3):471-82.
    30. Balthasar N, Dalgaard LT, Lee CE, Yu J, Funahashi H, Williams T, Ferreira M, Tang V, McGovern RA, Kenny CD, Christiansen LM, Edelstein E, Choi B, Boss O, Aschkenasi C, Zhang CY, Mountjoy K, Kishi T, Elmquist JK, Lowell BB. Divergence of melanocortin pathways in the control of food intake and energy expenditure. Cell. 2005 Nov 4;123(3):493-505.
    31. Lu XY, Barsh GS, Akil H, Watson SJ. Interaction between alpha-melanocyte-stimulating hormone and corticotropin-releasing hormone in the regulation of feeding and hypothalamo-pituitary-adrenal responses. J Neurosci.2003 Aug 27;23(21):7863-72.
    32. Marsh DJ, Hollopeter G, Huszar D, Laufer R, Yagaloff KA, Fisher SL, Burn P, Palmiter RD. Response of melanocortin-4 receptor-deficient mice to anorectic and orexigenic peptides. Nat Genet.1999 Jan;21(1):119-22.
    33. Kublaoui BM, Holder JL, Jr., Gemelli T, Zinn AR. Siml haploinsufficiency impairs melanocortin-mediated anorexia and activation of paraventricular nucleus neurons. Mol Endocrinol.2006 Oct;20(10):2483-92.
    34. Sabatier N, Caquineau C, Dayanithi G, Bull P, Douglas AJ, Guan XM, Jiang M, Van der Ploeg L, Leng G. Alpha-melanocyte-stimulating hormone stimulates oxytocin release from the dendrites of hypothalamic neurons while inhibiting oxytocin release from their terminals in the neurohypophysis. J Neurosci.2003 Nov 12;23(32):10351-8.
    35. Oh IS, Shimizu H, Satoh T, Okada S, Adachi S, Inoue K, Eguchi H, Yamamoto M, Imaki T, Hashimoto K, Tsuchiya T, Monden T, Horiguchi K, Yamada M, Mori M. Identification of nesfatin-1 as a satiety molecule in the hypothalamus. Nature.2006 Oct 12;443(7112):709-12.
    36. Duan W, Guo Z, Jiang H, Ware M, Mattson MP. Reversal of behavioral and metabolic abnormalities, and insulin resistance syndrome, by dietary restriction in mice deficient in brain-derived neurotrophic factor. Endocrinology.2003 Jun;144(6):2446-53.
    37. Yeo GS, Connie Hung CC, Rochford J, Keogh J, Gray J, Sivaramakrishnan S, O'Rahilly S, Farooqi IS. A de novo mutation affecting human TrkB associated with severe obesity and developmental delay. Nat Neurosci.2004 Nov;7(11):1187-9.
    38. Grill HJ, Ginsberg AB, Seeley RJ, Kaplan JM. Brainstem application of melanocortin receptor ligands produces long-lasting effects on feeding and body weight. J Neurosci.1998 Dec 1;18(23):10128-35.
    39. Fan W, Ellacott KL, Halatchev IG, Takahashi K, Yu P, Cone RD. Cholecystokinin-mediated suppression of feeding involves the brainstem melanocortin system. Nat Neurosci.2004 Apr;7(4):335-6.
    40. Bariohay B, Roux J, Tardivel C, Trouslard J, Jean A, Lebrun B. Brain-derived neurotrophic factor/tropomyosin-related kinase receptor type B signaling is a downstream effector of the brainstem melanocortin system in food intake control. Endocrinology.2009 Jun;150(6):2646-53.
    41. Ste Marie L, Miura GI, Marsh DJ, Yagaloff K, Palmiter RD. A metabolic defect promotes obesity in mice lacking melanocortin-4 receptors. Proc Natl Acad Sci U S A. 2000 Oct 24;97(22):12339-44.
    42. Butler AA, Marks DL. Fan W, Kuhn CM, Bartolome M, Cone RD. Melanocortin-4 receptor is required for acute homeostatic responses to increased dietary fat. Nat Neurosci.2001 Jun;4(6):605-11.
    43. Farooqi IS. Keogh JM, Yeo GS, Lank EJ. Cheetham T, O'Rahilly S. Clinical spectrum of obesity and mutations in the melanocortin 4 receptor gene. N Engl J Med. 2003 Mar 20;348(12):1085-95.
    44. Krakoff J, Ma L, Kobes S, Knowler WC, Hanson RL, Bogardus C, Baier LJ. Lower metabolic rate in individuals heterozygous for either a frameshift or a functional missense MC4R variant. Diabetes.2008 Dec;57(12):3267-72.
    45. Williams DL, Bowers RR, Bartness TJ, Kaplan JM, Grill HJ. Brainstem melanocortin 3/4 receptor stimulation increases uncoupling protein gene expression in brown fat. Endocrinology.2003 Nov;144(11):4692-7.
    46. Elmquist JK. Hypothalamic pathways underlying the endocrine, autonomic, and behavioral effects of leptin. Physiol Behav.2001 Nov-Dec;74(4-5):703-8.
    47. Nicholson JR, Peter JC, Lecourt AC, Barde YA, Hofbauer KG. Melanocortin-4 receptor activation stimulates hypothalamic brain-derived neurotrophic factor release to regulate food intake, body temperature and cardiovascular function. J Neuroendocrinol.2007 Dec;19(12):974-82.
    48. Kishi T, Aschkenasi CJ, Lee CE, Mountjoy KG, Saper CB, Elmquist JK. Expression of melanocortin 4 receptor mRNA in the central nervous system of the rat. J Comp Neurol.2003 Mar 10;457(3):213-35.
    49. Skibicka KP, Grill HJ. Energetic responses are triggered by caudal brainstem melanocortin receptor stimulation and mediated by local sympathetic effector circuits. Endocrinology.2008 Jul;149(7):3605-16.
    50. Zhang ZH, Felder RB. Melanocortin receptors mediate the excitatory effects of blood-borne murine leptin on hypothalamic paraventricular neurons in rat. Am J Physiol Regul Integr Comp Physiol.2004 Feb;286(2):R303-10.
    51. Voss-Andreae A, Murphy JG, Ellacott KL, Stuart RC, Nillni EA, Cone RD, Fan W. Role of the central melanocortin circuitry in adaptive thermogenesis of brown adipose tissue. Endocrinology.2007 Apr; 148(4):1550-60.
    52. Song CK, Vaughan CH, Keen-Rhinehart E, Harris RB, Richard D, Bartness TJ. Melanocortin-4 receptor mRNA expressed in sympathetic outflow neurons to brown adipose tissue:neuroanatomical and functional evidence. Am J Physiol Regul Integr Comp Physiol.2008 Aug;295(2):R417-28.
    53. Bartolomucci A, Possenti R, Levi A, Pavone F, Moles A. The role of the vgf gene and VGF-derived peptides in nutrition and metabolism. Genes Nutr.2007 Nov;2(2):169-80.
    54. Legradi G, Lechan RM. Agouti-related protein containing nerve terminals innervate thyrotropin-releasing hormone neurons in the hypothalamic paraventricular nucleus. Endocrinology.1999 Aug;140(8):3643-52.
    55. Sawchenko PE, Swanson LW. Immunohistochemical identification of neurons in the paraventricular nucleus of the hypothalamus that project to the medulla or to the spinal cord in the rat. J Comp Neurol.1982 Mar 1;205(3):260-72.
    56. Hahm S, Fekete C, Mizuno TM, Windsor J, Yan H, Boozer CN, Lee C, Elmquist JK, Lechan RM, Mobbs CV, Salton SR. VGF is required for obesity induced by diet, gold thioglucose treatment, and agouti and is differentially regulated in pro-opiomelanocortin-and neuropeptide Y-containing arcuate neurons in response to fasting. J Neurosci.2002 Aug 15;22(16):6929-38.
    57. Coll AP. Effects of pro-opiomelanocortin (POMC) on food intake and body weight:mechanisms and therapeutic potential? Clin Sci (Lond).2007 Aug; 113(4):171-82.
    58. Kumar KG, Sutton GM, Dong JZ, Roubert P, Plas P, Halem HA, Culler MD, Yang H, Dixit VD, Butler AA. Analysis of the therapeutic functions of novel melanocortin receptor agonists in MC3R-and MC4R-deficient C57BL/6J mice. Peptides.2009 Oct;30(10):1892-900.
    59. Sutton GM, Trevaskis JL, Hulver MW, McMillan RP, Markward NJ, Babin MJ, Meyer EA, Butler AA. Diet-genotype interactions in the development of the obese, insulin-resistant phenotype of C57BL/6J mice lacking melanocortin-3 or-4 receptors. Endocrinology.2006 May; 147(5):2183-96.
    60. Garruti G, Cotecchia S, Giampetruzzi F. Giorgino F. Giorgino R. Neuroendocrine deregulation of food intake, adipose tissue and the gastrointestinal system in obesity and metabolic syndrome. J Gastrointestin Liver Dis.2008 Jun; 17(2):193-8.
    61. Leoni G, Patel HB, Sampaio AL, Gavins FN, Murray JF, Grieco P, Getting SJ, Perretti M. Inflamed phenotype of the mesenteric microcirculation of melanocortin type 3 receptor-null mice after ischemia-reperfusion. FASEB J.2008 Dec;22(12):4228-38.
    62. Robbins LS, Nadeau JH, Johnson KR, Kelly MA, Roselli-Rehfuss L, Baack E, Mountjoy KG, Cone RD. Pigmentation phenotypes of variant extension locus alleles result from point mutations that alter MSH receptor function. Cell.1993 Mar 26;72(6):827-34.
    63. Chida D, Nakagawa S, Nagai S, Sagara H, Katsumata H, Imaki T, Suzuki H, Mitani F, Ogishima T, Shimizu C, Kotaki H, Kakuta S, Sudo K, Koike T, Kubo M, Iwakura Y. Melanocortin 2 receptor is required for adrenal gland development, steroidogenesis, and neonatal gluconeogenesis. Proc Natl Acad Sci U S A.2007 Nov 13;104(46):18205-10.
    64. Chen W, Kelly MA, Opitz-Araya X, Thomas RE, Low MJ, Cone RD. Exocrine gland dysfunction in MC5-R-deficient mice:evidence for coordinated regulation of exocrine gland function by melanocortin peptides. Cell.1997 Dec 12;91(6):789-98.
    65. Chida D, Sato T, Sato Y, Kubo M, Yoda T, Suzuki H, Iwakura Y. Characterization of mice deficient in melanocortin 2 receptor on a B6/Balbc mix background. Mol Cell Endocrinol.2009 Mar 5;300(1-2):32-6.
    66. Clark AJ, Metherell LA. Mechanisms of disease:the adrenocorticotropin receptor and disease. Nat Clin Pract Endocrinol Metab.2006 May;2(5):282-90.
    67. Sturm RA. Skin colour and skin cancer-MC1R, the genetic link. Melanoma Res. 2002 Oct;12(5):405-16.
    68. Chagnon YC, Chen WJ, Perusse L, Chagnon M, Nadeau A, Wilkison WO, Bouchard C. Linkage and association studies between the melanocortin receptors 4 and 5 genes and obesity-related phenotypes in the Quebec Family Study. Mol Med. 1997 Oct;3(10):663-73.
    69. An JJ, Rhee Y, Kim SH, Kim DM, Han DH, Hwang JH, Jin YJ, Cha BS, Baik JH, Lee WT, Lim SK. Peripheral effect of alpha-melanocyte-stimulating hormone on fatty acid oxidation in skeletal muscle. J Biol Chem.2007 Feb 2;282(5):2862-70.
    70. Bray GA, Champagne CM. Obesity and the Metabolic Syndrome:implications for dietetics practitioners. J Am Diet Assoc.2004 Jan;104(1):86-9.
    71. Mountjoy KG, Wong J. Obesity, diabetes and functions for proopiomelanocortin-derived peptides. Mol Cell Endocrinol.1997 Apr 4;128(1-2):171-7.
    72. Eipper BA, Mains RE. Structure and biosynthesis of pro-adrenocorticotropin/endorphin and related peptides. Endocr Rev.1980 Winter; 1(1):1-27.
    73. Sundstrom G, Dreborg S, Larhammar D. Concomitant duplications of opioid peptide and receptor genes before the origin of jawed vertebrates. PLoS One. 2010;5(5):e10512.
    74. Pritchard LE, White A. Neuropeptide processing and its impact on melanocortin pathways. Endocrinology.2007 Sep;148(9):4201-7.
    75. DeBold CR, Menefee JK, Nicholson WE, Orth DN. Proopiomelanocortin gene is expressed in many normal human tissues and in tumors not associated with ectopic adrenocorticotropin syndrome. Mol Endocrinol.1988 Sep;2(9):862-70.
    76. Mountjoy KG, Wu CS, Cornish J, Callon KE. alpha-MSH and desacetyl-alpha-MSH signaling through melanocortin receptors. Ann N Y Acad Sci. 2003 Jun;994:58-65.
    77. Tsujii S, Bray GA. Acetylation alters the feeding response to MSH and beta-endorphin. Brain Res Bull.1989 Sep;23(3):165-9.
    78. Rius RA, Chikuma T, Loh YP. Prenatal processing of pro-opiomelanocortin in the brain and pituitary of mouse embryos. Brain Res Dev Brain Res.1991 Jun 21;60(2):179-85.
    79. Parker CR. Jr.. Barnea A. Tilders FJ, Porter JC. Characterization of immunoreactive alpha-melanocyte stimulating hormone (alpha-MSHi) in human brain tissue. Brain Res Bull.1981 Mar;6(3):275-80.
    80. Guo L. Munzberg H, Stuart RC, Nillni EA. Bjorbaek C. N-acetylation of hypothalamic alpha-melanocyte-stimulating hormone and regulation by leptin. Proc Natl Acad Sci U S A.2004 Aug 10;101 (32):11797-802.
    81. Dores RM, Jain M, Akil H. Characterization of the forms of beta-endorphin and alpha-MSH in the caudal medulla of the rat and guinea pig. Brain Res.1986 Jul 9;377(2):251-60.
    82. Van der Salm AL, Pavlidis M, Flik G, Wendelaar Bonga SE. Differential release of alpha-melanophore stimulating hormone isoforms by the pituitary gland of red porgy, Pagrus pagrus. Gen Comp Endocrinol.2004 Jan 1;135(1):126-33.
    83. Fox DL, Vella KR, Good DJ. Energy balance pathways converging on the Nhlh2 transcription factor. Front Biosci.2007;12:3983-93.
    84. Wei S, Feng Y, Che FY, Pan H, Mzhavia N, Devi LA, McKinzie AA, Levin N, Richards WG, Fricker LD. Obesity and diabetes in transgenic mice expressing proSAAS. J Endocrinol.2004 Mar;180(3):357-68.
    85. Poggioli R, Vergoni AV, Bertolini A. ACTH-(1-24) and alpha-MSH antagonize feeding behavior stimulated by kappa opiate agonists. Peptides.1986 Sep-Oct;7(5):843-8.
    86. Wallingford N, Perroud B, Gao Q, Coppola A, Gyengesi E, Liu ZW, Gao XB, Diament A, Haus KA, Shariat-Madar Z, Mahdi F, Wardlaw SL, Schmaier AH, Warden CH, Diano S. Prolylcarboxypeptidase regulates food intake by inactivating alpha-MSH in rodents. J Clin Invest.2009 Aug;119(8):2291-303.
    87. Al-Barazanji KA, Miller JE, Rice SQ, Arch JR, Chambers JK. C-terminal fragments of ACTH stimulate feeding in fasted rats. Horm Metab Res.2001 Aug;33(8):480-5.
    88. Hochgeschwender U, Costa JL, Reed P, Bui S, Brennan MB. Altered glucose homeostasis in proopiomelanocortin-null mouse mutants lacking central and peripheral melanocortin. Endocrinology.2003 Dec; 144(12):5194-202.
    89. Krude H, Gruters A. Implications of proopiomelanocortin (POMC) mutations in humans:the POMC deficiency syndrome. Trends Endocrinol Metab.2000 Jan-Feb;11(1):15-22.
    90. Dubern B, Lubrano-Berthelier C, Mencarelli M, Ersoy B, Frelut ML, Bougle D, Costes B, Simon C, Tounian P, Vaisse C, Clement K. Mutational analysis of the pro-opiomelanocortin gene in French obese children led to the identification of a novel deleterious heterozygous mutation located in the alpha-melanocyte stimulating hormone domain. Pediatr Res.2008 Feb;63(2):211-6.
    91. Challis BG, Pritchard LE, Creemers JW, Delplanque J, Keogh JM, Luan J, Wareham NJ, Yeo GS, Bhattacharyya S, Froguel P, White A, Farooqi IS, O'Rahilly S. A missense mutation disrupting a dibasic prohormone processing site in pro-opiomelanocortin (POMC) increases susceptibility to early-onset obesity through a novel molecular mechanism. Hum Mol Genet.2002 Aug 15; 11 (17):1997-2004.
    92. Lloyd DJ, Bohan S, Gekakis N. Obesity, hyperphagia and increased metabolic efficiency in Pc1 mutant mice. Hum Mol Genet.2006 Jun 1; 15(11):1884-93.
    93. Jackson RS, Creemers JW, Ohagi S, Raffin-Sanson ML, Sanders L, Montague CT, Hutton JC, O'Rahilly S. Obesity and impaired prohormone processing associated with mutations in the human prohormone convertase 1 gene. Nat Genet.1997 Jul;16(3):303-6.
    94. Vella KR, Burnside AS, Brennan KM, Good DJ. Expression of the hypothalamic transcription factor Nhlh2 is dependent on energy availability. J Neuroendocrinol. 2007 Jul;19(7):499-510.
    95. Naggert JK, Fricker LD, Varlamov O, Nishina PM, Rouille Y, Steiner DF, Carroll RJ, Paigen BJ, Leiter EH. Hyperproinsulinaemia in obese fat/fat mice associated with a carboxypeptidase E mutation which reduces enzyme activity. Nat Genet.1995 Jun; 10(2):135-42.
    96. Shen FS, Aguilera G, Loh YP. Altered biosynthesis and secretion of pro-opiomelanocortin in the intermediate and anterior pituitary of carboxypeptidase E-deficient, Cpe(fat)/Cpe(fat)mice. Neuropeptides.1999 Aug;33(4):276-80.
    97. Chhajlani V. Wikberg JE. Molecular cloning and expression of the human melanocyte stimulating hormone receptor cDNA. FEBS Lett.1992 Sep 14;309(3):417-20.
    98. Lu D, Willard D, Patel IR, Kadwell S, Overton L, Kost T, Luther M, Chen W, Woychik RP, Wilkison WO, et al. Agouti protein is an antagonist of the melanocyte-stimulating-hormone receptor. Nature.1994 Oct 27;371(6500):799-802.
    99. Balthasar N. Genetic dissection of neuronal pathways controlling energy homeostasis. Obesity (Silver Spring).2006 Aug;14 Suppl 5:222S-7S.
    100. Vaisse C, Clement K, Durand E, Hercberg S, Guy-Grand B, Froguel P. Melanocortin-4 receptor mutations are a frequent and heterogeneous cause of morbid obesity. J Clin Invest.2000 Jul;106(2):253-62.
    101. Ahn JD, Dubern B, Lubrano-Berthelier C, Clement K, Karsenty G. Cart overexpression is the only identifiable cause of high bone mass in melanocortin 4 receptor deficiency. Endocrinology.2006 Jul;147(7):3196-202.
    102. Weide K, Christ N, Moar KM, Arens J, Hinney A, Mercer JG, Eiden S, Schmidt I. Hyperphagia, not hypometabolism, causes early onset obesity in melanocortin-4 receptor knockout mice. Physiol Genomics.2003 Mar 18;13(1):47-56.
    103. Trevaskis JL, Meyer EA, Galgani JE, Butler AA. Counterintuitive effects of double-heterozygous null melanocortin-4 receptor and leptin genes on diet-induced obesity and insulin resistance in C57BL/6J mice. Endocrinology.2008 Jan; 149(1):174-84.
    104. Yeo GS, Lank EJ, Farooqi IS, Keogh J, Challis BG, O'Rahilly S. Mutations in the human melanocortin-4 receptor gene associated with severe familial obesity disrupts receptor function through multiple molecular mechanisms. Hum Mol Genet. 2003 Mar 1;12(5):561-74.
    105. Hinney A, Bettecken T, Tarnow P, Brumm H, Reichwald K, Lichtner P, Scherag A, Nguyen TT, Schlumberger P, Rief W, Vollmert C, Illig T, Wichmann HE, Schafer H, Platzer M, Biebermann H, Meitinger T, Hebebrand J. Prevalence, spectrum, and functional characterization of melanocortin-4 receptor gene mutations in a representative population-based sample and obese adults from Germany. J Clin Endocrinol Metab.2006 May;91(5):1761-9.
    106. Ho G, MacKenzie RG. Functional characterization of mutations in melanocortin-4 receptor associated with human obesity. J Biol Chem.1999 Dec 10;274(50):35816-22.
    107. Larsen LH, Echwald SM, Sorensen TI, Andersen T, Wulff BS, Pedersen O. Prevalence of mutations and functional analyses of melanocortin 4 receptor variants identified among 750 men with juvenile-onset obesity. J Clin Endocrinol Metab.2005 Jan;90(1):219-24.
    108. Lubrano-Berthelier C, Durand E, Dubern B, Shapiro A, Dazin P, Weill J, Ferron C, Froguel P, Vaisse C. Intracellular retention is a common characteristic of childhood obesity-associated MC4R mutations. Hum Mol Genet.2003 Jan 15;12(2):145-53.
    109. Nijenhuis WA, Garner KM, van Rozen RJ, Adan RA. Poor cell surface expression of human melanocortin-4 receptor mutations associated with obesity. J Biol Chem.2003 Jun 20;278(25):22939-45.
    110.Tao YX, Segaloff DL. Functional characterization of melanocortin-4 receptor mutations associated with childhood obesity. Endocrinology.2003 Oct;144(10):4544-51.
    111.Valli-Jaakola K, Palvimo JJ, Lipsanen-Nyman M, Salomaa V, Peltonen L, Kontula K, Schalin-Jantti C. A two-base deletion-439delGC in the melanocortin-4 receptor promoter associated with early-onset obesity. Horm Res.2006;66(2):61-9.
    112. Wang CL, Liang L, Wang HJ, Fu JF, Hebebrand J, Hinney A. Several mutations in the melanocortin 4 receptor gene are associated with obesity in Chinese children and adolescents. J Endocrinol Invest.2006 Nov;29(10):894-8.
    113.Valli-Jaakola K, Lipsanen-Nyman M, Oksanen L, Hollenberg AN, Kontula K, Bjorbaek C, Schalin-Jantti C. Identification and characterization of melanocortin-4 receptor gene mutations in morbidly obese finnish children and adults. J Clin Endocrinol Metab.2004 Feb;89(2):940-5.
    114.Miraglia Del Giudice E, Cirillo G, Nigro V. Santoro N, D'Urso L. Raimondo P, Cozzolino D, Scafato D, Perrone L. Low frequency of melanocortin-4 receptor (MC4R) mutations in a Mediterranean population with early-onset obesity. Int J Obes Relat Metab Disord.2002 May;26(5):647-51.
    115.Hinney A, Hohmann S, Geller F, Vogel C, Hess C, Wermter AK, Brokamp B, Goldschmidt H, Siegfried W, Remschmidt H, Schafer H, Gudermann T, Hebebrand J. Melanocortin-4 receptor gene:case-control study and transmission disequilibrium test confirm that functionally relevant mutations are compatible with a major gene effect for extreme obesity. J Clin Endocrinol Metab.2003 Sep;88(9):4258-67.
    116.Ohshiro Y, Sanke T, Ueda K, Shimajiri Y, Nakagawa T, Tsunoda K, Nishi M, Sasaki H, Takasu N, Nanjo K. Molecular scanning for mutations in the melanocortin-4 receptor gene in obese/diabetic Japanese. Ann Hum Genet.1999 Nov;63(Pt 6):483-7.
    117.Rong R, Tao YX, Cheung BM, Xu A, Cheung GC, Lam KS. Identification and functional characterization of three novel human melanocortin-4 receptor gene variants in an obese Chinese population. Clin Endocrinol (Oxf).2006 Aug;65(2):198-205.
    118.Lee YS, Poh LK, Kek BL, Loke KY. Novel melanocortin 4 receptor gene mutations in severely obese children. Clin Endocrinol (Oxf).2008 Apr;68(4):529-35.
    119.Xiang Z, Litherland SA, Sorensen NB, Proneth B, Wood MS, Shaw AM, Millard WJ, Haskell-Luevano C. Pharmacological characterization of 40 human melanocortin-4 receptor polymorphisms with the endogenous proopiomelanocortin-derived agonists and the agouti-related protein (AGRP) antagonist. Biochemistry.2006 Jun 13;45(23):7277-88.
    120. Biebermann H, Castaneda TR, van Landeghem F, von Deimling A, Escher F, Brabant G, Hebebrand J, Hinney A, Tschop MH, Gruters A, Krude H. A role for beta-melanocyte-stimulating hormone in human body-weight regulation. Cell Metab. 2006 Feb;3(2):141-6.
    121. Gu W, Tu Z, Kleyn PW, Kissebah A, Duprat L, Lee J, Chin W, Maruti S, Deng N, Fisher SL, Franco LS, Burn P, Yagaloff KA, Nathan J, Heymsfield S, Albu J, Pi-Sunyer FX, Allison DB. Identification and functional analysis of novel human melanocortin-4 receptor variants. Diabetes.1999 Mar;48(3):635-9.
    122. Stutzmann F, Vatin V, Cauchi S, Morandi A, Jouret B, Landt O, Tounian P, Levy-Marchal C, Buzzetti R, Pinelli L, Balkau B, Horber F, Bougneres P, Froguel P, Meyre D. Non-synonymous polymorphisms in melanocortin-4 receptor protect against obesity: the two facets of a Janus obesity gene. Hum Mol Genet.2007 Aug 1;16(15):1837-44.
    123. Peter JC, Bekel A, Lecourt AC, Zipfel G, Eftekhari P, Nesslinger M, Breidert M, Muller S, Kessler L, Hofbauer KG. Anti-melanocortin-4 receptor autoantibodies in obesity. J Clin Endocrinol Metab.2009 Mar;94(3):793-800.
    124. Roselli-Rehfuss L, Mountjoy KG, Robbins LS, Mortrud MT, Low MJ, Tatro JB, Entwistle ML, Simerly RB, Cone RD. Identification of a receptor for gamma melanotropin and other proopiomelanocortin peptides in the hypothalamus and limbic system. Proc Natl Acad Sci U S A.1993 Oct 1;90(19):8856-60.
    125. Chen AS, Marsh DJ, Trumbauer ME, Frazier EG, Guan XM, Yu H, Rosenblum CI, Vongs A, Feng Y, Cao L, Metzger JM, Strack AM, Camacho RE, Mellin TN, Nunes CN, Min W, Fisher J, Gopal-Truter S, MacIntyre DE, Chen HY, Van der Ploeg LH. Inactivation of the mouse melanocortin-3 receptor results in increased fat mass and reduced lean body mass. Nat Genet.2000 Sep;26(1):97-102.
    126. Butler AA, Kesterson RA, Khong K, Cullen MJ, Pelleymounter MA, Dekoning J, Baetscher M, Cone RD. A unique metabolic syndrome causes obesity in the melanocortin-3 receptor-deficient mouse. Endocrinology.2000 Sep;141(9):3518-21.
    127. Mencarelli M, Walker GE, Maestrini S, Alberti L, Verti B, Brunani A, Petroni ML, Tagliaferri M, Liuzzi A, Di Blasio AM. Sporadic mutations in melanocortin receptor 3 in morbid obese individuals. Eur J Hum Genet.2008 May;16(5):581-6.
    128. Lee YS, Poh LK, Kek BL, Loke KY. The role of melanocortin 3 receptor gene in childhood obesity. Diabetes.2007 Oct;56(10):2622-30.
    129. Wong J, Love DR, Kyle C, Daniels A, White M, Stewart AW, Schnell AH. Elston RC, Holdaway IM, Mountjoy KG. Melanocortin-3 receptor gene variants in a Maori kindred with obesity and early onset type 2 diabetes. Diabetes Res Clin Pract. 2002 Oct;58(1):61-71.
    130. Wong J, Nock NL. Xu Z, Kyle C, Daniels A, White M, Yue DK, Elston RC, Mountjoy KG. A polymorphism (D20S32e) close to the human melanocortin receptor 3 is associated with insulin resistance but not the metabolic syndrome. Diabetes Res Clin Pract.2008 May;80(2):203-7.
    131. Boucher N, Lanouette CM, Larose M, Perusse L, Bouchard C, Chagnon YC. A+2138InsCAGACC polymorphism of the melanocortin receptor 3 gene is associated in human with fat level and partitioning in interaction with body corpulence. Mol Med.2002 Mar;8(3):158-65.
    132. Trevaskis JL, Butler AA. Double leptin and melanocortin-4 receptor gene mutations have an additive effect on fat mass and are associated with reduced effects of leptin on weight loss and food intake. Endocrinology.2005 Oct;146(10):4257-65.
    133. Sutton GM, Perez-Tilve D, Nogueiras R, Fang J, Kim JK, Cone RD, Gimble JM, Tschop MH, Butler AA. The melanocortin-3 receptor is required for entrainment to meal intake. J Neurosci.2008 Nov 26;28(48):12946-55.
    134. Gantz I, Konda Y, Tashiro T, Shimoto Y, Miwa H, Munzert G, Watson SJ, DelValle J, Yamada T. Molecular cloning of a novel melanocortin receptor. J Biol Chem.1993 Apr 15;268(11):8246-50.
    135. Cowley MA, Smart JL, Rubinstein M, Cerdan MG, Diano S, Horvath TL, Cone RD, Low MJ. Leptin activates anorexigenic POMC neurons through a neural network in the arcuate nucleus. Nature.2001 May 24;411(6836):480-4.
    136. Butler AA. The melanocortin system and energy balance. Peptides.2006 Feb;27(2):281-90.
    137. Mistlberger RE. Circadian rhythms:perturbing a food-entrained clock. Curr Biol.2006 Nov 21; 16(22):R968-9.
    138. Verwey M, Khoja Z, Stewart J, Amir S. Differential regulation of the expression of Period2 protein in the limbic forebrain and dorsomedial hypothalamus by daily limited access to highly palatable food in food-deprived and free-fed rats. Neuroscience.2007 Jun 29;147(2):277-85.
    139. Canteras NS, Simerly RB, Swanson LW. Organization of projections from the ventromedial nucleus of the hypothalamus:a Phaseolus vulgaris-leucoagglutinin study in the rat. J Comp Neurol.1994 Oct 1;348(1):41-79.
    140. Yu EZ, Hallenbeck JM, Cai D, McCarron RM. Elevated arylalkylamine-N-acetyltransferase (AA-NAT) gene expression in medial habenular and suprachiasmatic nuclei of hibernating ground squirrels. Brain Res Mol Brain Res. 2002 Jun 15;102(1-2):9-17.
    141. Nilaweera KN, Archer ZA, Campbell G, Mayer CD, Balik A, Ross AW, Mercer JG, Ebling FJ, Morgan PJ, Barrett P. Photoperiod regulates genes encoding melanocortin 3 and serotonin receptors and secretogranins in the dorsomedial posterior arcuate of the Siberian hamster. J Neuroendocrinol.2009 Feb;21(2):123-31.
    142. Metherell LA, Chapple JP, Cooray S, David A, Becker C, Ruschendorf F, Naville D, Begeot M, Khoo B, Nurnberg P, Huebner A, Cheetham ME, Clark AJ. Mutations in MRAP, encoding a new interacting partner of the ACTH receptor, cause familial glucocorticoid deficiency type 2. Nat Genet.2005 Feb;37(2):166-70.
    143. Sebag JA, Hinkle PM. Regions of melanocortin 2 (MC2) receptor accessory protein necessary for dual topology and MC2 receptor trafficking and signaling. J Biol Chem.2009 Jan 2;284(1):610-8.
    144. Sebag JA, Hinkle PM. Melanocortin-2 receptor accessory protein MRAP forms antiparallel homodimers. Proc Natl Acad Sci U S A.2007 Dec 18;104(51):20244-9.
    145. Chan LF, Webb TR, Chung TT, Meimaridou E, Cooray SN, Guasti L, Chapple JP, Egertova M, Elphick MR, Cheetham ME, Metherell LA, Clark AJ. MRAP and MRAP2 are bidirectional regulators of the melanocortin receptor family. Proc Natl Acad Sci U S A.2009 Apr 14; 106(15):6146-51.
    146. Sebag JA, Hinkle PM. Opposite effects of the melanocortin-2 (MC2) receptor accessory protein MRAP on MC2 and MC5 receptor dimerization and trafficking. J Biol Chem.2009 Aug 21;284(34):22641-8.
    147. Xu A. Choi KL, Wang Y, Permana PA, Xu LY, Bogardus C, Cooper GJ. Identification of novel putative membrane proteins selectively expressed during adipose conversion of 3T3-L1 cells. Biochem Biophys Res Commun.2002 May 17;293(4):1161-7.
    148. Rumie H, Metherell LA, Clark AJ, Beauloye V, Maes M. Clinical and biological phenotype of a patient with familial glucocorticoid deficiency type 2 caused by a mutation of melanocortin 2 receptor accessory protein. Eur J Endocrinol. 2007 Oct;157(4):539-42.
    149. Johnstone LE, Fong TM, Leng G. Neuronal activation in the hypothalamus and brainstem during feeding in rats. Cell Metab.2006 Oct;4(4):313-21.
    150. Tschop MH, Castaneda TR, Woods SC. The brain is getting ready for dinner. Cell Metab.2006 Oct;4(4):257-8.
    151. Lam TK, Schwartz GJ, Rossetti L. Hypothalamic sensing of fatty acids. Nat Neurosci.2005 May;8(5):579-84.
    152. Poritsanos NJ, Wong D, Vrontakis ME, Mizuno TM. Regulation of hepatic PPARgamma2 and lipogenic gene expression by melanocortin. Biochem Biophys Res Commun.2008 Nov 14;376(2):384-8.
    153. Heisler LK, Jobst EE, Sutton GM, Zhou L, Borok E, Thornton-Jones Z, Liu HY, Zigman JM, Balthasar N, Kishi T, Lee CE, Aschkenasi CJ, Zhang CY, Yu J, Boss O, Mountjoy KG, Clifton PG, Lowell BB, Friedman JM, Horvath T, Butler AA, Elmquist JK, Cowley MA. Serotonin reciprocally regulates melanocortin neurons to modulate food intake. Neuron.2006 Jul 20;51(2):239-49.
    154. Fetissov SO, Hallman J, Oreland L, Af Klinteberg B, Grenback E, Hulting AL, Hokfelt T. Autoantibodies against alpha-MSH, ACTH, and LHRH in anorexia and bulimia nervosa patients. Proc Natl Acad Sci U S A.2002 Dec 24;99(26):17155-60.
    155. Fetissov SO, Harro J, Jaanisk M, Jarv A. Podar I, Allik J, Nilsson I, Sakthivel P, Lefvert AK, Hokfelt T. Autoantibodies against neuropeptides are associated with psychological traits in eating disorders. Proc Natl Acad Sci U S A.2005 Oct 11;102(41):14865-70.
    156. Fan W, Dinulescu DM, Butler AA, Zhou J, Marks DL, Cone RD. The central melanocortin system can directly regulate serum insulin levels. Endocrinology.2000 Sep;141(9):3072-9.
    157. Obici S, Feng Z, Tan J, Liu L, Karkanias G, Rossetti L. Central melanocortin receptors regulate insulin action. J Clin Invest.2001 Oct;108(7):1079-85.
    158. Aronne LJ. Modern medical management of obesity:the role of pharmaceutical intervention. J Am Diet Assoc.1998 Oct;98(10 Suppl 2):S23-6.
    159. Hoggard N, Hunter L, Duncan JS, Rayner DV. Regulation of adipose tissue leptin secretion by alpha-melanocyte-stimulating hormone and agouti-related protein: further evidence of an interaction between leptin and the melanocortin signalling system. J Mol Endocrinol.2004 Feb;32(l):145-53.
    160. Nimura M, Udagawa J, Hatta T, Hashimoto R, Otani H. Spatial and temporal patterns of expression of melanocortin type 2 and 5 receptors in the fetal mouse tissues and organs. Anat Embryol (Berl).2006 Mar;211(2):109-17.
    161. Doghman M, Delagrange P, Blondet A, Berthelon MC, Durand P, Naville D, Begeot M. Agouti-related protein antagonizes glucocorticoid production induced through melanocortin 4 receptor activation in bovine adrenal cells:a possible autocrine control. Endocrinology.2004 Feb;145(2):541-7.
    162. Marks DL, Hruby V, Brookhart G, Cone RD. The regulation of food intake by selective stimulation of the type 3 melanocortin receptor (MC3R). Peptides.2006 Feb;27(2):259-64.
    163. Sutton GM, Josephine Babin M, Gu X, Hruby VJ, Butler AA. A derivative of the melanocortin receptor antagonist SHU9119 (PG932) increases food intake when administered peripherally. Peptides.2008 Jan;29(1):104-11.
    164. Trivedi P, Jiang M, Tamvakopoulos CC, Shen X, Yu H, Mock S, Fenyk-Melody J, Van der Ploeg LH, Guan XM. Exploring the site of anorectic action of peripherally administered synthetic melanocortin peptide MT-II in rats. Brain Res. 2003 Jul 11;977(2):221-30.
    165. Iwen KA, Senyaman O, Schwartz A. Drenckhan M, Meier B. Hadaschik D, Klein J. Melanocortin crosstalk with adipose functions:ACTH directly induces insulin resistance, promotes a pro-inflammatory adipokine profile and stimulates UCP-1 in adipocytes. J Endocrinol.2008 Mar;196(3):465-72.
    166. Kawauchi H, Kawazoe I, Adachi Y, Buckley DI, Ramachandran J. Chemical and biological characterization of salmon melanocyte-stimulating hormones. Gen Comp Endocrinol.1984 Jan;53(1):37-48.
    167. Harikai N, Hashimoto A, Semma M, Ichikawa A. Characteristics of lipolysis in white adipose tissues of SHR/NDmc-cp rats, a model of metabolic syndrome. Metabolism.2007 Jun;56(6):847-55.
    168. Hoggard N, Rayner DV, Johnston SL, Speakman JR. Peripherally administered [Nle4,D-Phe7]-alpha-melanocyte stimulating hormone increases resting metabolic rate, while peripheral agouti-related protein has no effect, in wild type C57BL/6 and ob/ob mice. J Mol Endocrinol.2004 Dec;33(3):693-703.
    169. Broberger C, Johansen J, Johansson C, Schalling M, Hokfelt T. The neuropeptide Y/agouti gene-related protein (AGRP) brain circuitry in normal, anorectic, and monosodium glutamate-treated mice. Proc Natl Acad Sci U S A.1998 Dec 8;95(25):15043-8.
    170. Zheng H, Corkern MM, Crousillac SM, Patterson LM, Phifer CB, Berthoud HR. Neurochemical phenotype of hypothalamic neurons showing Fos expression 23 h after intracranial AgRP. Am J Physiol Regul Integr Comp Physiol.2002 Jun;282(6):R1773-81.
    171. Tolle V, Low MJ. In vivo evidence for inverse agonism of Agouti-related peptide in the central nervous system of proopiomelanocortin-deficient mice. Diabetes. 2008 Jan;57(1):86-94.
    172. Bagnol D, Lu XY, Kaelin CB, Day HE, Ollmann M, Gantz I, Akil H, Barsh GS, Watson SJ. Anatomy of an endogenous antagonist:relationship between Agouti-related protein and proopiomelanocortin in brain. J Neurosci.1999 Sep 15;19(18):RC26.
    173. Haskell-Luevano C, Monck EK. Agouti-related protein functions as an inverse agonist at a constitutively active brain melanocortin-4 receptor. Regul Pept. 2001 May 5;99(1):1-7.
    174. Fu LY, van den Pol AN. Agouti-related peptide and MC3/4 receptor agonists both inhibit excitatory hypothalamic ventromedial nucleus neurons. J Neurosci.2008 May 21;28(21):5433-49.
    175. Coppari R, Ichinose M, Lee CE, Pullen AE, Kenny CD, McGovern RA, Tang V, Liu SM, Ludwig T, Chua SC, Jr., Lowell BB, Elmquist JK. The hypothalamic arcuate nucleus:a key site for mediating leptin's effects on glucose homeostasis and locomotor activity. Cell Metab.2005 Jan;1(1):63-72.
    176. Enriori PJ, Evans AE, Sinnayah P, Jobst EE, Tonelli-Lemos L, Billes SK, Glavas MM, Grayson BE, Perello M, Nillni EA, Grove KL, Cowley MA. Diet-induced obesity causes severe but reversible leptin resistance in arcuate melanocortin neurons. Cell Metab.2007 Mar;5(3):181-94.
    177. Ellacott KL, Halatchev IG, Cone RD. Characterization of leptin-responsive neurons in the caudal brainstem. Endocrinology.2006 Jul;147(7):3190-5.
    178. Perello M, Stuart RC, Nillni EA. Differential effects of fasting and leptin on proopiomelanocortin peptides in the arcuate nucleus and in the nucleus of the solitary tract. Am J Physiol Endocrinol Metab.2007 May;292(5):E1348-57.
    179. Dhillon H, Zigman JM, Ye C, Lee CE, McGovern RA, Tang V, Kenny CD, Christiansen LM, White RD, Edelstein EA, Coppari R, Balthasar N, Cowley MA, Chua S, Jr., Elmquist JK, Lowell BB. Leptin directly activates SF1 neurons in the VMH, and this action by leptin is required for normal body-weight homeostasis. Neuron.2006 Jan 19;49(2):191-203.
    180. Hoch M, Hirzel E, Lindinger P, Eberle AN, Linscheid P, Martin I, Peters T, Peterli R. Weak functional coupling of the melanocortin-1 receptor expressed in human adipocytes. J Recept Signal Transduct Res.2008;28(5):485-504.
    181. Leibowitz SF. Wortley KE. Hypothalamic control of energy balance: different peptides, different functions. Peptides.2004 Mar;25(3):473-504.
    182. Riedy CA. Chavez M, Figlewicz DP, Woods SC. Central insulin enhances sensitivity to cholecystokinin. Physiol Behav.1995 Oct;58(4):755-60.
    183. Plum L. Lin HV, Dutia R. Tanaka J, Aizawa KS, Matsumoto M, Kim AJ, Cawley NX, Paik JH, Loh YP, DePinho RA, Wardlaw SL, Accili D. The obesity susceptibility gene Cpe links FoxO1 signaling in hypothalamic pro-opiomelanocortin neurons with regulation of food intake. Nat Med.2009 Oct; 15(10):1195-201.
    184. Hill JW, Xu Y, Preitner F, Fukuda M, Cho YR, Luo J, Balthasar N, Coppari R, Cantley LC, Kahn BB, Zhao JJ, Elmquist JK. Phosphatidyl inositol 3-kinase signaling in hypothalamic proopiomelanocortin neurons contributes to the regulation of glucose homeostasis. Endocrinology.2009 Nov;150(11):4874-82.
    185. Belgardt BF, Okamura T, Bruning JC. Hormone and glucose signalling in POMC and AgRP neurons. J Physiol.2009 Nov 15;587(Pt 22):5305-14.
    186. Morton GJ, Cummings DE, Baskin DG, Barsh GS, Schwartz MW. Central nervous system control of food intake and body weight. Nature.2006 Sep 21;443(7109):289-95.
    187. Kahn BB, Myers MG, Jr. mTOR tells the brain that the body is hungry. Nat Med.2006 Jun;12(6):615-7.
    188. Lerner RG, Depatie C, Rutter GA, Screaton RA, Balthasar N. A role for the CREB co-activator CRTC2 in the hypothalamic mechanisms linking glucose sensing with gene regulation. EMBO Rep.2009 Oct;10(10):1175-81.
    189. Claret M, Smith MA, Batterham RL, Selman C, Choudhury AI, Fryer LG, Clements M, Al-Qassab H, Heffron H, Xu AW, Speakman JR, Barsh GS, Viollet B, Vaulont S, Ashford ML, Carling D, Withers DJ. AMPK is essential for energy homeostasis regulation and glucose sensing by POMC and AgRP neurons. J Clin Invest.2007 Aug;117(8):2325-36.
    190. Blouet C, Jo YH, Li X, Schwartz GJ. Mediobasal hypothalamic leucine sensing regulates food intake through activation of a hypothalamus-brainstem circuit. J Neurosci.2009 Jul 1;29(26):8302-11.
    191. Wan S, Browning KN, Coleman FH, Sutton G, Zheng H, Butler A, Berthoud HR, Travagli RA. Presynaptic melanocortin-4 receptors on vagal afferent fibers modulate the excitability of rat nucleus tractus solitarius neurons. J Neurosci.2008 May 7;28(19):4957-66.
    192. Appleyard SM, Bailey TW, Doyle MW, Jin YH, Smart JL, Low MJ, Andresen MC. Proopiomelanocortin neurons in nucleus tractus solitarius are activated by visceral afferents:regulation by cholecystokinin and opioids. J Neurosci.2005 Apr 6;25(14):3578-85.
    193. Zheng H, Patterson LM, Phifer CB, Berthoud HR. Brain stem melanocortinergic modulation of meal size and identification of hypothalamic POMC projections. Am J Physiol Regul Integr Comp Physiol.2005 Jul;289(1):R247-58.
    194. Lin L, Park M, York DA. Enterostatin inhibition of dietary fat intake is modulated through the melanocortin system. Peptides.2007 Mar;28(3):643-9.
    195. Tian Q, Nagase H, York DA, Bray GA. Vagal-central nervous system interactions modulate the feeding response to peripheral enterostatin. Obes Res.1994 Nov;2(6):527-34.
    196. Koizumi M, Kimura S. Enterostatin increases extracellular serotonin and dopamine in the lateral hypothalamic area in rats measured by in vivo microdialysis. Neurosci Lett.2002 Mar 1;320(1-2):96-8.
    197. Tong Q, Ye C, McCrimmon RJ, Dhillon H, Choi B, Kramer MD, Yu J, Yang Z, Christiansen LM, Lee CE, Choi CS, Zigman JM, Shulman GI, Sherwin RS, Elmquist JK, Lowell BB. Synaptic glutamate release by ventromedial hypothalamic neurons is part of the neurocircuitry that prevents hypoglycemia. Cell Metab.2007 May;5(5):383-93.
    198. Tong Q, Ye CP, Jones JE, Elmquist JK, Lowell BB. Synaptic release of GABA by AgRP neurons is required for normal regulation of energy balance. Nat Neurosci.2008 Sep;11(9):998-1000.
    199. Scarlett JM, Marks DL. The use of melanocortin antagonists in cachexia of chronic disease. Expert Opin Investig Drugs.2005 Oct;14(10):1233-9.
    200. Pamir N, McMillen TS, Kaiyala KJ, Schwartz MW, LeBoeuf RC. Receptors for tumor necrosis factor-alpha play a protective role against obesity and alter adipose tissue macrophage status. Endocrinology.2009 Sep;150(9):4124-34.
    201. Bilbo SD, Yirmiya R, Amat J, Paul ED, Watkins LR, Maier SF. Bacterial infection early in life protects against stressor-induced depressive-like symptoms in adult rats. Psychoneuroendocrinology.2008 Apr;33(3):261-9.
    202. Kariagina A, Romanenko D, Ren SG, Chesnokova V. Hypothalamic-pituitary cytokine network. Endocrinology.2004 Jan; 145(1):104-12.
    203. Beretta E, Dhillon H, Kalra PS, Kalra SP. Central LIF gene therapy suppresses food intake, body weight, serum leptin and insulin for extended periods. Peptides.2002 May;23(5):975-84.
    204. Abbud RA, Kelleher R, Melmed S. Cell-specific pituitary gene expression profiles after treatment with leukemia inhibitory factor reveal novel modulators for proopiomelanocortin expression. Endocrinology.2004 Feb;145(2):867-80.
    205. Zorrilla EP, Sanchez-Alavez M, Sugama S, Brennan M, Fernandez R, Bartfai T, Conti B. Interleukin-18 controls energy homeostasis by suppressing appetite and feed efficiency. Proc Natl Acad Sci U S A.2007 Jun 26;104(26):11097-102.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700