MicroRNAs对帕金森病致病基因LRRK2表达调控机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分LRRK2基因相关microRNAs的预测及验证
     帕金森病(Parkinson Disease, PD)是一种常见的神经变性疾病。PD的发病机制十分复杂,目前认为其是由遗传因素与环境因素的共同作用所导致的。PD遗传致病机制的研究已取得明显进展,迄今已定位16个PD相关位点,克隆了包括富亮氨酸重复激酶2基因(Leucine-rich repeat kinase2, LRRK2)在内的11个致病基因,LRRK2不仅是常染色体显性遗传性PD重要致病基因,还与部分原发性PD有关。
     目前LRRK2基因突变导致PD发生的机制并不十分清楚,但研究提示某些LRRK2致病突变(如G2019S)可能引起其激酶功能增强而具有细胞毒性,并且过表达野生型LRRK2也具有细胞毒性作用。此外LRRK2可能参与PD发生过程中异常蛋白沉积。过表达野生型LRRK2、LRRK2-G2019S突变体或LRRK2激酶结构域可加速a-Synuclein A53T的聚集。由此可见,对LRRK2的表达和功能的精确调控在PD发病机制中具有重要作用。
     MicroRNA (miRNA)是一类由内源基因编码的长度约为21-23个核苷酸的非编码单链RNA分子,由具有发夹结构的约70-90个碱基大小的单链RNA前体经过Dicer酶加工后生成,有5’端磷酸基和3’羟基,定位于RNA前体的3’端或5’端。在不同组织、不同发育阶段中miRNA的水平有显著差异,这种miRNAs表达模式具有分化的位元相性和时序性(differential spatial and temporal expression patterns),因此1miRNAs作为参与调控基因表达的分子具有重要意义。本课题将探讨miRNA对LRRK2基因表达调控机制在PD发病机制中的作用。
     方法:通过UCSC Genome Bioinformatics数据库(http://genome.ucsc. edu/)查询LRRK2基因的RefSeq序列,根据查询到的LRRK2基因3'UTR序列运用targetscan (http://www.targetscan.org/),miRanda(http://www.microrna.org/microrna/home.do)等根据LRRK2基因3’UTR序列预测能对其进行转录后调控的microRNAs,从]niRbase数据库获得相关microRNAs序列,比对生物信息学软件的预测结果,选择评分值高的microRNAs进行生物学验证。构建野生型及突变型LRRK2基因3'UTR序列荧光素酶报告基因载体,在N2a细胞中与miRNAs瞬时共转染,于转染后24小时及48小时进行荧光素酶活性分析,验证miRNAs对LRRK2基因mRNA的转录后抑制作用。瞬时转染miRNAs进入HEK293细胞系,于转染后24小时及48小时检测内源性LRRK2蛋白表达水平。根据共转microRNA后荧光素酶报告系统活性以及细胞系体内的内源性LRRK2蛋白表达水平判断,二者均具有统计学意义时判定该microRNA分子对LRRK2基因具有转路后抑制作用。
     结果:本研究对LRRK2基因的RefSeq序列NM_198578的全长3'UTR序列共1517个碱基进行分析,以蛋白翻译终止位点"TAG"的G碱基为+1位进行描述,结合TargetScan预测结果显示hsa-miR-205与LRRK2基因3'UTR序列结合位点+116-122具有高保守性,107个人类miRNAs分子与人类LRRK2基因3’UTR序列存在保守性较低的潜在结合性;miRanda预测结果显示57个人类miRNAs分子与人类LRRK2基因3'UTR序列存在潜在结合性,选取23个潜在调控miRNAs进行生物学验证,结果显示hsa-miR-205mimics与携带野生型LRRK2基因3'UTR序列以及位点+116-122突变型LRRK2基因3'UTR序列的Luc报告系统质粒共转染N2a细胞株后,携带野生型组的Luc报告基因相对活性下降,t检验显示差异具有统计学意义(P<0.05,t=6.479,95%CI值为-1.614~-0.617);hsa-miR-454mimics与构建的携带野生型LRRK2基因3'UTR序列以及位点+506-512突变型LRRK2基因3'UTR序列的Luc报告系统质粒共转染N2a细胞株后,野生型组的Luc报告基因相对活性明显下降,t检验显示差异具有统计学意义(P<0.001,t=6.479,95%CI值为-1.614--0.617)。瞬时转染hsa-miR-205、hsa-miR-301b及hsa-miR-454mimics进HEK293细胞于24小时及48小时检测内源性LRRK2表达,结果显示转染hsa-miR-205mimics后内源性LRRK2蛋白生成明显减少,转染hsa-miR-454mimics后内源性LRRK2蛋白生成减少,而转染hsa-miR-301b mimics后HEK293细胞的内源性LRRK2蛋白减少不明显。
     结论:hsa-miR-205可与LRRK2基因3'UTR序列的5'-AUGAAGG-3'互补结合,抑制LRRK2基因的表达;hsa-miR-454可与LRRK2基因3'UTR序列的5'-UUGCACU-3'互补结合,抑制LRRK2基因的表达hsa-miR-301b可能与LRRK2基因3'UTR序列的5'-UUGCACU-3'互补结合,抑制LRRK2基因的表达,但仍需深入研究。
     第二部分miRNAs及LRRK2mRNA在干细胞-神经元分化细胞系的表达水平研究
     组织发育与生理过程中的稳态通过于细胞与组织干细胞的调控完成,是否存在一些细胞内机制介导干细胞间的信号转导、表观遗传,转录,翻译以及转录后调控水平的分化基因表达等细胞内机制。microRNA,作为基因表达、修饰、转录和翻译的调节者,在干细胞的自我复制、定向分化和组织再生中起着十分重要的作用。它是干细胞特性、维持、转化功能的一个关键调控者,参与细胞周期、细胞重建(Reprograming)、多能干细胞生成、信号传递、特异分化、聚集、修复、再生、变异、代谢等所有过程,是当前干细胞调控研究的一个重点。
     LRRK2基因是PD发病的重要致病基因,而病理学研究表明LRRK2蛋白广泛表达于所有脑组织,但以多巴胺能神经支配区为主。对大鼠的胚胎发育中神经元与神经元附属组织的LRRK2mRNA表达研究表明LRRK2可能在控制神经元细胞的增殖、迁移以及分化过程中发挥作用。本章节将在验证miR-454及miR-205对LRRK2基因转录后调控的基础上初步探讨miR-454及miR-205与LRRK2在胚胎干细胞向神经元的分化过程中不同分化阶段胚胎干细胞及胎脑组织的表达之间的相关性,为进一步深入研究miRNAs与LRRK2在神经元增殖、迁移以及分化过程中的作用奠定基础。
     方法:分化人源胚胎干细胞hESCs H9-P57细胞(ES),分别收集ES,拟胚体(EB),神经前体细胞以及人类胎脑组织共3个不同胚胎发育阶段的细胞及组织,提取总RNA,应用实时荧光定量PCR检测miRNAs, LRRK2基因mRNA的表达水平;提取胎脑组织蛋白,应用western blotting技术检测胎脑组织中LRRK2蛋白的表达水平。
     结果:相对定量PCR结果显示LRRK2mRNA在胚胎分化的前期到神经前体细胞阶段表达均很低,在拟胚体阶段甚至检测不到LRRK2mRNA,而在发育到26周的有成熟神经元细胞存在的胎脑组织中LRRK2mRNA则呈现高表达,其中以包含大脑皮质及髓质结构的组织表达最高,仅有皮质结构的脑组织表达量较前者低,而在小脑中则表达更低;miR-454在胚胎干细胞,拟胚体阶段以及神经前体细胞阶段的表达均较低,而在发育到26周的胎脑组织中表达则升高,在胎大脑组织(包括大脑皮质及髓质)中的表达多于大脑皮层组织内的表达,大脑皮质及小脑组织中miR-454表达水平相当;miR-205在胚胎干细胞,拟胚体阶段存在表达,神经前体细胞阶段基本没有miR-205的表达,但在发育到26周的胎脑组织中均有表达,在胎大脑组织(包括大脑皮质及髓质)相对较低,而小脑中表达相对较高。胎小脑组织中LRRK2蛋白表达最高,胎大脑组织(包括大脑皮质及髓质)相对较低,仅包含皮质的胎脑组织中表达最低。
     结论:miR-454及miR-205在中枢神经系统中存在表达;miR-205在胚胎干细胞分化过程中存在表达。
     第三部分帕金森病患者血清miRNAs表达水平检测
     miRNAs是一类内源性表达的短小的,非编码RNAs,可通过调控众多基因表达在不同生理功能中发挥作用。miRNAs主要与靶基因的mRNAs的3'UTR序列的结合位点相结合通过降解靶基因的mRNAs或者减少靶基因蛋白翻译而达到转录后抑制作用。目前研究显示miRNAs表达异常与众多疾病的发生相关,miRNAs的表达异常可能作为潜在的疾病诊断标志物或者与疾病相关的miRNAs可能成为潜在的疾病治疗靶点。多项研究显示人类血清或者血浆中存在由组织释放的游离:miRNAs,并且这些游离miRNAs表达具有稳定性,可再生性,在同一个体中表达水平一致,并不易被自身血液系统中的RNAse酶降解等特性,研究表明一些疾病如肺癌、前列腺癌等患者血清中游离miRNAs与正常人比较表达存在差异,因此目前认为血清中的1niRNAs可能作为诊断癌症等某些疾病的标志物。
     多年来,众多研究组致力于寻找准确诊断PD的生物标志物与生理学检查,但是目前并没有找到确凿的诊断标志物,因此检测PD患者脑脊液,或者血液中的niRNAs水平看是否能作为包括PD在内的神经变性病的诊断标志物或者治疗靶点。本研究在前面章节的研究基础上,进一步检测PD患者与正常对照血清中是否存在游离miR-205及miR-454水平差异性作为一种寻找PD生物标志物的探索性研究。
     方法:采集16例散发性PD患者以及20例正常对照者5ml静脉血,促凝管静置4-6小时,分离血清于-70℃保存,应用Ambion-mirVanaTM PARISTMkit进行游离小RNAs分离,测OD,应用Qiagen公司的microRNAs RT-kit逆转录成DNA,应用荧光定量PCR定量PD组及对照组血清中Hsa-miR-205, hsa-miR-454的表达水平。
     结果:本章研究利用qReal-Time PCR对16例PD患者及20例健康对照者的血清中游离miR-205进行相对定量分析,PD患者血清中的1niR-205表达较正常对照组低,应用T检验进行统计学分析,两者差异的P值=0.0001,差异具有统计学意义;PD患者血清中的miR-454表达较正常对照组低,应用T检验进行统计学分析,两者差异的P值=0.04,差异具有统计学意义。
     结论:PD患者血清中游离miR-205水平较正常对照明显减低,miR-205很可能为PD的生物标记物;PD患者血清中游离miR-454水平较正常对照组减少,miR-454可能为PD的生物标记物。
ABSTRACT OF SECTION1The Isolation of miRNAs to regulate the expression of the Parkinson Disease Causitive Gene LRRK2
     Parkinson's disease (PD) is the second most globally prevalent neurodegenerative disorder. The cause of PD is complex and multifactorial, involving both hereditary and environmental factors. Recent progress in molecular genetic studies of familial PD has led to the identification of16susceptible loci and11genes responsible for PD. Mutations in LRRK2are thus far the most prevalent genetic cause associated with autosomal dominant and idiopathic PD. Although the mechanism of how PD-associated LRRK2mutations cause disease is yet unknown, several studies indicated that certain kinds of mutations including G2019S are likely associated with toxic gain of function. Moreover, to overexpress wildtype LRRK2was found to be toxic in cultured cells and transgenic fly model. Becides, LRRK2was found to be associated with abnormal protein deposition in the brains of patients with lowy body disease including PD. To overexpress wildtype LRRK2, G2019S mutant or kinase domain alone accelerate the formation of aggregates caused by α-synuclein A53T mutant. These results suggest that precise regulation of LRRK2expression and function is necessary for maintaining homeostasis of the organism, and the disruption of the regulation mechanism may cause disease. microRNAs (miRNAs) are a class of endogenous22base-long single-stranded, noncoding RNAs that regulate gene expression in a sequence-specific manner in plants and animals. miRNAs are derived from long precursor transcripts by the action of nucleases Drosha and Dicer, and the resulting mature functional miRNAs bind to their target sequence in the3'-untranslated region (UTR) of mRNA with imperfect complementarity and lead to repression of translation.Therefore, to elucidate the mechanism of LRRK2post-transcriptional regulation is helpful to understand PD aetiology. In this study, the promoter activity of the LRRK23'-untransation region (UTR) was analized, which is essenssial to understand the post-transcriptional regulation of LRRK2.
     Methods:Several on-line softwares were involved in our study to predict the miRNAs to regulate the expression of LRRK2.23miRNAs was selected base on the predictation results, and further constructed the luciferase reporter plasmids. The plasmids were then transfected transiently into the N2a cell lines, and the luciferase relative activity were analysed to identified regulation of miRNAs to LRRK2. Finelly, miRNAs were transfected transiently into the Hek293cell lines, and the expression of endougenous LRRK2protein were analysed to identified the repression of miRNAs to LRRK2.
     Results:The study Found243miRNAs bind potentially with the sites of LRRK23'UTR of RefSeq NM_198578using several software to predict the targets of miRNAs.23miRNAs was selected base on the predictation results, and further constructed the luciferase reporter plasmids. The luciferase relative activity decreased after miR205and miR454were transfected transiently into N2a cell line with wild type LRRK23'UTR Luc report system or mutation the binding site ones,the luciferase relative activity decreased lightly after miR-301b were transfected transiently into N2a cell line with wild type LRRK23'UTR Luc report system or mutation the binding site ones. The expression of endougenous LRRK2obviously decreased when miR-205and miR-454transfected transiently into the HEK293cell line. The expression of endoug-enous LRRK2decreased lightly when miR-301b transfected transiently into the HEK293cell line.
     Conclution:In summary,miR-205can regulate the expression through to bind the site of5'-AUGAAGG-3'in LRRK23'UTR; miR-454can regulate the expression through to bind the site of5'-UUGCACU-3'in LRRK23'UTR; miR-301b probably regulate the expression through to bind the site of5'-UUGCACU-3'in LRRK23'UTR.
     ABSTRACT OF SECTION2Identify expression of miRNAs and LRRK2mRNA for embryo stem-cell Neuron differentiated cell line and fetal brain tissue
     The hallmark of a stem cell is its ability to self-renew and to produce numerous
     differentiated cells. This unique property is controlled by dynamic interplays between extrinsic signalling, epigenetic, transcriptional and post-transcriptional regulations. Recent research indicates that microRNAs (miRNAs) have an important role in regulating stem cell self-renewal and differentiation by repressing the translation of selected mRNAs in stem cells and differentiating daughter cells. Such a role has been shown in embryonic stem cells, germline stem cells and various somatic tissue stem cells. These findings reveal a new
     dimension of gene regulation in controlling stem cell fate and behaviour. This is shown deregulated synthesis of E2F1/DP caused by the miRNA pathway impairment as a key event in LRRK2pathogenesis and suggest novel miRNA-based therapeutic strategies.
     Mutations in the LRRK2gene cause autosomal dominant, late-onset parkinsonism, which presents with pleomorphic pathology including alpha-synucleopathy. The expression and localization of LRRK2to various neuronal populations in brain regions implicated inPD including the cerebral cortex, caudate-putamen and substantia nigra pars compacta. The localization of LRRK2to key neuronal populations throughout the nigrostriatal dopaminergic pathway is consistent with the involvement of LRRK2in the molecular pathogenesis of familial and sporadic parkinsonism.
     Methods:Using quantitative Real-time PCR, we analyzed the relative copies of miR-454and miR-205for embryo stem cell-Neuron differentiated cell line and fetal brain tissue which from the fetus developed about26weeks. We analyzed the expression of LRRK2mRNA and protein in different fetal brain tissue by quantitative real-time PCR and western blotting.
     Results:The expression profile of miR-454and LRRK2mRNA were rather low in the embryo stem cell-neuron differentiated cell line,however,miR-454and miR-205and LRRK2mRNA shows very high expression in fetal brain tissue,the most highest exression in cerebral tissue composed cerebral cortex,medulla,basal ganlia and striatum, high expression in cerebral cortex, and relatively lower expression in cerebellum. MiR-205expressed in the embryo stem cell and embryo body, but could not be detected in NPC.
     Conclusion:MiR454and miR-205expressed in central neuronal system.MiR-205expressed in embryo stem cell-neuron differentiated cell line
     ABSTRACT OF SECTION3Identify expression of serum miRNAs for PD and Normal Subjects
     Dysregulated expression of microRNAs (miRNAs) in various tissues has been associated with a variety of diseases, including neurodegenerative disorders. MiRNAs are present in the serum and plasma of humans and other animals such as mice, rats, bovine fetuses, calves, and horses. The levels of miRNAs in serum are in a remarkably stable form that is protected from endogenous RNase activity, reproducible, and consistent among individuals of the same species. the study identified specific expression patterns of serum miRNAs for prostate cancer,lung cancer, colorectal cancer, and diabetes, providing evidence that serum miRNAs contain fingerprints for various diseases. Through these analyses, we conclude that serum miRNAs can serve as potential biomarkers for the detection of various cancers and other diseases.
     There has been tremendous effort by the field to find biomarkers and physiological tests that accurately diagnose PD. There is still no conclusive diagnostic test. The goal of this proposal is to test the utility of using a miRNA signature to selectively diagnose and track Parkinson's disease. By the completion of this study, we will know if blood contains a better diagnostic miRNA signature for PD.
     Methods:Using quantitative Real-time PCR, we analyzed the relative copies of miR-205and miR-454in serum among16sopradic PD patients and20genetically unrelated control individuals.
     Results:The expression profile of serum miR-205in PD was significantly different from that of normal subjects, P value of T test was0.0001. The expression profile of serum miR-454in PD was significantly different from that of normal subjects, P value of T test was0.040.
     Conclusion:We conclude that miR-205is in all a probability as a biomarker to diagnosing Parkinson's disease, and miR454is probability as a biomarker to diagnosing Parkinson's disease.
引文
[1]Moore DJ, West AB, Dawson VL, Dawson TM. Molecular pathophysiology of Parkinson's disease. Annu Rev Neurosci 2005;28:57-87.
    [2]Polymeropoulos MH, Lavedan C, Leroy E, Ide SE, Dehejia A, Dutra A, Pike B, Root H, Rubenstein J, Boyer R, Stenroos ES, Chandrasekharappa S, Athanassiadou A, Papapetropoulos T, Johnson WG, Lazzarini AM, Duvoisin RC, Di Iorio G, Golbe LI, Nussbaum RL. Mutation in the alpha-synuclein gene identified in families with Parkinson's disease. Science 1997;276(5321):2045-7.
    [3]Leroy E, Boyer R, Auburger G, Leube B, Ulm G, Mezey E, Harta G, Brownstein MJ, Jonnalagada S, Chernova T, Dehejia A, Lavedan C, Gasser T, Steinbach PJ, Wilkinson KD, Polymeropoulos MH. The ubiquitin pathway in Parkinson's disease. Nature 1998;395(6701):451-2.
    [4]Zimprich A, Biskup S, Leitner P, Lichtner P, Farrer M, Lincoln S, Kachergus J, Hulihan M, Uitti RJ, Calne DB, Stoessl AJ, Pfeiffer RF, Patenge N, Carbajal IC, Vieregge P, Asmus F, Muller-Myhsok B, Dickson DW, Meitinger T, Strom TM, Wszolek ZK, Gasser T. Mutations in LRRK2 cause autosomal-dominant parkinsonism with pleomorphic pathology. Neuron 2004;44(4):601-7.
    [5]Paisan-Ruiz C, Jain S, Evans EW, Gilks WP, Simon J, van der Brug M, Lopez de Munain A, Aparicio S, Gil AM, Khan N, Johnson J, Martinez JR, Nicholl D, Carrera IM, Pena AS, de Silva R, Lees A, Marti-Masso JF, Perez-Tur J, Wood NW, Singleton AB. Cloning of the gene containing mutations that cause PARK8-linked Parkinson's disease. Neuron 2004;44(4):595-600.
    [6]Kitada T, Asakawa S, Hattori N, Matsumine H, Yamamura Y, Minoshima S, Yokochi M, Mizuno Y, Shimizu N. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 1998;392(6676):605-8.
    [7]Valente EM, Abou-Sleiman PM, Caputo V, Muqit MM, Harvey K, Gispert S, Ali Z, Del Turco D, Bentivoglio AR, Healy DG, Albanese A, Nussbaum R, Gonzalez-Maldonado R, Deller T, Salvi S, Cortelli P, Gilks WP, Latchman DS, Harvey RJ, Dallapiccola B, Auburger G, Wood NW. Hereditary early-onset Parkinson's disease caused by mutations in PINK1. Science 2004;304(5674): 1158-60.
    [8]Bonifati V, Rizzu P, van Baren MJ, Schaap O, Breedveld GJ, Krieger E, Dekker MC, Squitieri F, Ibanez P, Joosse M, van Dongen JW, Vanacore N, van Swieten JC, Brice A, Meco G, van Duijn CM, Oostra BA, Heutink P. Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism. Science 2003;299 (5604):256-9.
    [9]Ramirez A, Heimbach A, Grundemann J, Stiller B, Hampshire D, Cid LP, Goebel I, Mubaidin AF, Wriekat AL, Roeper J, Al-Din A, Hillmer AM, Karsak M, Liss B, Woods CG, Behrens MI, Kubisch C. Hereditary parkinsonism with dementia is caused by mutations in ATP13A2, encoding a lysosomal type 5 P-type ATPase. Nat Genet 2006;38(10):1184-91.
    [10]Strauss KM, Martins LM, Plun-Favreau H, Marx FP, Kautzmann S, Berg D, Gasser T, Wszolek Z, Muller T, Bornemann A, Wolburg H, Downward J, Riess O, Schulz JB, Kruger R. Loss of function mutations in the gene encoding Omi/HtrA2 in Parkinson's disease. Hum Mol Genet 2005;14(15):2099-111.
    [11]Gandhi PN, Chen SG, Wilson-Delfosse AL. Leucine-rich repeat kinase 2 (LRRK2):a key player in the pathogenesis of Parkinson's disease. J Neurosci Res 2009;87(6):1283-95.
    [12]Solano SM, Miller DW, Augood SJ, Young AB, Penney JB, Jr. Expression of alpha-synuclein, parkin, and ubiquitin carboxy-terminal hydrolase L1 mRNA in human brain:genes associated with familial Parkinson's disease. Ann Neurol 2000;47(2):201-10.
    [13]Galter D, Westerlund M, Carmine A, Lindqvist E, Sydow O, Olson L. LRRK2 expression linked to dopamine-innervated areas. Ann Neurol 2006;59(4):714-9.
    [14]Melrose H, Lincoln S, Tyndall G, Dickson D, Farrer M. Anatomical localization of leucine-rich repeat kinase 2 in mouse brain. Neuroscience 2006;139(3):791-4.
    [15]Taymans JM, Van den Haute C, Baekelandt V. Distribution of PINK1 and LRRK2 in rat and mouse brain. J Neurochem 2006;98(3):951-61.
    [16]Higashi S, Moore DJ, Colebrooke RE, Biskup S, Dawson VL, Arai H, Dawson TM, Emson PC. Expression and localization of Parkinson's disease-associated leucine-rich repeat kinase 2 in the mouse brain. J Neurochem 2007;100(2):368-81.
    [17]Melrose HL, Kent CB, Taylor JP, Dachsel JC, Hinkle KM, Lincoln SJ, Mok SS, Culvenor JG, Masters CL, Tyndall GM, Bass DI, Ahmed Z, Andorfer CA, Ross OA, Wszolek ZK, Delldonne A, Dickson DW, Farrer MJ. A comparative analysis of leucine-rich repeat kinase 2 (Lrrk2) expression in mouse brain and Lewy body disease. Neuroscience 2007; 147(4):1047-58.
    [18]West AB, Moore DJ, Biskup S, Bugayenko A, Smith WW, Ross CA, Dawson VL, Dawson TM. Parkinson's disease-associated mutations in leucine-rich repeat kinase 2 augment kinase activity. Proc Natl Acad Sci U S A 2005;102(46):16842-7.
    [19]Biskup S, Moore DJ, Celsi F, Higashi S, West AB, Andrabi SA, Kurkinen K, Yu SW, Savitt JM, Waldvogel HJ, Faull RL, Emson PC, Torp R, Ottersen OP, Dawson TM, Dawson VL. Localization of LRRK2 to membranous and vesicular structures in mammalian brain. Ann Neurol 2006;60(5):557-69.
    [20]Hatano T, Kubo S, Imai S, Maeda M, Ishikawa K, Mizuno Y, Hattori N. Leucine-rich repeat kinase 2 associates with lipid rafts. Hum Mol Genet 2007;16(6):678-90.
    [21]Gandhi PN, Chen SG, Wilson-Delfosse AL. Leucine-rich repeat kinase 2 (LRRK2):A key player in the pathogenesis of Parkinson's disease. J Neurosci Res 2008.
    [22]Bosgraaf L, Van Haastert PJ. Roc, a Ras/GTPase domain in complex proteins. Biochim Biophys Acta 2003;1643(1-3):5-10.
    [23]West AB, Moore DJ, Choi C, Andrabi SA, Li X, Dikeman D, Biskup S, Zhang Z, Lim KL, Dawson VL, Dawson TM. Parkinson's disease-associated mutations in LRRK2 link enhanced GTP-binding and kinase activities to neuronal toxicity. Hum Mol Genet 2007;16(2):223-32.
    [24]Guo L, Wang W, Chen SG Leucine-rich repeat kinase 2:relevance to Parkinson's disease. Int J Biochem Cell Biol 2006;38(9):1469-75.
    [25]Marin I. The Parkinson disease gene LRRK2:evolutionary and structural insights. Mol Biol Evol 2006;23(12):2423-33.
    [26]Gloeckner CJ, Kinkl N, Schumacher A, Braun RJ, O'Neill E, Meitinger T, Kolch W, Prokisch H, Ueffing M. The Parkinson disease causing LRRK2 mutation I2020T is associated with increased kinase activity. Hum Mol Genet 2006;15(2):223-32.
    [27]Smith WW, Pei Z, Jiang H, Moore DJ, Liang Y, West AB, Dawson VL, Dawson TM, Ross CA. Leucine-rich repeat kinase 2 (LRRK2) interacts with parkin, and mutant LRRK2 induces neuronal degeneration. Proc Natl Acad Sci U S A 2005; 102(51): 18676-81.
    [28]Greggio E, Jain S, Kingsbury A, Bandopadhyay R, Lewis P, Kaganovich A, van der Brug MP, Beilina A, Blackinton J, Thomas KJ, Ahmad R, Miller DW, Kesavapany S, Singleton A, Lees A, Harvey RJ, Harvey K, Cookson MR. Kinase activity is required for the toxic effects of mutant LRRK2/dardarin. Neurobiol Dis 2006;23(2):329-41.
    [29]Mata IF, Wedemeyer WJ, Farrer MJ, Taylor JP, Gallo KA. LRRK2 in Parkinson's disease:protein domains and functional insights. Trends Neurosci 2006; 29(5): 286-93.
    [30]Luzon-Toro B, Rubio de la Torre E, Delgado A, Perez-Tur J, Hilfiker S. Mechanistic insight into the dominant mode of the Parkinson's disease-associated G2019S LRRK2 mutation. Hum Mol Genet 2007;16(17):2031-9.
    [31]Guo L, Gandhi PN, Wang W, Petersen RB, Wilson-Delfosse AL, Chen SG. The Parkinson's disease-associated protein, leucine-rich repeat kinase 2 (LRRK2), is an authentic GTPase that stimulates kinase activity. Exp Cell Res 2007;313 (16): 3658-70.
    [32]Li X, Tan YC, Poulose S, Olanow CW, Huang XY, Yue Z. Leucine-rich repeat kinase 2 (LRRK2)/PARK8 possesses GTPase activity that is altered in familial Parkinson's disease R1441C/G mutants. J Neurochem 2007;103(1):238-47.
    [33]Jaleel M, Nichols RJ, Deak M, Campbell DG, Gillardon F, Knebel A, Alessi DR. LRRK2 phosphorylates moesin at threonine-558:characterization of how Parkinson's disease mutants affect kinase activity. Biochem J 2007;405(2):307-17.
    [34]Lewis PA, Greggio E, Beilina A, Jain S, Baker A, Cookson MR. The R1441C mutation of LRRK2 disrupts GTP hydrolysis. Biochem Biophys Res Commun 2007;357(3):668-71.
    [35]Smith WW, Pei Z, Jiang H, Dawson VL, Dawson TM, Ross CA. Kinase activity of mutant LRRK2 mediates neuronal toxicity. Nat Neurosci 2006;9(10):1231-3.
    [36]Ito G, Okai T, Fujino G, Takeda K, Ichijo H, Katada T, Iwatsubo T. GTP binding is essential to the protein kinase activity of LRRK2, a causative gene product for familial Parkinson's disease. Biochemistry 2007;46(5):1380-8.
    [37]Deng J, Lewis PA, Greggio E, Sluch E, Beilina A, Cookson MR. Structure of the ROC domain from the Parkinson's disease-associated leucine-rich repeat kinase 2 reveals a dimeric GTPase. Proc Natl Acad Sci U S A 2008; 105(5):1499-504.
    [38]Gotthardt K, Weyand M, Kortholt A, Van Haastert PJ, Wittinghofer A. Structure of the Roc-COR domain tandem of C. tepidum, a prokaryotic homologue of the human LRRK2 Parkinson kinase. EMBO J 2008;27(17):2352.
    [39]Wang L, Xie C, Greggio E, Parisiadou L, Shim H, Sun L, Chandran J, Lin X, Lai C, Yang WJ, Moore DJ, Dawson TM, Dawson VL, Chiosis G, Cookson MR, Cai H. The chaperone activity of heat shock protein 90 is critical for maintaining the stability of leucine-rich repeat kinase 2. J Neurosci 2008;28(13):3384-91.
    [40]Dachsel JC, Taylor JP, Mok SS, Ross OA, Hinkle KM, Bailey RM, Hines JH, Szutu J, Madden B, Petrucelli L, Farrer MJ. Identification of potential protein interactors of Lrrk2. Parkinsonism Relat Disord 2007;13(7):382-5.
    [41]Zhu M, Qin ZJ, Hu D, Munishkina LA, Fink AL. Alpha-synuclein can function as an antioxidant preventing oxidation of unsaturated lipid in vesicles. Biochemistry 2006;45(26):8135-42.
    [42]Zhu X, Siedlak SL, Smith MA, Perry G, Chen SG. LRRK2 protein is a component of Lewy bodies. Ann Neurol 2006;60(5):617-8; author reply 18-9.
    [43]Alegre-Abarrategui J, Ansorge O, Esiri M, Wade-Martins R. LRRK2 is a component of granular alpha-synuclein pathology in the brainstem of Parkinson's disease. Neuropathol Appl Neurobiol 2008;34(3):272-83.
    [44]Perry G, Zhu X, Babar AK, Siedlak SL, Yang Q, Ito G, Iwatsubo T, Smith MA, Chen SG. Leucine-rich repeat kinase 2 colocalizes with alpha-synuclein in Parkinson's disease, but not tau-containing deposits in tauopathies. Neurodegener Dis 2008;5(3-4):222-4.
    [45]Giasson BI, Covy JP, Bonini NM, Hurtig HI, Farrer MJ, Trojanowski JQ, Van Deerlin VM. Biochemical and pathological characterization of Lrrk2. Ann Neurol 2006;59(2):315-22.
    [46]Higashi S, Biskup S, West AB, Trinkaus D, Dawson VL, Faull RL, Waldvogel HJ, Arai H, Dawson TM, Moore DJ, Emson PC. Localization of Parkinson's disease-associated LRRK2 in normal and pathological human brain. Brain Res 2007;1155:208-19.
    [47]Lin X, Parisiadou L, Gu XL, Wang L, Shim H, Sun L, Xie C, Long CX, Yang WJ, Ding J, Chen ZZ, Gallant PE, Tao-Cheng JH, Rudow G, Troncoso JC, Liu Z, Li Z, Cai H. Leucine-rich repeat kinase 2 regulates the progression of neuropathology induced by Parkinson's-disease-related mutant alpha-synuclein. Neuron 2009;64(6):807-27.
    [48]Iaccarino C, Crosio C, Vitale C, Sanna G, Carri MT, Barone P. Apoptotic mechanisms in mutant LRRK2-mediated cell death. Hum Mol Genet 2007; 16(11):1319-26.
    [49]Ho CC, Rideout HJ, Ribe E, Troy CM, Dauer WT. The Parkinson disease protein leucine-rich repeat kinase 2 transduces death signals via Fas-associated protein with death domain and caspase-8 in a cellular model of neurodegeneration. J Neurosci 2009;29(4):1011-6.
    [50]Hurley MJ, Patel PH, Jackson MJ, Smith LA, Rose S, Jenner P. Striatal leucine-rich repeat kinase 2 mRNA is increased in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-lesioned common marmosets (Callithrix jacchus) with L-3,4-dihydroxyphenyla-lanine methyl ester-induced dyskinesia. Eur J Neurosci 2007;26(1):171-7.
    [51]Wszolek, Z. K., Pfeiffer, B., Fulgham, J. R., Parisi, J. E., Thompson, B. M., Uitti, R. J., Calne, D. B., Pfeiffer, R. F. Western Nebraska family (family D) with autosomal dominant parkinsonism. Neurology 45:502-505,1995.
    [52]Nandhagopal, R., Mak, E., Schulzer, M., McKenzie, J., McCormick, S., Sossi, V., Ruth, T. J., Strongosky, A., Farrer, M. J., Wszolek, Z. K., Stoessl, A. J. Progression of dopaminergic dysfunction in a LRRK2 kindred:a multitracer PET study. Neurology 71:1790-1795,2008. [PubMed:19029519]
    [53]Chen-Plotkin, A. S., Yuan, W., Anderson, C., Wood, E. M., Hurtig, H. I., Clark, C. M., Miller, B. L., Lee, V. M.-Y., Trojanowski, J. Q., Grossman, M., Van Deerlin, V. M. Corticobasal syndrome and primary progressive aphasia as manifestations of LRRK2 gene mutations. Neurology 70:521-527,2008. [PubMed:17914064]
    [54]Covy, J. P., Van Deerlin, V. M., Giasson, B. I. Lack of evidence for Lrrk2 in alpha-synuclein pathological inclusions. Ann. Neurol.2006 60:618-619
    [55]Giasson, B. I., Covy, J. P., Bonini, N. M., Hurtig, H. I., Farrer, M. J., Trojanowski, J. Q., Van Deerlin, V. M. Biochemical and pathological characterization of Lrrk2. AnnNeurol.2006 59:315-322,
    Ross, O. A., Toft, M., Whittle, A. J., Johnson, J. L., Papapetropoulos, S., Mash, D. C., Litvan, I., Gordon, M. F., Wszolek, Z. K., Farrer, M. J., Dickson, D. W. Lrrk2 and Lewy body disease. Ann. Neurol.2006 59:388-393
    [57]Zhu, X., Siedlak, S. L., Smith, M. A., Perry, G., Chen, S. G. LRRK2 protein is a component of Lewy bodies. Ann. Neurol.2006 60:617-618,
    [58]Zimprich, A., Biskup, S., Leitner, P., Lichtner, P., Farrer, M., Lincoln, S., Kachergus, J., Hulihan, M., Uitti, R. J., Calne, D. B., Stoessl, A. J., Pfeiffer, R. F., Patenge, N., Carballo Carbajal, I., Vieregge, P., Asmus, F., Muller-Myhsok, B., Dickson, D. W., Meitinger, T., Strom, T. M., Wszolek, Z. K., Gasser, T. Mutations in LRRK2 cause autosomal-dominant parkinsonism with pleomorphic pathology. Neuron 2004 44:601-607
    [59]Rajput, A., Dickson, D. W., Robinson, C. A., Ross, O. A., Dachsel, J. C., Lincoln, S. J., Cobb, S. A., Rajput, M. L., Farrer, M. J. Parkinsonism, Lrrk2 G2019S, and tau neuropathology Neurology 2006 67:1506-1508,
    [60]Lee, B. D., Shin, J.-H., VanKampen, J., Petrucelli, L., West, A. B., Ko, H. S., Lee, Y.-I., Maguire-Zeiss, K. A., Bowers, W. J., Federoff, H. J., Dawson, V. L., Dawson, T. M. Inhibitors of leucine-rich repeat kinase-2 protect against models of Parkinson's disease. Nature Med.16:998-1000,2010.
    [61]Funayama M, Hsaegawa K, Kowa H, Saito M, Tsuji S, Obata F. A new locus for Parkinson's disease (PARK8) maps to chromosome 12p11.2-q13.1. Ann Neurol 2002;51(3):296-301.
    [62]Kachergus J, Mata IF, Hulihan M, Taylor JP, Lincoln S, Aasly J, Gibson JM, Ross OA, Lynch T, Wiley J, Payami H, Nutt J, Maraganore DM, Czyzewski K, Styczynska M, Wszolek ZK, Farrer MJ, Toft M. Identification of a novel LRRK2 mutation linked to autosomal dominant parkinsonism:evidence of a common founder across European populations. Am J Hum Genet 2005;76(4):672-80.
    [63]Scholz S, Mandel RJ, Fernandez HH, Foote KD, Rodriguez RL, Barton E, Munson S, Singleton A, Okun MS. LRRK2 mutations in a clinic-based cohort of Parkinson's disease. Eur J Neurol 2006;13(12):1298-301.
    [64]Gilks WP, Abou-Sleiman PM, Gandhi S, Jain S, Singleton A, Lees AJ, Shaw K, Bhatia KP, Bonifati V, Quinn NP, Lynch J, Healy DG, Holton JL, Revesz T, Wood NW. A common LRRK2 mutation in idiopathic Parkinson's disease. Lancet 2005;365(9457):415-6.
    [65]Tomiyama H, Li Y, Funayama M, Hsaegawa K, Yoshino H, Kubo S, Sato K, Hattori T, Lu CS, Inzelberg R, Djaldetti R, Melamed E, Amouri R, Gouider-Khouja N, Hentati F, Hatano Y, Wang M, Imamichi Y, Mizoguchi K, Miyajima H, Obata F, Toda T, Farrer MJ, Mizuno Y, Hattori N. Clinicogenetic study of mutations in LRRK2 exon 41 in Parkinson's disease patients from 18 countries. Mov Disord 2006;21(8):1102-8.
    [66]Farrer MJ, Stone JT, Lin CH, Dachsel JC, Hulihan MM, Haugarvoll K, Ross OA, Wu RM. Lrrk2 G2385R is an ancestral risk factor for Parkinson's disease in Asia. Parkinsonism Relat Disord 2007;13(2):89-92.
    [67]Tan EK, Zhao Y, Skipper L, Tan MG, Di Fonzo A, Sun L, Fook-Chong S, Tang S, Chua E, Yuen Y, Tan L, Pavanni R, Wong MC, Kolatkar P, Lu CS, Bonifati V, Liu JJ. The LRRK2 Gly2385Arg variant is associated with Parkinson's disease:genetic and functional evidence. Hum Genet 2007;120(6):857-63.
    [68]Xiromerisiou G, Hadjigeorgiou GM, Gourbali V, Johnson J, Papakonstantinou I, Papadimitriou A, Singleton AB. Screening for SNCA and LRRK2 mutations in Greek sporadic and autosomal dominant Parkinson's disease:identification of two novel LRRK2 variants. Eur J Neurol 2007;14(1):7-11.
    [69]Di Fonzo A, Tassorelli C, De Mari M, Chien HF, Ferreira J, Rohe CF, Riboldazzi G, Antonini A, Albani G, Mauro A, Marconi R, Abbruzzese G, Lopiano L, Fincati E, Guidi M, Marini P, Stocchi F, Onofrj M, Toni V, Tinazzi M, Fabbrini G, Lamberti P, Vanacore N, Meco G, Leitner P, Uitti RJ, Wszolek ZK, Gasser T, Simons EJ, Breedveld GJ, Goldwurm S, Pezzoli G, Sampaio C, Barbosa E, Martignoni E, Oostra BA, Bonifati V. Comprehensive analysis of the LRRK2 gene in sixty families with Parkinson's disease. Eur J Hum Genet 2006;14(3):322-31.
    [70]Berg D, Schweitzer K, Leitner P, Zimprich A, Lichtner P, Belcredi P, Brussel T, Schulte C, Maass S, Nagele T. Type and frequency of mutations in the LRRK2 gene in familial and sporadic Parkinson's disease*. Brain 2005;128(Pt 12):3000-11.
    [71]Mata IF, Kachergus JM, Taylor JP. Lincoln S, Aasly J, Lynch T, Hulihan MM, Cobb SA, Wu RM, Lu CS, Lahoz C, Wszolek ZK, Farrer MJ. Lrrk2 pathogenic substitutions in Parkinson's disease. Neurogenetics 2005;6(4):171-7.71
    [72]Bras JM, Guerreiro RJ, Ribeiro MH, Januario C, Morgadinho A, Oliveira CR, Cunha L, Hardy J, Singleton A. G2019S dardarin substitution is a common cause of Parkinson's disease in a Portuguese cohort. Mov Disord 2005;20(12):1653-5.
    [73]Healy DG, Falchi M, O'Sullivan SS, Bonifati V, Durr A, Bressman S, Brice A, Aasly J, Zabetian CP, Goldwurm S, Ferreira JJ, Tolosa E, Kay DM, Klein C, Williams DR, Marras C, Lang AE, Wszolek ZK, Berciano J, Schapira AH, Lynch T, Bhatia KP, Gasser T, Lees AJ, Wood NW. Phenotype, genotype, and worldwide genetic penetrance of LRRK2-associated Parkinson's disease:a case-control study. Lancet Neurol 2008;7(7):583-90.
    [74]Nichols WC, Pankratz N, Hernandez D, Paisan-Ruiz C, Jain S, Halter CA, Michaels VE, Reed T, Rudolph A, Shults CW, Singleton A, Foroud T. Genetic screening for a single common LRRK2 mutation in familial Parkinson's disease. Lancet 2005;365(9457):410-2.
    [75]Di Fonzo A, Rohe CF, Ferreira J, Chien HF, Vacca L, Stocchi F, Guedes L, Fabrizio E, Manfredi M, Vanacore N, Goldwurm S, Breedveld G, Sampaio C, Meco G, Barbosa E, Oostra BA, Bonifati V. A frequent LRRK2 gene mutation associated with autosomal dominant Parkinson's disease. Lancet 2005;365(9457):412-5.
    [76]Ozelius LJ, Senthil G, Saunders-Pullman R, Ohmann E, Deligtisch A, Tagliati M, Hunt AL, Klein C, Henick B, Hailpern SM, Lipton RB, Soto-Valencia J, Risch N, Bressman SB. LRRK2 G2019S as a cause of Parkinson's disease in Ashkenazi Jews. N Engl J Med 2006;354(4):424-5.
    [77]Lesage S. Durr A, Tazir M, Lohmann E, Leutenegger AL, Janin S, Pollak P, Brice A. LRRK2 G2019S as a cause of Parkinson's disease in North African Arabs. N Engl J Med 2006;354(4):422-3.
    [78]Ishihara L, Warren L, Gibson R, Amouri R, Lesage S, Durr A, Tazir M, Wszolek ZK, Uitti RJ, Nichols WC, Griffith A, Hattori N, Leppert D, Watts R, Zabetian CP, Foroud TM, Farrer MJ, Brice A, Middleton L, Hentati F. Clinical features of Parkinson disease patients with homozygous leucine-rich repeat kinase 2 G2019S mutations. Arch Neurol 2006;63(9):1250-4.
    [79]Hamza TH, Zabetian CP, Tenesa A,Common genetic variation in the HLA region is associated with late-onset sporadic Parkinson's disease. Nat Genet.2010 Sep;42(9):781-785.
    [80]Satake W, Nakabayashi Y, Mizuta I,Genome-wide association study identifies common variants at four loci as genetic risk factors for Parkinson's disease. Nat Genet.2009 Dec;41(12):1303-1307.
    [81]UK Parkinson's Disease Consortium; Wellcome Trust Case Control Consortium 2, Spencer CC,Dissection of the genetics of Parkinson's disease identifies an additional association 5'of SNCA and multiple associated haplotypes at 17q21. Hum Mol Genet. 2011 Jan 15;20(2):345-53
    [82]Simon-Sanchez J, van Hilten JJ, van de Warrenburg B,Genome-wide association study confirms extant PD risk loci among the Dutch. Eur J Hum Genet.2011 Jan 19.
    [83]Simon-Sanchez J, Schulte C, Bras JM, Sharma M,Genome-wide association study reveals genetic risk underlying Parkinson's disease. Nat Genet.2009 Dec; 41(12): 1308-12.
    [84]Tan, E.-K., Kwok, H.-H., Tan, L. C, et al. Analysis of GWAS-linked loci in Parkinson disease reaffirms PARK 16 as a susceptibility locus. Neurology 2010 75: 508-512
    [85]International Parkinson Disease Genomics Consortium Imputation of sequence variants for identifi cation of genetic risks for Parkinson's disease:a meta-analysis of genome-wide association studies Lancet 2011; 377:641-49Greggio E, Zambrano I, Kaganovich A, Beilina A, Taymans JM, Daniels V, Lewis P, Jain S, Ding J, Syed A, Thomas KJ, Baekelandt V, Cookson MR. The Parkinson disease-associated leucine-rich repeat kinase 2 (LRRK2) is a dimer that undergoes intramolecular autophosphorylation. J Biol Chem 2008;283(24):16906-14
    [86]Gallo KA, Johnson GL. Mixed-lineage kinase control of JNK and p38 MAPK pathways. Nat Rev Mol Cell Biol 2002;3(9):663-72.87
    [87]White LR, Toft M, Kvam SN, Farrer MJ, Aasly JO. MAPK-pathway activity, Lrrk2 G2019S, and Parkinson's disease. J Neurosci Res 2007;85(6):1288-94.
    [88]Plowey ED, Cherra SJ,3rd, Liu YJ, Chu CT. Role of autophagy in G2019S-LRRK2-associated neurite shortening in differentiated SH-SY5Y cells. J Neurochem 2008; 105(3):1048-56.
    [89]Habig K, Walter M, Poths S, Riess O, Bonin M. RNA interference of LRRK2-microarray expression analysis of a Parkinson's disease key player. Neurogenetics 2008;9(2):83-94.
    [90]Paisan-Ruiz C, Lang AE, Kawarai T, Sato C, Salehi-Rad S, Fisman GK, Al-Khairallah T, St George-Hyslop P, Singleton A, Rogaeva E. LRRK2 gene in Parkinson disease: mutation analysis and case control association study. Neurology 2005;65(5):696-700.
    [91]Dachsel JC, Mata IF, Ross OA, Taylor JP, Lincoln SJ, Hinkle KM, Huerta C, Ribacoba R, Blazquez M, Alvarez V, Farrer MJ. Digenic parkinsonism:investigation of the synergistic effects of PRKN and LRRK2. Neurosci Lett 2006;410(2):80-4.
    [92]Lee HJ, Khoshaghideh F, Lee S, Lee SJ. Impairment of microtubule-dependent trafficking by overexpression of alpha-synuclein. Eur J Neurosci 2006;24 (11):3153-62.
    [93]Gandhi PN, Wang X, Zhu X, Chen SG, Wilson-Delfosse AL. The Roc domain of leucine-rich repeat kinase 2 is sufficient for interaction with microtubules. J Neurosci Res 2008;86(8):1711-20.
    [94]Gillardon F. Leucine-rich repeat kinase 2 phosphorylates brain tubulin-beta isoforms and modulates microtubule stability--a point of convergence in parkinsonian neurodegeneration? J Neurochem 2009; 110(5):1514-22.
    [95]Gehrke, S., Imai, Y., Sokol, N., Lu, B. Pathogenic LRRK2 negatively regulates microRNA-mediated translational repression. Nature 466:637-641,2010.10
    [96]Imai, Y. et al. Phosphorylation of 4E-BP by LRRK2 affects the maintenance of dopaminergic neurons in Drosophila. EMBO J.27,2432-2443 (2008).
    [97]Tain, L. S. et al. Rapamycin activation of 4E-BP prevents parkinsonian dopaminergic neuron loss. Nature Neurosci.12,1129-1135 (2009).97
    [98]Kapahi, P. et al. With TOR, less is more:a key role for the conserved nutrient-sensing TOR pathway in aging. Cell Metab.11,453-465 (2010).98
    [99]Hands, S. L., Proud, C. G. & Wyttenbach, A. mTOR's role in ageing:protein synthesis or autophagy? Aging 1,586-597 (2009).99
    [100]Enright A J, John B, Gaul U, et al. MicroRNA targets in Drosophila. Genome Biol, 2003,5(1):R1100
    [101]14 John B, Enright A J, Aravin A, et al. Human microRNA targets. PLoS Biol,2004, 2(11):e363101
    [102]Lewis B P, Shih I H, Jones-Rhoades M W, et al. Prediction of mammalian microRNA targets. Cell,2003,115(7):787-798102
    [103]Lewis B P, Burge C B, Bartel D P. Conserved seed pairing, often anked by adenosines indicates that thousands of human genes are MicroRNA targets. Cell,2005,120(1): 15-20 103
    [104]Andrew G, Kyle K F, Wendy K J. MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Molecular Cell,2007,27(1):91-105 104
    [105]Rehmsmeier M, Steffen P, Hochsmann M, et al. Fast and effective prediction of microRNA/target duplexes. RNA,2004,10(10):1507-1517
    [106]Kruger J, Rehmsmeier M. RNAhybrid:microRNA target prediction easy, fast and flexible. Nucleic Acids Res,2006,34:W451-454
    [107]Kiriakidou M, Nelson P T, Kouranov A, et al. A combined computational experimental approach predicts human microRNA targets.Genes Dev,2004,18(10): 1165-1178
    [108]Krek A, Grun D, Poy M N, et al. Combinatorial microRNA target predictions. Nature Genet,2005,37(5):495-500
    [109]Grun D, Wang Y, Langenberger D, et al. MicroRNA target predictions across seven Drosophila species and comparison to mammalian targets. PLoS Comput Biol,2005, 1(1):e13
    [110]Miranda K C, Huynh T, Tay Y, et al. A pattern-based method for the identification of microRNA binding sites and their corresponding heteroduplexes. Cell,2006,126(6): 1203-1217110
    [111]J. Robin Lytle, Therese A. Yario, and Joan A. Steitz, et al.Target mRNAs are repressed as efficiently by microRNA-binding sites in the 5'UTR as in the 3'UTR Proc Natl Acad Sci U S A.2007 June 5; 104(23):9667-9672
    [112]P. Sethupathy, M. Megraw,, A. G. Hatzigeorgiou,et al. A guide through present computational approaches for the identification of mammalian microRNA targets.Nat Methods,2006,3(11),881-886.
    [113]Welch C, Chen Y, Stallings R L. MicroRNA-34a functions as a potential tumor suppressor by inducing apoptosis in neuroblastoma cells. Oncogene,2007,26(34): 5017-5022
    [114]Sell, S. Stem Cells Handbook (Humana, Totowa, New Jersey,2003).
    [115]Lin, H. Cell biology of stem cells:an enigma of asymmetry and self-renewal. J. Cell Biol.180,257-260(2008).
    [116]Lin, H. The stem-cell niche theory:lessons from flies. Nature Rev. Genet.3,931-940 (2002).
    [117]Blakaj, A. & Lin, H. Piecing together the mosaic of early mammalian development through microRNAs. J. Biol. Chem.283,9505-9508 (2008).
    [118]Rana, T. M. Illuminating the silence:understanding the structure and function of small RNAs. Nature Rev. Mol. Cell Biol.8,23-36 (2007).
    [118]Yangming Wangl, Rostislav Medvidl, Collin Melton 1,DGCR8 is essential for microRNA biogenesis and silencing of embryonic stem cell self-renewal Nature Genetics 2007,39,380-385
    [119]Yu, J. et al. Induced pluripotent stem cell lines derived from human somatic cells. Science 318,1917-1920 (2007).
    [120]Viswanathan, S. R., Daley, G. Q. & Gregory, R. I. Selective blockade of microRNA processing by Lin28. Science 320,97-100 (2008).
    [121]Rybak, A. et al. A feedback loop comprising lin-28 and let-7 controls pre-let-7 maturation during neural stemcell commitment. Nature Cell Biol.10,987-993 (2008).
    [122]Newman, M. A., Thomson, J. M. & Hammond, S. M. Lin-28 interaction with the Let-7 precursor loop mediates regulated microRNA processing. RNA 14,1539-1549 (2008).
    [123]Smirnova, L. et al. Regulation of miRNA expression during neural cell specification. Eur. J. Neurosci.2005 21,1469-1477
    [124]Krichevsky, A. M., Sonntag, K. C., Isacson, O. & Kosik, K. S. Specific microRNAs modulate embryonic stem cell-derived neurogenesis. Stem Cells 2006.24,857-864.
    [125]Visvanathan, J., Lee, S., Lee, B., Lee, J. W. & Lee, S. K. The microRNA miR-124 antagonizes the anti-neural REST/SCP1 pathway during embryonic CNS develop-ment. Genes 2007 Dev.21,744-749
    [126]Yeo, M. et al. Small CTD phosphatases function in silencing neuronal gene expression. Science 2005。307,596-600
    [127]Miklossy, J., Arai, T., Guo, J., Klegeris, A., Yu, S., McGeer, E., & McGeer, P. (2006). LRRK2 expression in normal and pathologic human brain and in human cell lines. Journal of neuropathology and experimental neurology,65(10),953-963.
    [128]Galter D, Westerlund M, Carmine A, LRRK2 expression linked to dopamine-innervated areas. Ann Neurol.2006 Apr;59(4):714-719.
    [129]Higashi, S., Biskup, S., West, A., Trinkaus, D., Dawson, V., Faull, R. M., Waldvogel, H., et al. (2007). Localization of Parkinson□s disease-associated LRRK2 in normal and pathological human brain. Brain Research,1155(0006-8993
    [130]Sabrina Zechel, Andreas Meinhardt, Klaus Unsicker, et al. Expression of leucine-rich-repeat-kinase 2 (LRRK2) during embryonic development International Journal of Developmental Neuroscience Vol.28, Issue 5, August 2010, Pages 391-399
    [131]Patrick S. Mitchell, Rachael K. Parkin, Evan M. Kroh, et al. Circulating microRNAs as stable blood-based markers for cancer detection. PNAS July 29,2008.vol.105 no. 30 10513-10518
    [132]Xi Chenl,, Yi Ba2,, Lijia Ma3,4,, Characterization of microRNAs in serum:a novel class of biomarkers for diagnosis of cancer and other diseases Cell Research (2008):1-10.
    [133]Bartel, D. P. MicroRNAs:target recognition and regulatory functions. Cell 136, 215-233 (2009).
    [134]Carthew, R. W. & Sontheimer, E. J. Origins and mechanisms of miRNAs and siRNAs. Cell 136,642-655 (2009).
    [135]Chekulaeva,M. & Filipowicz,W.Mechanisms of miRNA-mediated post-transcriptional regulation in animal cells. Curr. Opin. Cell Biol.21,452-460 (2009).
    [136]Fabian, M. R., Sonenberg, N. & Filipowicz, W. Regulation of mRNA translation and stability by microRNAs. Annu. Rev. Biochem.79,351-379 (2010).
    [137]Kim, V. N., Han, J. & Siomi, M. C. Biogenesis of small RNAs in animals. Nature Rev. Mol. Cell Biol.10,126-139 (2009).
    [138]Lukiw W J. Micro-RNA speciation in fetal, adult and Alzheimer's disease hippoca-mpus. Neuroreport,2007,18(3):297-300
    [139]Krichevsky A M, King K S, Donahue C P, et al. A microRNA array reveals extensive regulation of microRNAs during brain development. RNA,2003,9(10):1274-1281
    [140]Wang W X, Rajeev B W, Stromberg A J, et al. The expression of microRNA miR-107 decreases early in Alzheimer's disease and may accelerate disease progression through regulation of beta-site amyloid precursor protein-cleaving enzyme 1. J Neurosci,2008, 28(5):1213-1223
    [141]Karres J S, Hilgers V, Carrera I, et al. The conserved microRNA miR-8 tunes atrophin levels to prevent neurodegeneration in Drosophila. Cell,2007,131(1):136-145
    [142]Jongpil Kim, Keiichi Inoue, Jennifer Ishii,et al. A MicroRNA Feedback Circuit in Midbrain Dopamine Neurons Science 31 August 2007:1220-1224.
    [143]Gaofeng Wang, Joelle M Van Der Walt, Gregory Mayhew, et al. Variation in the miRNA-433 Binding Site of FGF20 Confers Risk for Parkinson Disease by Overexpression of a-synuclein. The American Journal of Human Genetics 2008 Vol. 82, Issue 2:283-289
    [144]Eunsung Junn1, Kang-Woo Lee, Byeong Seon Jeong, et al. Repression of a-synuclein expression and toxicity by microRNA-7. PNAS August 4,2009 vol.106 no.31 13052-13057
    [145]Johnson, S.M. et al. (2005) RAS is regulated by the let-7 microRNA family. Cell 120, 635-647
    [146]Cogswell, J.P. et al. (2008) Identification of miRNA changes in Alzheimer's disease brain and CSF yields putative biomarkers and insights into disease pathways. J. Alzheimers Dis.14,27-41
    [147]Hebert, S.S. et al. (2008) Loss of microRNA cluster miR-29a/b-1 in sporadic Alzheimer's disease correlates with increased BACE1/bsecretase expression. Proc. Natl. Acad. Sci. U. S. A.105,6415-6420
    [148]Fukumoto, H. et al. (2002) b-secretase protein and activity are increased in the neocortex in Alzheimer disease. Arch. Neurol.59,1381-1389
    [149]Holsinger, R.M. et al. (2002) Increased expression of the amyloid precursor b-secretase in Alzheimer's disease. Ann. Neurol.51,783-786
    [150]Achard, P. et al. (2004) Modulation of floral development by a gibberellin-regulated microRNA. Development 131,3357-3365
    [151]Calin, G.A. et al. (2007) Ultraconserved regions encoding ncRNAs are altered in human leukemias and carcinomas. Cancer Cell 12,215-229
    [152]Lesage S, Durr A, Tazir M, Lohmann E, Leutenegger AL, Janin S, Pollak P, Brice A. LRRK2 G2019S as a cause of Parkinson's disease in North African Arabs. N Engl J Med 2006;354(4):422-3.
    [153]Shamol Saha, Maria D. Guillily, Andrew Ferree, et al. LRRK2 Modulates Vulnerability to Mitochondrial Dysfunction in Caenorhabditis elegans The Journal of Neuroscience,22 July 2009,29(29):9210-9218
    [154]Mortiboys Heather, Johansen Krisztina K, Aasly Jan O, et al.Mitochondrial impairment in patients with Parkinson disease with the G2019S mutation in LRRK2.Neurology 2010 Nov 30; 75; (22):2017-20
    [155]Carthew, R. W. & Sontheimer, E. J. Origins and mechanisms of miRNAs and siRNAs. Cell 136,642-655 (2009).
    [156]Kim, V. N., Han, J. & Siomi, M. C. Biogenesis of small RNAs in animals. Nature Rev. Mol. Cell Biol.10,126-139 (2009).
    [157]Ghildiyal, M., Xu, J., Seitz, H., Weng, Z. & Zamore, P. D. Sorting of Drosophila small silencing RNAs partitions microRNA strands into the RNA interference pathway. RNA 16,43-56 (2010).
    [158]Davis B. N. & Hata, A. Regulation of microRNA biogenesis:a miRiad of mechanisms. Cell Commun. Signal 7,18 (2009)
    [159]Krol, J. et al. Structural features of microRNA (miRNA) precursors and their relevance to miRNA biogenesis and small interfering RNA/short hairpin RNA design.J:Biol. Chem.279,42230-42239 (2004).
    [160]Han, J. et al. Posttranscriptional crossregulation between Drosha and DGCR8. Cell 136,75-84(2009).161
    [161]Triboulet, R., Chang, H. M., Lapierre, R. J. & Gregory, R. I. Post-transcriptional control of DGCR8 expression by the Microprocessor. RNA 15,1005-1011 (2009).
    [162]Chendrimada, T. P. et al.TRBP recruits the Dicer complex to Ago2 formicroRNA processing and gene silencing. Nature 436,740-744 (2005).
    [163]Czech, B. et al. Hierarchical rules for Argonaute loading in Drosophila. Mol. Cell 36, 445-456 (2009).
    [164]Okamura, K., Liu, N. & Lai, E. C. Distinct mechanisms for microRNA strand selection by Drosophila Argonautes. Mol. Cell 36,431-444 (2009).
    [165]Cheloufi, S., Dos Santos, C. O., Chong, M. M. & Hannon, G. J. A dicer-independent miRNA biogenesis pathway that requires Ago catalysis. Nature 465,584-589 (2010).
    [166]Cifuentes, D. et al. A Novel miRNA processing pathway independent of Dicer requires Argonaute2 catalytic activity. Science 328,1694-1698 (2010).
    [167]Diederichs, S. & Haber, D. A. Dual role for argonautes in microRNA processing and posttranscriptional regulation of microRNA expression. Cell 131,1097-1108 (2007).
    [168]Wang-Xia Wang, Bernard W,Rajeev, et al.Arnold J. Stromberg,2 The Expression of MicroRNA miR-107 Decreases Early in Alzheimer's Disease and May Accelerate Disease Progression through Regulation of-Site Amyloid Precursor Protein Cleaving Enzyme 1 The Journal of Neuroscience, January 30,2008 28(5):1213-1223
    [169]过表达a-synuclein及帕金森病相关突变对人胚胎干细胞向多巴胺能神经元分化的影响 李海波2008,硕士学位论文
    [170]Lukiw WJ, Zhao Y, Cui JG.An NF-kappaB-sensitive micro RNA-146a-mediated inflammatory circuit in Alzheimer disease and in stressed human brain cells. J Biol Chem.2008 Nov 14; 283(46):31315-31322
    [171]Hebert SS, Horre K, Nicolai L, et al.Loss of microRNA cluster miR-29a/b-1 in sporadic Alzheimer's disease correlates with increased BACE1/beta-secretase expression. Proc Natl Acad Sci U S A.2008 Apr 29; 105(17):6415-6420.
    [172]Hebert SS, Horre K, Nicolai L, et al. MicroRNA regulation of Alzheimer's Amyloid precursor protein expression. Neurobiol Dis.2009 Mar;33(3):422-428
    [173]Cogswell JP, Ward J, Taylor IA, et al. Identification of miRNA changes in Alzheimer's disease brain and CSF yields putative biomarkers and insights into disease pathways. J Alzheimers Dis.2008 May; 14(1):27-41.
    [174]Nunez-Iglesias J, Liu CC, Morgan TE, et al.Joint genome-wide profiling of miRNA and mRNA expression in Alzheimer's disease cortex reveals altered miRNA regulation. PLoS One.2010 Feb 1; 5(2):e88-98.
    [175]Plowey ED, Cherra SJ 3rd, Liu YJ,et al.Role of autophagy in G2019S-LRRK2-associated neurite shortening in differentiated SH-SY5Y cells. J Neurochem. 2008 May; 105(3):1048-1056.
    [176]Alegre-Abarrategui J, Christian H, Lufino MM, et al.LRRK2 regulates autophagic activity and localizes to specific membrane microdomains in a novel human genomic reporter cellular model. Hum Mol Genet.2009 Nov 1; 18(21):4022-4034.
    [177]Packer, A. N., Xing, Y., Harper, S. Q., et al. The bifunctional microRNA miR-9/ miR-9* regulates REST and CoREST and is downregulated in Huntington's disease. J. Neurosci.200828(14341-14346)
    [178]Zuccato, C. et al. Huntingtin interacts with REST/NRSF to modulate the transcription of NRSE-controlled neuronal genes. Nature Genet.2003 (35):76-83
    [179]Conaco, C., Otto, S., Han, J. J. & Mandel, G.Reciprocal actions of REST and a microRNA promote neuronal identity. Proc. Natl Acad. Sci. USA,2006,103: 2422-2427
    [180]Johnson, R. et al. A microRNA-based gene dysregulation pathway in Huntington's disease. Neurobiol. Dis.2008,29:438-445

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700