莱菔硫烷诱导人肝瘤HepG-2细胞G_2/M期阻滞及凋亡的机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
据不完全统计,我国每年新增癌症病人160万。据WHO预测,到2020年世界癌症患者将增加到1470万人。因此,恶性肿瘤仍是本世纪严重危害人类健康的主要疾病之一。其中,肝癌是恶性程度很高的消化系肿瘤之一,在全世界范围内每年发病人数62.6万,发病率在全部恶性肿瘤中位居第六;每年死亡人数58.9万,致死率仅次于肺癌和胃癌位列全部癌症的第三位,且病死率呈逐年升高的趋势。目前,肝癌的治疗方法主要以手术、放疗和化疗为主,但这些方法大都毒副作用较大,很多患者最终不是死于癌症本身而是死于放化疗产生的毒副作用。因此,新型高效低毒抗癌药物的研制开发已经成为优化肿瘤治疗策略以及最终攻克癌症的希望所在。
     莱菔硫烷(sulforaphane, SFN)是天然存在于十字花科植物中含有的一种异硫氰酸盐(isothiocyanates, ITCs)类物质,是十字花科植物中的硫代葡萄糖苷的酶解产物,在绿花椰菜中含量最高。大量研究表明,异硫氰酸盐可选择性地抑制Ⅰ相酶的活性,诱导Ⅱ相酶的活性,降低致癌物的活化,保护机体少受甚至不受损伤,显示出很强的化学预防作用。目前认为,SFN不仅在肿瘤发生的多个阶段发挥抑癌作用,而且它还是潜在的肿瘤治疗药物。SFN与肿瘤的关系研究正成为抗肿瘤药物研究领域的热点。
     虽然关于肿瘤发病机制的学说很多,但总而言之,肿瘤是一类细胞周期紊乱和凋亡异常性疾病。以调控细胞周期和诱导细胞凋亡为靶点,寻找相关药物用于恶性肿瘤的治疗为抗肿瘤药物的研究提供了新的思路。本论文前期研究发现,绿花椰菜中的ITCs能够诱导人肝癌细胞系HepG-2细胞发生凋亡,进一步研究发现SFN是其中含量最高、活性最强的抗肝癌细胞活性成分。因此,本论文在前期工作的基础上,以人肝癌HepG-2细胞为对象,从细胞周期调控和诱导凋亡入手,系统研究SFN的抗肿瘤作用机制,为今后SFN作为抗肝癌药物的开发提供科学依据。
     1莱菔硫烷抑制人肝癌HepG-2细胞增殖和诱导凋亡作用的研究
     1.1莱菔硫烷对人肝癌细胞HepG-2增殖抑制作用研究
     目的:研究SFN对人肝癌HepG-2细胞增殖的抑制作用。方法:采用MTT比色法和SRB法测定SFN对人肝癌HepG-2细胞增殖的抑制率,计算SFN对人肝癌HepG-2细胞的IC50和GI50;采用倒置显微镜观察细胞生长状态。结果:MTT法测定结果表明,不同浓度的SFN(5、10、20、40、80μmol/L)作用于HepG-2细胞24、48、72 h均可显著抑制细胞增殖(P<0.05或P<0.01),并呈一定的时间和剂量依赖性。经计算,SFN对HepG-2细胞24,48和72 h的IC50分别为32.03μmol/L±0.96μmol/L,20.90μmol/L±1.96μmol/L和13.87μmol/L±0.44μmol/L。SRB法测定结果表明,SFN作用于HepG-2细胞48h的IC50为21.80μmol/L,GI50为19.40μmol/L,与MTT结果相印证。倒置相差显微镜下观察到对照组细胞贴壁生长,细胞饱满,边缘清晰;而SFN作用后,贴壁细胞减少,细胞均逐渐变圆,体积变小,折光性减弱。结论:SFN对人肝癌HepG-2细胞的增殖具有较强的抑制作用。
     1.2莱菔硫烷对人肝癌HepG-2细胞周期影响的研究
     目的:研究SFN对人肝癌HepG-2细胞周期阻滞作用。方法:采用PI单染法,应用流式细胞仪分析SFN作用于人肝癌HepG-2细胞后细胞周期的分布变化。结果:10、20、40μmol/L的SFN作用HepG-2细胞48h后,各组G2/M期的细胞比例显著升高,且G2/M期细胞百分比随着药物浓度增加而增大,同时G1期细胞明显减少。SFN浓度达到40μmol/L时出现凋亡峰。结论:SFN可诱导人肝癌HepG-2细胞发生G2/M期阻滞。
     1.3莱菔硫烷诱导人肝癌HepG-2细胞凋亡作用的研究目的:研究SFN对人肝癌HepG-2细胞凋亡诱导作用。方法:采用一步法TUNEL细胞凋亡检测试剂盒原位检测DNA片段化情况;采用Annexin V-FITC/PI双染,激光共聚焦显微镜观察细胞的早期凋亡情况;透射电镜观察肿瘤细胞超微结构变化;采用流式细胞仪(Annexin V-FITC/PI双染法)测定细胞凋亡率。结果:TUNEL法检测结果表明,SFN作用48h后,激光共聚焦显微镜下早期凋亡细胞核显绿色荧光。随着SFN剂量的增加凋亡细胞数量逐渐增多,而空白对照组细胞无明显着色。激光共聚焦显微镜下可见早期凋亡细胞的细胞膜被染成绿色,细胞核无明显着色。细胞膜被染成绿色,细胞核被染成红色是晚期凋亡细胞或坏死细胞。随着剂量的增加,镜下凋亡细胞数量也逐渐增加。电子显微镜下可见对照组细胞的细胞结构清晰,细胞器结构完整,核内染色质分布均匀,线粒体结构正常,细胞表面有微绒毛突起。而SFN作用后,细胞出现典型的凋亡形态,如微绒毛减少,细胞核内染色质固缩、凝集于核膜边界,形成新月状小体,核周间隙扩张,线粒体肿胀,胞浆空泡化,细胞形成凋亡小体。流式细胞仪检测结果表明,10、20、40μmol/L的SFN作用于HepG-2细胞48h后,早期凋亡细胞百分率分别达到27.42%±0.43%、46.53%±0.35%和58.92%±0.48%,与对照组1.6%±0.06%比较,差异有统计学意义(P<0.01)。结论:SFN可诱导人肝癌HepG-2细胞发生凋亡。
     2莱菔硫烷诱导人肝癌HepG-2细胞G2/M期阻滞及凋亡的机制研究
     2.1莱菔硫烷诱导人肝癌HepG-2细胞G2/M期阻滞的机制研究
     目的:研究SFN诱导人肝癌HepG-2细胞G2/M期阻滞的分子作用机制。方法:采用Western Blot法检测SFN对人肝癌HepG-2细胞内CdKl,p-CdKl(Thr14), cyclinB1,Cdc25C,p21等G2/M期相关蛋白表达的影响。结果:10、20、40μmol/L的SFN作用HepG-2细胞48 h后,均可显著下调CdKl, cyclinB1, Cdc25C蛋白表达水平,与对照组比较差异具有统计学意义(P<0.01),同时显著上调p-CdKl(Thr14)和p21蛋白表达水平,与对照组比较差异具有统计学意义(P<0.05或P<0.01)。结论:SFN可通过降低CdK1-cyclinB1复合物的形成,同时通过下调Cdc25C表达、上调p21表达来抑制CdK1或CdKl-cyclinBl复合物的活性,诱导HepG-2细胞发生G2/M期阻滞。
     2.2莱菔硫烷通过线粒体途径诱导人肝癌HepG-2细胞凋亡的机制研究
     目的:研究SFN诱导人肝癌HepG-2细胞凋亡的分子作用机制。方法:采用酶活力检测试剂盒测定SFN对人肝癌HepG-2细胞Caspase-3,-8,-9活性的影响,采用激光共聚扫描焦显微镜测定细胞内线粒体膜电位(Δψm)和钙离子浓度,采用流式细胞仪测定人肝癌HepG-2细胞内ROS含量;采用Western blot法测定SFN对HepG-2细胞内Cyt-c蛋白表达的影响:采用Western blot法和RT-PCR法测定SFN对HepG-2细胞内Bcl-2、Bax表达的影响。结果:不同浓度的SFN作用于HepG-2细胞48h后,细胞线粒体膜电位Δψm随着SFN浓度的升高而逐渐降低,呈一定的剂量依赖关系;20、40μmol/L组FI值与对照组比较差异具有统计学意义(P<0.01)。细胞内钙离子浓度随着SFN浓度的升高而逐渐升高。10、20、40μmol/L SFN剂量组细胞内[Ca2+]i(FI)分别为45.68±10.51、88.62±16.09和176.33±25.14,与对照组比较差异具有统计学意义(P<0.01)。同时,细胞内活性氧水平显著升高,分别为28.74±4.59、52.90±6.61和90.32±5.95,与对照组比较差异具有统计学意义(P<0.01)。RT-PCR法和Western blot法检测结果表明,SFN能下调HepG-2细胞中Bcl-2 mRNA和蛋白的表达水平,同时上调Bax mRNA和蛋白表达水平,且Bcl-2/Bax和Bcl-2mRNA/Bax mRNA随剂量的增加而降低,与对照组比较差异具有统计学意义(P<0.05或P<0.01)。此外,SFN可上调细胞内Cyt-c蛋白表达量,并呈一定的剂量依赖性,与对照组相比差异具有统计学意义(P<0.05)。试剂盒检测结构表明,SFN可升高细胞内Caspase-3,-8,-9活性,并呈一定的剂量依赖性,各剂量组与对照组比较差异具有统计学意义(P<0.05或P<0.01)。结论:SFN可能是通过下调Bcl-2基因表达、上调Bax基因表达,进而诱导线粒体通透性转变孔道(PT孔道)的开放,促进线粒体内Cyt-c向胞浆的释放。释放的Cyt-c可能进一步与Apaf-1、procaspase-9结合形成凋亡体,活化的caspase-9进一步激活下游的caspase-3,最终完成SFN通过线粒体途径诱导HepG-2细胞的凋亡过程。
     2.3莱菔硫烷通过MAPK信号转导途径诱导人肝癌HepG-2细胞凋亡机制研究
     目的:阐明MAPK信号传导通路在SFN诱导人肝癌HepG-2细胞凋亡中的作用。方法:采用Western blot法研究SFN对人肝癌HepG-2细胞中MAPK信号通路相关蛋白P38、p-P38、ERK、p-ERK、JNK/SAPK和p-JNK/SAPK蛋白表达的影响。结果:10、20、40μmol/L的SFN作用人肝癌HepG-2细胞48h后,随着药物浓度的增加,p-P38和p-JNK蛋白表达量逐渐增加,而p-ERK的表达量逐渐降低,与对照组比较差异具有统计学意义(P<0.05或P<0.01)。同时,P38、ERK和JNK蛋白相对表达量与对照组相比并无显著性差异(P>0.05)。结论:MAPK信号转导途径在SFN诱导人肝癌HepG-2细胞周期阻滞和凋亡过程中发挥重要作用,SFN可通过启动MAPK信号通路诱导人肝癌HepG-2细胞G2/M期阻滞进而引起细胞凋亡。
     结论
     SFN对人肝癌HepG-2细胞具有显著地抗肿瘤作用,其可能的作用机制如下:①SFN可通过降低CdK1-cyclinB1复合物的形成,同时通过下调Cdc25C表达、上调p21表达来抑制CdK1或CdK1-cyclinB1复合物的活性,诱导HepG-2细胞发生G2/M期阻滞;②SFN可通过下调Bcl-2基因表达、上调Bax基因表达,进而诱导线粒体通透性转变孔道(PT孔道)的开放,促进线粒体内Cyt-c向胞浆的释放,进而激活caspase-9和下游的caspase-3,最终通过线粒体途径诱导HepG-2细胞发生凋亡;③SFN可通过激活p38MAPK信号转导通路,作用于Cdc25C磷酸酶而使其失活,导致其无法激活Cdk1而将细胞阻滞于G2/M期;同时,通过促进fas/fasL介导的细胞凋亡途径激活Caspase-8,启动Caspase级联反应而诱导HepG-2细胞凋亡,但这一推测仍有待研究证实;④SFN可通过下调p-ERK的表达抑制ERK通路的激活,进而抑制Bcl-2所致的抗凋亡作用,促进细胞凋亡;⑤SFN可通过促进JNK的磷酸化促进线粒体介导的细胞凋亡;同时,激活Fas/FasL介导的细胞凋亡途径而激活Caspase-8,最终激活Caspase-3诱导细胞凋亡;活化的JNK/SAPKs还可通过翻译后的磷酸化修饰稳定p21的活性,进而抑制Cdkl的活化,诱导细胞发生G2/M期阻滞。
     本研究的创新点
     1.首次研究发现启动G2/M期DNA损伤检查点调节机制是SFN诱导人肝癌HepG-2细胞周期阻滞的主要分子机制。
     2.首次研究发现线粒体介导的凋亡通路是SFN诱导人肝癌HepG-2细胞凋亡的主要途径,下调Bcl-2基因表达、上调Bax基因表达是SFN启动内源性凋亡通路的关键。
     3.首次研究发现MAPK信号通路是SFN诱导人肝癌HepG-2细胞G2/M期阻滞和凋亡的关键调节通路和重要作用靶点。
According to incomplete statistics, every year there occur about 1.6 million new cancer sufferers in our country:According to the predication of WHO, the number of cancer patients will increased to 14.7 million. Malignant tumor is one of the severe diseases harmful to human health. Liver cancer is a tumor of digestive system with high degree of malignancy, which annually causes more than 626,000 cases. The incidence of liver cancer ranks the 6th among whole malignant tumor. The death toll of liver cancer is 589,000 every year and the lethality occupies the first place next to lung carcinoma and gastric carcinoma. The mortality is higher gradually in recent years. Surgical procedures and postoperative chemotherapy and radiotherapy are the main treatments at present, but which have more side effects. Many of patients died with not liver cancer but the side effects of chemotherapy and radiotherapy. Therefore, the preparation of new-type antineoplastic agents of high efficiency and low toxicity holds the best hope for the success of tumor therapy.
     Sulforaphane (SFN), one of naturally occurring isothiocyanates (ITCs) found in crucifer, is the enzymatic hydrolysate of Glucosinolates, which shows the highest amount in Brassica oleracea Linnaeus var. botrytis Linnaeus. A large number of studies show that ITCs can inhibit the activity of the phase I drug metabolizing enzyme, induce the activity of the phase II drug metabolizing enzyme and decrease activation of carcinogen, which can protect against injury. ITCs show a strong chemopreventive potential. At present, SFN not only restrains tumor during different stages of carcinogenesis, but also is a potential drug in the oncotherapy. The antitumor effect of SFN is a research focus in antineoplastic research field.
     Though there are many theories on pathogenesis of cancer, in a word, cancer is a diseases associated to cell cycle and apoptosis deregulation. Researching the drug to regulate the cell cycle and induce apoptosis is a new way of tumor therapy. Our previous research proved that ITCs in Brassica oleracea Linnaeus var. botrytis Linnaeus could induce human hepatoma HepG-2 cells apoptosis. Further study found that SFN was the anti-hepatoma component and its content is the highest and the activity is the strongest. Therefore, based on previous research results, in this study, human hepatoma cell Line HepG-2 was chosen as research object. The objective of this article is to investigate systematically the antitumor mechanism of SFN starting from regulation of cell cycle and induction of apoptosis and to provide scientific basis for future the anti-hepatoma drug research and development.
     1 Study on the effect of SFN on the proliferation inhibition and apoptosis induction in HepG-2 cells
     1.1 Study on the effect of SFN on the proliferation inhibition in HepG-2 cells OBJECTIVE:To investigate the effect of SFN on the proliferation inhibition in HepG-2 cells. METHODS:MTT assay and SRB assay were used to determine the proliferation-inhibition ratio of SFN on HepG-2 cells and calculate IC50 and GI50; Inverted microscope was used to observe the growth situation of the cells. RESULTS:The results of MTT assay showed that SFN of different concentration (5,10,20,40 and 80μmol/L) could inhibit cell growth at 24h, 48h and 72h time points in a time and dose-dependent manner. IC50 of SFN of 24h,48h and 72h were 32.03±0.96,20.90±1.96和13.87±0.44μmol/L respectively. The results of MTT assay showed that IC50, GI50, TGI and LC50 were 21.80μmol/L,19.40μmol/L,26.68μmol/L and 61.87μmol/L, which agreed well with the results obtained by MTT assay. Under inverted microscope, the cells of control group grew adhering to the wall showing plump appearance and clear edge. After exposure to SFN, adherent cells decreased. HepG-2 cells became rounded and shrunken gradually with lower refraction. CONCLUSION:SFN can significantly inhibit the proliferation in SGC-7901 cells.
     1.2 Study on the effect of SFN on cell cycle arrest in HepG-2 cells OBJECTIVE:To investigate cell cycle arrest effects of SFN in HepG-2 cells. METHODS: Cells were marked by PI and FCM was used to analysis the cell cycle distribution of HepG-2 cells after exposed to SFN. RESULTS:After SFN with different concentration (10,20,40μmol/L) treated on HepG-2 cells for 48 h, the proportion of G2/M phase cell increased significantly while the proportion of G1 phase cell decreased obviously. The percentage of cells in G2/M phase was increased with increasing concentrations of SFN. The subdiploid peak was founded in 40μmol/L dosage group of SFN. CONCLUSION:SFN can arrest HepG-2 cells on G2/M phase.
     1.3 Study on the effect of SFN on the inducing apoptosis in HepG-2 cells OBJECTIVE:To investigate the apoptotic effect of SFN in HepG-2 cells. METHODS:In situ detection of DNA fragments by terminal deoxyribonucleotide transferase (TdT)-mediated dUTP nick end labeling (TUNEL) was performed using the one-step TUNEL apotosis assay kit; Cells were doubly marked by Annexin V-FITC/PI, the typical morphological changes of early apoptosis in HepG-2 cells were observed with LCSM; TEM was used to observe the apoptotic morphology and the ultrastructure changes of HepG-2 cells; Cells were doubly marked by Annexin V-FITC/PI, the apoptosis rate of SGC-7901 cells was detected. RESULTS:The results of TUNEL assay showed that after SFN treated on HepG-2 cells for 48 h, under LCSM, the cell nuclear of the early apoptosis cells showed green fluorescent. The number of apoptosis cells was increased with increasing concentrations of SFN while the cells of control group were no significant coloring. Under LCSM, cells that stain positive for Annexin V-FITC (green) and negative for PI are undergoing apoptosis. Cells that stain positive for both Annexin V-FITC (green) and PI (red) are either in the end stage of apoptosis, or are undergoing necrosis. The number of early and late apoptotic cells increased in a dose-dependent manner. Under TEM, the morphological characteristics such as the clear cellularity, complete structure of organelles, the chromatin well distributing in the cell nuclear, the normal mitochondria and the microvilli on the cell membrane were commonly seen in these tumor cells of control group. After exposure to SFN, some tumor cells showed typical apoptotic morphology, including a decrease in microvilli, chromatin condensation, crescent margination of chromatin against the nuclear envelope, chromatin crescent formation, enlargement of perinuclear space, mitochondria swelling, cytoplasmic vacuolation and formation of apoptotic body. FCM analysis result showed that the apoptosis rates of HepG-2 cells treated with 10,20,40μmol/L of SFN for 48 h were 27.42%±0.43%,46.53%±0.35% and 58.92%±0.48%, which were significantly higher than that of the control (1.6%±0.06%) (P<0.01). CONCLUSION:SFN can induce apoptosis in SGC-7901 cells.
     2 Study on the mechanism of G2/M phase arrest and apoptosis induced by SFN in HepG-2 cells
     2.1 Study on the mechanism of G2/M phase arrest induced by SFN in HepG-2 cells
     OBJECTIVE:To investigate the molecular mechanism of G2/M phase arrest induced by SFN in HepG-2 cells. METHODS:Western blot assay was used to investigate the G2/M phase correlative protein expression of CdKl, p-CdKl(Thrl4), cyclinBl, Cdc25C and p21. RESULTS:After treated with SFN at the dosage of 10,20,40μmol/L on HepG-2 cells for 48 h, the expression of CdKl, cyclinBl and Cdc25C protein were down-regulated, which were significantly lower than that of control group (P<0.01). Meanwhile, the expression of p-CdKl(Thrl4) and p21 were significantly up-regulated (P<0.05 or P<0.01). CONCLUSION:SFN can induce G2/M phase arrest in HepG-2 cells through reducing complex formation of CdKl-cyclinBl and inhibiting the activity of CdKl or CdKl-cyclinBl by down-regulation of Cdc25C protein and up-regulation of p21 protein.
     2.2 Study on the mechanism of apoptosis via mitochondria pathway induced by SFN in HepG-2 cells
     OBJECTIVE:To investigate the molecular mechanism of cell apoptosis via mitochondria pathway induced by SFN in HepG-2 cells. METHODS:Caspase Assay Kit was used to detect the activity of caspase-3,-8,-9 in HepG-2 cells; LCSM was used to detect the mitochondrial transmembrane potential (△Ψm) and [Ca2+]i in HepG-2 cells; FCM was used to detect the cellular concentration of ROS in HepG-2 cells; Western blot assay was used to detect the expression of Cyt-c protein; RT-PCR and Western blot assay were used to detect the expression of Bcl-2 and Bax protein and mRNA. RESULTS:After treated with different concentration of SFN for 48 h,△Ψm decreased gradually in a dose dependent manner. At the dose of 10,20 and 40μmol/L of SFN, [Ca2+]I (FI) were 45.68±10.51,88.62±16.09 and 176.33±25.14 respectively, and the intracellular ROS level were 28.74±4.59,52.90±6.61 and 90.32±5.95, which were significantly higher than that in the control group (P<0.01). The results of RT-PCR and Western blot assay showed that SFN could down-regulate the expression of Bcl-2 mRNA and protein, in the meantime, up-regulate the expression of Bax mRNA and protein. SFN could remarkably decrease the ratio of Bcl-2/Bax and Bcl-2 mRNA/Bax mRNA compared with control group (P<0.05 or P<0.01). Besides, SFN could significantly up-regulate the expression of Cyt-c in a dose dependent manner compared with control group (P<0.05). Activity kit detection result showed that SFN could increase the activities of Caspase-3,-8,-9 in a dose dependent manner, which were remarkably higher than that of control group (P<0.05 or P<0.01). CONCLUSION:SFN can induce the opening of MPTP by down-regulating the Bcl-2 gene expression and up-regulating the Bax gene expression, and then, improve the release of Cyt-c from mitochondria to the cytoplasm. Cyt-c can further combine with Apaf-1 and procaspase-9 which formed an apoptosome. Then Caspase-9 activates Caspase-3 which may trigger the cytological events in the terminal stage of apoptosis induced by SFN.
     2.3 Study on the mechanism of apoptosis via MAPK pathway induced by SFN in HepG-2 cells
     OBJECTIVE:To investigate the molecular mechanism of cell apoptosis via MAPK pathway induced by SFN in HepG-2 cells. METHODS:Western blot assay was used to detect the MAPK correlative protein expression of P38, p-P38, ERK, p-ERK, JNK/SAPK and p-JNK/SAPK. RESULTS:After treated with SFN at the dosage of 10,20,40μmol/L on HepG-2 cells for 48 h, the expression of p-P38 and p-JNK protein were up-regulated, while p-ERK expression was down-regulated which showed significantly difference compared with control group (P<0.05 or P<0.01). Meanwhile, there were no significant changes on the expression of P38, ERK and JNK protein in HepG-2 cells (P>0.05). CONCLUSION:MAPK pathway plays an important role in the apoptosis induced by SFN in HepG-2 cells. SFN can induce G2/M phase arrest and cell apoptosis in HepG-2 cells through MAPK pathway.
     CONCLUSION
     SFN has remarkably antitumor effect on Human hepatoma HepG-2 cells, and its possible mechanism are as follows:①SFN can induce G2/M phase arrest in HepG-2 cells through reducing complex formation of CdKl-cyclinBl and inhibiting the activity of CdKl or CdKl-cyclinBl by down-regulation of Cdc25C protein and up-regulation of p21 protein.②SFN can induce the opening of MPTP by down-regulating the Bcl-2 gene expression and up-regulating the Bax gene expression, and then, improve the release of Cyt-c from mitochondria to the cytoplasm. Cyt-c can further activate caspase-9 and Caspase-3 which may trigger the cytological events in the terminal stage of apoptosis induced by SFN.③SFN can activate the p38MAPK signaling pathway by up-regulating the expression of p-P38, which can induce G2/M phase arrest by deactivating of Cdc25C and Cdkl. Meanwhile, the up-regulation of p-p38 can promote the activation of caspase-8 and then activate caspase cascade by activating the fas/fasL apoptosis pathway.④SFN can inhibit the activation of ERK pathway by down-regulating p-ERK protein, which can block the expression of Bcl-2 gene and inhibit the anti-apoptosis effect of Bcl-2. This may be one of the most important mechanism of apoptosis inducing effect of SFN.⑤SFN can promote cell apoptosis via mitochandial pathway by improving the phosphorylation of JNK. At the same time, the activation of JNK pathway can promote the activation of caspase-8 and then activate caspase cascade by activating the fas/fasL apoptosis pathway. It can also stabilize the activation of p21, which can inhibit the activation of Cdkl and induce G2/M phase arrest in HepG-2 cells.
     INNOVATIVE POINTS OF CURRENT STUDY
     1. For the first time, the activation of the of G2/M DNA damage checkpoint pathway is found to be the main molecular mechanism of SFN on the G2/M phase arrest in HepG-2 cells.
     2. For the first time, mitochondria pathway is found to be the main approach of SFN on the induction of HepG-2 cell apoptosis, in which, down-regulation of bcl-2 gene expression and up-regulaiton of bax gene expression play a key role.
     3. For the first time, MAPK signaling pathway is found to be the key regulation pathway and the most important effect target of SFN in the inducion of G2/M phase arrest and apoptosis of HepG-2 cells.
引文
[1]张勤丽,牛侨.细胞凋亡机制概述[J].环境与职业医学,2007,24(1):102-107.
    [2]李鸿梅.线粒体在细胞凋亡中的作用[J].齐齐哈尔医学院学报,2006,27(10):328-329.
    [3]KlenerPJr, AnderaL, KlenerP, et al. Cell death signaling Pathways in the pathogenesis and therapy of haematologic malignancies:overview of therapeutic approaches[J]. Folia Biol, 2006,52(4):119-136.
    [4]MeilerJ, Sehuler M. TheraPeutic targeting of apoptotic pathways in cancer [J]. Curr Drug Targets,2006,7(10):1361-1369.
    [5]Fulda S, Debatin KM. Extrinsic versus intrinsic apoptosis pathways in anticancer chemotherapy[J]. Oncogene,2006,25(34):4798-4811.
    [6]Bednarek J, Kilianska ZM. Mitochondrial intermembrane space proteins in apoptosis process[J]. Postepy Biochem,2005,51(4):447-458.
    [7]Mishra DP, Pal R, Shaha C. Changes in cytosolic Ca2+ levels regulate Bcl-x(S) and Bcl-xL expression in spermatogenic cells during apoptotic death[J]. Biol Chem,2006,281(4): 2133-2143.
    [8]Hsu SY, Hsueh AJ. Tissue-specific Bcl-2 protein partners in apoptosis:An ovarian paradigm[J]. Physiol Rev,2000,80(2):593-614.
    [9]Delft Huang DC. How the Bcl-2 famly of proteins interact to regulate to apoptosis[J]. Cell Res,2006,16(2):203-213
    [10]Oltersdorf T, Elmore SW, Shoemaker AR, et al. An inhibitor of Bcl-2 family proteins induces regression of solid tumours[J]. Nature,2005,435(7042):677-681.
    [11]Zhou H, Hou Q, Chai Y, et al. Distinct domains of Bcl-XL are involved in Bax and Bad antagonism and in apoptosis inhibition[J]. Exp Cell Res,2005,309(2):316-328.
    [12]JuinP, Cartron PF, Vallette FM. Activation of Bax by BH3 domains during apoptosis the unfolding of a deadly Plot[J]. Cell Cycle,2005,4(5):637-642.
    [13]Willis SN, Adams JM. Life in the balance:how BH3-only proteins induce apoptosis. Curr O Pin Cell Biol[J].2005,17(6):617-625
    [14]Orrenius S. Mitochondrial regulation of apoptotic cell death[J]. ToxicolLett,2004,149 (123):19-23.
    [15]KimH, Rafiuddin-ShahM, TuHC, et al. Hierarchical regulation of mitochondrion dependent apoptosis by BcL-2 subfamilies[J]. Nat Cell Biol,2006,8(12):1348-58
    [16]沈方,沈倩.细胞凋亡与线粒体通透性转变孔的研究进展[J].浙江大学学报,2005,34(2):191
    [17]李贵昌,吴坤.线粒体通透性改变与细胞凋亡[J].癌变·畸变·突变,2002,14(2):27-130
    [18]尹立国,崔建忠.线粒体通透性转换孔的研究现状[J].华北煤炭医学院学报2007,9(4):486-487
    [19]Li K, Li Y, Shelton J M, et al. Cytochrome c deficiency causes embryoniclethality and attenuates stress-induced apoptosis [J]. Cell,2000,101(4):389-399.
    [20]Deng X, Yin F, Lu X, et al. The apoptotic effect of brucine from the seed of Strychnos nuxvomica on human hepatoma cells is mediated via Bcl-2 and Ca2+ involved mitochondrial pathway[J]. Toxicol Sci,2006,91(1):59-69.
    [21]Skommera J, Wlodkowic D, Deptala A. Larger than life:Mitochondria and the Bcl-2 family[J]. Leukemia Res,2007,31:227-286.
    [22]Barros M H, Netto E S, Kowuhowski A. H2O2 generation in saccharomyces cevevisiae respirtory pet mutans:effect of cytochrome c [J]. Biol Med,2003,35 (2):179-188.
    [23]Hao Z, Gordorn S, Can D, et al. Specific ablation of the apoptotic functions of cytochrome c reveals a differential requirement for cytochrome c and apaf-1 in apoptosis[J]. Cell,2005, 121(4):579-591.
    [24]Porter AG, Urbano AG. Does apoptosis-inducing factor(AIF) have both life and death functions in cells[J]. Bioessays,2006,28(8):834-843.
    [25]Ikai T, Akao Y, Nakagawa Y, et al. Magnolol-induced apoptosis is mediated via the intrinsic pathway with release of AIF from mitochondria in U937 cells[J]. Biol Pharm Bull,2006, 29(12):2498-2501.
    [26]Graziani G, Szabo C. Clinical perspectives of PARP inhibitors[J]. Pharmacol Res,2005,52: 109-118.
    [27]Hong SJ, Dawson TM, Dawson VL. Nuclear and mitochondrial conversations in cell death: PARP-1 and AIF[J]. signaling,2004,25(4):259-264.
    [28]Coutant A, Lebeau J, Bidon-Wagner N, et al. Cadmium-induced apoptosis in lymphoblastoid cell line:involvement of caspase-dependent and independent pathways[J]. Biochemstry, 2006,88:1815-1822.
    [29]Han W, Shi X, Nuttall AL. AIF and endoG translocation in noise exposure induced hair cell death[J]. Hearing Res,2006,211:85-95
    [30]高飞,郭文.线粒体促凋亡蛋白Smac/DIABLO及其与肿瘤的关系[J].肿瘤,2007,27(10):844-846
    [31]李静,刘全宏.线粒体蛋白Smac/DIABLO与细胞凋亡西安文理学院学报:自然科学版[J]2006:9(4)5-10
    [32]MENDOZA FJ, HENSON ES, GIBSON SB. MEKK1-induced apoptosis is mediated by Smac/Diablo release from the mitochondria[J]. Biochem Biophys Res Commun,2005, 331(4):1089-1098.
    [33]王筱冰,张小翠,夏妙红,等.Caspase的活化机制[J].现代生物医学进展,2006,6(3):53-55
    [34]Liang H, Salinas RA, Leal B Z, et al. Caspase-mediated apoptosis and caspase-independent cell death induced by irofulven in prostate cancer cells [J]. Molecular Cancer Therapeutics, 2004,3(11):1385-1396.
    [35]Catherine D, Steven F D. Targeting Apoptotic Pathways in Cancer Cells[J]. Science,2004, 305:1411-1413.
    [36]杨绍杰,孟金萍.细胞凋亡信号传导通路的研究进展[J].中国比较医学杂志,2007,17(5):298-301
    [37]郑德先.免疫细胞死亡受体的信号传导途径及其调节[J].中国免疫学杂志,2003,19(8):519-523.
    [38]刘京梅,金伯泉.肿瘤坏死因子受体超家族成员死亡受体在病毒感染中的作用[J].免疫学杂志,2005,21(3):4-8.
    [39]任满意,张运,隋树建.肿瘤坏死因子相关的凋亡诱导配体及其死亡受体5与急性冠状动脉综合征的关系[J].中国动脉硬化杂志,2007,15(11):842-846.
    [40]Villa-Morales M, Santos J, Perez-Gomez E, et al. A role for the Fas/FasL system in modulating genetic susceptibility to T-cell lymphoblastic lymphomas[J] Cancer Res,2007, 67(11):5107-5116.
    [41]陈儒新,尹福波.死亡受体、配体系统与卵巢肿瘤[J].国外医学计划生育分册,2005,24(4):208-212.
    [42]Pelli N, Floreani A, Torre F, et al. Soluble apoptosis molecules in primary biliary cirrhosis: analysis and commitment of the Fas and tumour necrosis factor-related apoptosis-inducing ligand systems in comparison with chronic hepatitis C[J]. Clin Exp Immunol,2007,148(1): 85-89.
    [43]Yang BF, Xiao C, Li H, Yang SJ, et al. Resistance to Fas-mediated apoptosis in malignant tumours is rescued by KN-93 and cisplatin via downregulation of c-FLIP expression and phosphorylation[J]. Clin Exp Pharmacol Physiol,2007,34(12):1245-1251.
    [44]Schuchmann M, Schulze-Bergkamen H, Fleischer B, et al. Histone deacetylase inhibition by valproic acid down-regulates c-FLIP/CASH and sensitizes hepatoma cells towards CD95- and TRAIL receptor-mediated apoptosis and chemotherapy[J]. Oncol Rep,2006, 15(1):227-230.
    [45]于超,魏莲枝.FLIP、FADD在喉癌中的表达及其临床意义[J].重庆医科大学学报,2006,31(5):694-700。
    [46]臧凤琳,张霖,肖绪祺.FLIP基因在乳腺癌组织中表达的初步研究[J].中国肿瘤临床,2007,34(6):308-311.
    [47]Aoudjehane L, Podevin P, Scatton O, et al. Interleukin-4 induces human hepatocyte apoptosis through a Fas-independent pathway[J]. FASEB J.2007,21(7):1433-1444.
    [48]Blomgran R, Zheng L, Stendahl O. Cathepsin-cleaved Bid promotes apoptosis in human neutrophils via oxidative stress-induced lysosomal membrane permeabilization[J]. J Leukoc Biol,2007,81(5):1213-1223.
    [49]Ho PK, Hawkins CJ. Mammalian initiator apoptotic caspases[J]. FEBS J,2005,272 (21):5436-5453.
    [50]Gu Qing, Wang Ji-de, Harry HX, et al. Activation of the caspase-8/Bid and Bax pathways in aspirin-induced apopto-sisin gastric cancer [J]. Carcinogenesis,2005,26(3):541-546.
    [51]Nair B, Raval G, Mehta P. TNF-alpha inhibitor etanercept and hematologic malignancies: report of a case and review of the literature[J]. Am J Hematol,2007,82(11):1022-1024.
    [52]Tephly LA, Carter AB. Differential expression and oxidation of MKP-1 modulates TNF-alpha gene expression[J]. Am J Respir Cell Mol Biol,2007,37(3):366-374.
    [53]朱汉华,李浪.TNF-α介导的心肌细胞凋亡信号转导通路在心肌损伤中的作用[J].心血管病学进展,2008,29(2):329-331.
    [54]Higuchi Y, Chan TO, Brown MA, et al. Cardioprotection afforded by NF-kappaB ablation is associated with activation of Akt in mice overexpressing TNF-alpha[J]. Am J Physiol Heart Circ Physiol,2006,290(2):H590-588.
    [55]胡璧,王建军,徐根兴.肿瘤坏死因子诱导凋亡配体(TRAIL)抗肿瘤治疗研究进展[J].药学与临床研究,2008,16(3):194-199.
    [56]SchuchmannM, Schulze BH, Fleischer F, et al. Histone deacetylase inhibition by valproic acid down-regulates c2FL IP/CASH and sensitizes hepatoma cells towards CD952 and TRAIL recep tor-mediated apoptosis and chemotherapy[J]. Oncology Reports,2006,15(1):227-230.
    [57]Chou AH, Tsai H, Wei FW, et al. Hepatitis C virus core protein modulates TRA IL-mediated apoptosis by enhancing Bid cleavage and activation of mitochondria apoptosis signaling pathway[J]. Journal of Immunology,2005,174 (4):2160-2166.
    [58]Huang Y, Sheikh MS. TRAIL death receptors and cancer therapeutics [J]. Toxicol Appl Pharmacol,2007,224(3):284-289.
    [59]王辉,赵连三.肿瘤坏死因子相关调亡诱导配体与肝病[J].实用医院临床杂志,2008,5(3):109-111.
    [60]Nieminen AI, Partanen JI, Hau A, et al. c-Myc primed mitochondria determine cellular sensitivity to TRAIL-induced apoptosis[J]. EMBO J,2007,21,26(4):1055-1067.
    [61]Miihlethaler-Mottet A, Flahaut M, Bourloud KB, et al. Histone deacetylase inhibitors strongly sensitise neuroblastoma cells to TRAIL-induced apoptosis by a caspases-dependent increase of the pro- to anti-apoptotic proteins ratio[J]. BMC Cancer,2006,24(6):214.
    [62]Bodmer JL, Holler N, Reynard S, et al. TRAIL receptor-2 signals apoptosis through FADD and caspase-8[J]. Nat Cell Biol,2000,2:241-253.
    [63]Suliman A, Lam A, Datta R, et al. Intracellular mechanisms of TRAIL:apoptosisthrough mitochondrial-dependent and-independent pathways[J]. Oncogene,2001:20(17),2122-2133。
    [64]Chun HJ, Zheng L, Ahmad M, et al. Pleiotropic defects in lymphocyte activation caused by caspase-8 mutations lead to human immunodeficiency[J]. Nature,2002,419:395-416.
    [65]Brooks AD, Sayers TJ. Reduction of antiapoptotic protein cFLIP enhances the susceptibility of human renal cancer cells to TRAIL apoptosis[J]. Cancer Immunol Immunother,2005,54:499-505.
    [66]Dumitru CA, Carpinteiro A, Trarbach T. Doxorubicin enhances TRAIL-induced cell death via ceramide-enriched membrane platforms[J]. Apoptosis,2007,12(8):1533-1541.
    [67]Gadsby K, Deighton C. Characteristics and treatment responses of patients satisfying the BSR guidelines for anti-TNF in ankylosing spondylitis[J]. Rheumatology (Oxford),2007 46(3):439-441.
    [68]Su RY, Chao Y, Chen TY 5-Aminoimidazole-4-carboxamide riboside sensitizes TRAIL-and TNF{alpha}-induced cytotoxicity in colon cancer cells through AMP-activated protein kinase signaling[J]. Mol Cancer Ther,2007,6(5):1562-1571.
    [69]Fiocco U, Sfriso P, Oliviero F. Intra-articular treatment with the TNF-alpha antagonist, etanercept, in severe diffuse pigmented villonodular synovitis of the knee[J]. Reumatismo, 2006,58(4):268-474.
    [70]Chang L, Karin M, Mammalian MAPK kinase signaling cascades[J]. Nature,2001,410 (6824):37-40.
    [71]Irving EA, Bamford M. Role of mitogen-and stress-activated kinases in ischemic injury[J]. J Cereb Blood Flow Metab,2002,22(6):631-647.
    [72]Suh Y. Cell signaling in aging and apoptosis[J]. Mech Ageing Dev,2002,123(8):881-890.
    [73]Lowes VL, Ip NY, Wong YH. Integration of signals from receptor tyrosine kinases and g-protein-coupled receptors[J]. Neurosignals,2002,11(1):5-19.
    [74]Diasinou Fioravante, Paul D. Smolen, John H. Byrne. The 5-HT-and FMRFa-activated signaling pathways interact at the level of the Erk MAPK cascade:Potential inhibitory constraints on memory formation[J]. Neuroscience Letters,2006,396(3):235-240.
    [75]Cullen PJ, Lockyer PJ. Integration of calcium and Ras signaling [J]. Nat Rev Mol Cell Biol, 2002,3 (5):339-348.
    [76]Sharon A. Matheny, Chiyuan Chen, Robert L. Kortum,, et al. Ras regulates assembly of mitogenic signalling complexes through the effector protein IMP [J]. Nature,2004,427 (1): 256-260.
    [77]Lopez-Ilasaca M. Signaling from G-protein-coupled receptors to Mitogen-activated protein (MAP)-kinase cascades [J]. Biochem Pharmacol,1998,56(3):269-277.
    [78]Dong C, Davis RJ, Flavell RA. Signalling by the JNK group of MAP c-Jun N-terminal kinase [J]. J Clin Immunol,2001,21 (4):253-257.
    [79]Gupta S, Barrett T, Whitmarsh AJ, et al. Selective interaction of JNK prote in kinase is forms with transcription factors [J]. EMBO J,1996,15:2760-2770.
    [80]Claire R, Roger J. The JNK signaling transduction pathway[J]. Current Opinion in Genetics & Development,2002,12:14-21.
    [81]Claire R., Weston, Roger J. Davis. The JNK signal transduction pathway[J]. Current Opinion in Genetics & Development,2002,12(1):14-21.
    [82]M Raman, W Chen, M H Cobb.b. Differential regulation and properties of MAPKs[J]. Oncogene,2007,26,3100-3112.
    [83]HolmesWF, Sop rano DR, Sop rano KJ. Early events in the induction of apoptosis in ovarian carcinoma cells by CD37:activation of the p38MAP kinase signal pathway[J]. Oncogene, 2003,22 (41):6377-6386.
    [84]Haper SJ, LoGrasso P. Signalling for survival and death in neurones:the role of stress-activated kinase, JNK and p38 [J]. Cell Signal,2001,13(5):299-310
    [85]Hayashi M, Kim SW, Imanaka-Yoshida K, et al. Targeted deletion of BMK1/ERK5 in adult mice perturbs vascular integrity and leads to endothelial failure. J Clin Invest,2004, 113(8):1138-48
    [86]Elisabetta Rovida, Nadia Navari, Alessandra Caligiuri, et al. ERK5 differentially regulates PDGF-induced proliferation and migration of hepatic stellate cells [J]. Journal of Hepatology,2008,48(1):108-115
    [87]Xinchun Pi, Chen Yan, Bradford C. Berk. Big Mitogen-Activated Protein Kinase (BMK1)/ERK5 Protects Endothelial Cells From Apoptosis[J]. Circulation Research,2004, 94:362-369
    [88]Abe J, Kusuhara M, Ulevitch RJ, et al. big mitogen-activated protein kinasel(BMK1) is a redox-sensitive kinase[J]. J Biol Chem,1996,271:16586-90
    [89]Buschbeck M, Ullrich A. The unique C-terminal tail of the mitogen-activated protein kinase ERK5 regulates its activation and nuclear shuttling[J]. J Biol Chem,2005,280(4): 2659-67
    [90]Dinev D, Jordan BW, Neufeld B, et al. Extracellular signal regulated kinase 5(ERK5) is required for the differentiation of muscle cells[J]. EMBO Rep,2001,2(9):829-34
    [91]Regan CP, Li W, Boucher DM, et al. Erk5 null mice display multiple extraembryonic vascular and emrryonic cardiovascular defects. Proc Natl Acad Sci USA,2002,99(14): 9248-53
    [92]Mehta PB, Jenkins BL, McCarthy L, et al. MEK5 overexpression is associated with metastatic prostate cancer, and stimulates proliferation, MMP-9 expression and invasion[J]. Oncogene,2003,22:1381-9
    [93]Weldon CB, Scandurro AB, Rolfe KW, et al. Identification of mitogen-activated protein kinase as a chemoresistant pathway in MCF-7 cells by using gene expression microarray[J]. Surgery,2002,132(2):293-301
    [94]Liu ZG. Adding facets to TNF signaling, The JNK angle[J]. Mol Cell,2003,12:795-796
    [95]Jiang X, Wang X. Cytochrome promotes caspase-9 activation by inducing nucleotide binding to Apaf-1[J]. J Biol Chem,2000,275:31199-31203
    [96]CHOI W S, YOON S Y, OH T H, et al. Two distinct mechanisms are involved in 6-hydroxydopamine-and MPP+ -induced dopaminergic neuronal cell death:role of caspases, ROS, and JNK[J]. J Neurosci Res,1999,57 (1):86-94.
    [97]方芳,陈晓春,朱元贵,等.JNK的激活在MPP+诱导SHSY5Y细胞凋亡的信号转导中的作用[J].中国病理生理杂志,2003,19(2):198-202
    [98]Micheau O, Tschopp J. Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes[J]. Cell,2003,114:181-190
    [99]Yin XM, Ding WX. Death receptor activation-induced hepatocyte apoptosis and liver injury. Curr Mot Med,2003,3:491-508
    [100]Ding WX, Ni HM, DiFrancesca D, et al. Bid-dependent generation of oxygen radicals promotes death receptor avtivation-induced apoptosis in murine hepatocytes[J]. Hepatology, 2004,40:403-413
    [101]Kim TH, Zhao Y, Ding WX, et al. Bid-cardiollpin interaction at mitochondrial contact site contributes to mitochondrial cristae reorganization and cytochrome C release[J]. Mol Biol Cell,2004,25:301-3072
    [102]Ghatan S, Larner S, Kinoshita Y, et al. p38 MAP kinase mediates bax translocation in nitric oxide-induced apoptosis in neurons[J]. J Cell Biol,2000,150(2):335-347.
    [103]Mishra S, Mishra J P, KumarA. Activation of JNK - dependent path way is required for HIV viral protein R-induced apoptosis in human monocytic cells:involvement of antiapoptotic BCL2 and c - IAP1 genes[J]. J Biol Chem,2006,282 (7):4288-4300.
    [104]Mhaidat N M, Zhang X D, Jiang C C. Docetaxel-induced apoptosis of human melanoma ismediated by activation of c-Jun NH2-terminal kinase and inhibited by the mitogen-activated protein kinase extracellular signal- regulated kinase 1/2 pathway[J]. Clin Cancer Res,2007,13 (4):1308-1314.
    [105]强占荣,吴静,杨国栋,等.JNK抑制剂对D-氨基葡萄糖衍生物诱导Eca-109细胞Caspase-3活化的影响[J].中国肿瘤临床,2006,33(7):367-370
    [106]KK Auyeung, PC Law, JK Ko. Astragalus saponins induce apoptosis via an ERK-independent NF-kappaB signaling pathway in the human hepatocellular HepG-2 cell line[J]. Int J Mol Med,2009,23:189-96.
    [107]Hak-Jae Kim, Jeong Yoon Song, Hae Jeong Park, et al. Rotenone-induced apoptosis is mediated by p38 and JNK MAP kinases in human dopaminergic SH-SY5Y cells[J]. Korean J Physiol Pharmacol,2009,13(8):281-285
    [1]邹向阳,李连宏.细胞周期调控与肿瘤[J].国际遗传学杂志,2006,29(1):70-73.
    [2]王广良,倪虹,陈力.细胞周期检测点与肿瘤发生[J].国外医学肿瘤学分册,2004,31(6):406-408.
    [3]谢成英,蔡育军,丁健.DNA损伤与肿瘤发生的研究进展[J].中国癌症杂志,2006,16(4):313-317.
    [4]Michael B, Kastan Bartek. Cell-cycle checkpoints and cancer[J]. Nature,2004,432(1): 319-320.
    [5]赵春玲,宋咏梅,樊飞跃,等.细胞周期蛋白cyclin B1与肿瘤[J].肿瘤,2007,27(4):322-323.
    [6]Malumbres M, Barbacid M, Cell-cycle kinases in cancer[J]. Cell Growth Differ 2007, 17(1):60-65.
    [7]Houtpraaf JH, Versmissen J, Giessen WJ. A concise review of DNA damage checkpoints and repair in mammalian cells[J]. Cardiovasc Revasc Med,2006,7(3):161-172.
    [8]Xu B, Kim ST, Lim DS, et al. Two molecularly distinct G2/M checkpoints are induced by ionizing irradiation[J]. Mol Cell Biol,2002,22 (4):1049-1059.
    [9]张瑞涛.G2/M期DNA损伤检验点与卵巢癌的关系[J].国际妇产科学杂志,2008,35(6):453
    [10]Santamaria D, Orteqa S. Cyclins and CDKS in development and cancer essons from genetically modified mice[J]. Front Bio sci,2006,1(11):1164-1188.
    [11]YASUI W, AYHAN A, KITADAI Y, et al. Increased expression of p34 cdc2 and its kinase activity in human gastric and co-Loniccarcinomas[J]. Cancer,2003,53(1):36-41.
    [12]Fung TK, Ma HT, Poon RY. Specialized roles of the two mitotic cyclins in somatic cells: cyclin A as an activator of M phase-promoting factor[J]. Mol Biol Cell,2007, 18(5):1861-73.
    [13]Hua Chen, Qiang Huang, Jun Dong, et al. Overexpression of CDC2/CyclinB1 in gliomas, and CDC2 depletion inhibits proliferation of human glioma cells in vitro and in vivo[J]. BMC Cancer,2008,8(29):1471-1482.
    [14]SHENML, FENG YD, GAO C, et al. Detection of cyclinBl expression in G1-phase cancer cell lines and cancer tissues by post sorting western Blotanalysis[J]. Cancer Res, 2004,64(5):1607-1610.
    [15]PARKM, CHAEHD, YUNH, et al. Constitutive activation of cyclinBl-associated cdc2 kinase overrides p53-mediated G2-M arrest[J]. Cancer Res,2009,60(3):542-545.
    [16]Mukherjee S, Manna S, Pal D, et al. Sequential loss of cell cycle checkpoint control contributes to malignant transformation of murine embryonic fibroblasts induced by 20-methylcholanthrene[J]. J Cell Physiol,2010,224(1):49-58.
    [17]SANTANA C, ORTEGA E, GARCIA-CARRANCA. Oncogenic H-ras induces cyclin B1 expression in a p53-independent manner[J]. Mutat Res,2002,508(1-2):49-58.
    [18]MARUMOTO T, HIROTA T, MORISAKIT, et al. Roles of aurora-A kinase in mitotic entry and G2 checkpoint in mammalian cells[J]. Genes Cells,2002,7(11):1173-1182
    [19]SASAYAMA T, MARUMOTO T, KUNITOKU N, et al. Over Expression of Aurora-A targets cytoplasmic polyadenylation element binding protein and Promotesm RNA polyadenylation of CDK1 and cyclin B1[J]. Genes Cells,2005,10(7):627-638.
    [20]Mitra J, Enders GH. CyclinA/Cdk2 complexes regulate activation of Cdk1 and Cdc25 phosphatases in hum an cells [J]. Oncogene,2004,23(15):3361-3367.
    [21]Zhai Dezhong, Huang Qiang. A Research on cyclin dependent kinase cdc2 and the development of malignancy[J]. Cancer,2007,26(5):489.
    [22]Petr Solc, Adela Saskova, Vladimir Baran, et al. CDC25A phosphatase controls meiosis I progression in mouse oocytes [J]. Dev Biol,2008,317(1):260-269.
    [23]LUO XN, MOOKERJEE B, FERRARI A, et al. Regulation of phosphoprotein p18 in leukemic cells:cell cycle regulated phosphorylation by p34 cdc2 kinase[J]. Biol Chem, 2008,269(14):10312-10318.
    [24]张晖,陈秋生.细胞周期调控因子Cdc25的研究进展[J].中国兽医科学,2008,38(5):447-450.
    [25]BOUTROS R, DOZIER C, DUCOMMUN B. The when and where of Cdc25 phosphatase[J]. Curr Opin Cell Biol,2006,18(2):185-191
    [26]VAN VUGT M. Polo-like kinase-1 controls recovery from a G2 DNA damage-induced arrest in mam malian cells[J]. Mol Cel,2004,15(5):799-811.
    [27]Li W, Xie L, Chen Z, et al. Cantharidin, a potent and selective PP2A inhibitor, induces an oxidative stress-independent growth inhibition of pancreatic cancer cells through G2/M cell-cycle arrest and apoptosis[J]. Cancer Sci,2010,101(5):1226-1233..
    [28]Timofeev O, Cizmecioglu O, Settele F, et al. Cdc25 phosphatases are required for timely assembly of CDK1-cyclin B at the G2/M transition[J]. J Biol Chem.2010,285(22): 16978-16990.
    [29]Kuntz K, O'Connell MJ. The G2 DNA damage checkpoint:could this ancient regulator be the Achilles heel of cancer?. Cancer Biol Ther,2009,8(15):1433-9.
    [30]Salmela AL, Pouwels J, Varis A, et al. Dietary flavonoid fisetin induces a forced exit from mitosis by targeting the mitotic spindle checkpoint. Carcinogenesis,2009, 30(6):1032-40.
    [31]Johnston PA, Foster CA, Tierno MB, et al. Cdc25B dual-specificity phosphatase inhibitors identified in a high-throughput screen of the NIH compound library[J]. Assay Drug Dev Technol,2009,7(3):250-65.
    [32]MIKHAILOV A. The p38-mediated stress-activated checkpoint. A rapid response system for delaying progression through antephase and entry into mitosis[J]. Cell Cycle,2005, 4(3):57-62.
    [33]Boutros R, DoZier C, Dueommun B.Tbe when and wheres of Cdc25 posphatases[J]. Curr Opin Cell Biol,2006,18(2):185-191.
    [34]Hwangseo Park, Young Ho Jeon. Toward the virtual screening of Cdc25A phosphatase inhibitors with the homology modeled protein structure[J]. Journal of Molecular Modeling,2008,14(9):833-841.
    [35]Jin J, Ang XL, Ye X, et al. Differential roles for checkpoint kinases in DNA damage-dependent degradation of the Cdc25A protein phosphatase[J]. J Biol Chem,2008, 283(28):19322-19328.
    [36]MARGOLIS S S. A role for PP1 in the Cdc2/Cyclin B-mediated positive feedback activation of Cdc25[J]. Mol Biol Cell,2006,17(13):1779-1789.
    [37]LaGory, E. L., Sitailo, L. A., Denning, M. F. The Protein Kinase C{delta} Catalytic Fragment Is Critical for Maintenance of the G2/M DNA Damage Checkpoint[J]. J. Biol. Chem,2010,285(3):1879-1887
    [38]Tang Y, Simoneau AR, Xie J, et al. Effects of the kava chalcone flavokawain A differ in bladder cancer cells with wild-type versus mutant p53, Cancer Prev Res (Phila Pa).2008, 1(6):439-451.
    [39]Sylvain Huard, Robert T. Elder, Dong Liang, et al. Human Immunodeficiency Virus Type 1 Vpr Induces Cell Cycle G2 Arrest through Srk1/MK2-Mediated Phosphorylation of Cdc25[J]. JOURNAL OF VIROLOGY,2008,82(6):2904-2917.
    [40]MANKE IA, GUYEN A, LIM D, t al. MAPKAP kinase-2 is a cell cycle checkpoint kinase that regulates the G2/M transition and S phase progression in response to UV irradiation[J]. Mol Cell,2005,17(2):37-48.
    [41]Lobrieh M Jeggo PA. The two edges of the ATM sword:co-operation between repair and checkpoint functions[J]. Radiother Oneol.2005,76(2):11-28.
    [42]Monica M Horvath, Xuting Wang, Michael A Resnick, et al. Divergent evolution of human p53 binding sites:cell cycle versus [J]. PLoS Genet,2007,3(7):e127.
    [43]李云峰,钱海利,林晨.Gadd45a的表达调控与功能[J].医学分子生物学杂志,2007,4(5):434-438.
    [44]Levesque AA, Fanous AA, Poh A, et al. Defective p53 signaling in p53 wild-type tumors attenuates p21 waf1 induction and cyclin B repression rendering them sensitive to Chk1 inhibitors that abrogate DNA damage-induced S and G2 arrest[J]. Mol Cancer Ther,2008, 7(2):252-62.
    [45]Wang Y, Jacobs C, Hook KE, et al. Binding of 14-3-3beta to the carboxyl terminus of Wee1 increases Wee1 stability, kinase activity, and G2-M cell Population[J]. Cell Growth Differ,2005,11(4):211.
    [46]张宏,苏秀兰.抑癌基因p53及细胞周期素cyclinD1与胃癌的关系[J].现代肿瘤医学,2007,15(1):134-135.
    [47]Marianna Penzo, Paul E. Massa, Eleonora Olivotto, et al. Sustained NF-B activation produces a short-term cell proliferation block in conjunction with repressing effectors of cell cycle progression controlled by E2F or FoxM1[J]. Journal of Cellular Physiology, 2008,218(1):215-227.
    [48]Dimova DK, elated Articles, E2F transcriptional network:Id acquaintances with new faces[J]. Oncogene,2005,24(17):2810-2826.
    [49]Jackson MW, garwal MK, et al. p130/p107/p105 Rb-dependent transcriptional repression during DNA-damage-induced cell-cycle exit at G2 [J]. J Cell Sci,2005,18(9): 1821-1832.
    [1]Alfredo Airesa, Eduardo Rosaa, Rosa Carvalhoa, et al. Influence of Nitrogen and Sulfur Fertilization on the Mineral Composition of Broccoli Sprouts[J]. Journal of Plant Nutrition,2007,30(7):1035-1046.
    [2]Rouzaud G, Rabot S, Ratcliffe B, et al. Influence of plant and bacterial myrosinase activity on the metabolic fate of glucosinolates in gnotobiotic rats[J]. Br J Nutr,2003,90: 395-404.
    [3]Vergara F, Wenzler M, Hansen BG, et al. Determination of the absolute configuration of the glucosinolate methyl sulfoxide group reveals a stereospecific biosynthesis of the side chain[J]. Phytochemistry,2008,69(15):2737-42.
    [4]Ruud Verkerk, Monika Schreiner, Angelika Krumbein, et al. Glucosinolates in Brassica vegetables:The influence of the food supply chain on intake, bioavailability and human health[J]. Molecular Nutrition & Food Research,2008,53(S2):S219
    [5]Niels Agerbirk, Martin De Vos, Jae Hak Kim, et al. Indole glucosinolate breakdown and its biological effects[J]. Phytochemistry Reviews,2009,8(1):101-120
    [6]Pedras M. Soledade C., Zheng Qing-an, Sarma-Mamillapalle, et al. The phytoalexins from brassicaceae:structure, biological activity, synthesis and biosynthesis[J]. Natural Product Communications,2007,2(3):319-330.
    [7]Vanessa Rungapamestry, Alan J. Duncan, Zoe, et al. FullerEffect of cooking brassica vegetables on the subsequent hydrolysis and metabolic fate of glucosinolates[J]. Proceedings of the Nutrition Society,2007,66:69-81.
    [8]Don Brian Clarke. Glucosinolates, structures and analysis in food[J]. Anal. Methods, 2010,2,310-325
    [9]邹翔,郎朗,武晓丹,等.西兰花中葡萄糖异硫氰酸盐诱导人胃腺癌SGC-7901细胞凋亡的初步研究[J].中草药,2007,38(2):228-231.
    [10]Bejai R. Sarosh, Ute Wittstock, Barbara Ann Halkier, et al. The influence of metabolically engineered glucosinolates profiles in Arabidopsis thaliana on Plutella xylostella preference and performance[J]. Chemoecology,2010,20(1):1-9
    [11]Majse Nafisia, Sameer Goregaokerb, Christopher J. Botangac, et al. Arabidopsis Cytochrome P450 Monooxygenase 71A13 Catalyzes the Conversion of Indole-3-Acetaldoxime in Camalexin Synthesis[J]. The Plant Cell,2007,19:2039-2052.
    [12]Jed W Fahey, Amy T Zalemaun, Paul Talalay. The chemical diversity and distribution of glucosinolates and isothiocyanates among plants[J]. Phytochemistry,2001,56:5-51.
    [13]孙稚颖.中国十字花科植物部分属种的系统学研究[D].山东师范大学博士论文,2006:159.
    [14]修丽丽,钮昆亮.十字花科植物中的硫代葡萄糖苷及其降解产物[J].浙江科技学院学报,2004,16(3):187-189,211.
    [15]Mohn T, Cutting B, Ernst B, et al. Extraction and analysis of intact glucosinolates--A validated pressurized fiquid extraction/liquid chromatography-mass spectrometry protocol for Isatis tinctoria, and qualitative analysis of other cruciferous plants[J]. Journal of Chromatography A,2007,1166,142-151.
    [16]Bennett RN, Mellon FA, Kroon PA. Screening Crucifer Seeds as Sources of Specific Intact Glucosinolates Using Ion-Pair High-Performance Liquid Chromatography Negative Ion Electrospray Mass Spectrometry [J]. J Agric Food Chem,2004,52(3): 428-438.
    [17]D. Van Eylen, I. Oey, M. Hendrickx, et al. Behavior of mustard seed (Sinapis alba L.) myrosinase during temperature/pressure treatments:a case study on enzyme activity and stability[J]. European Food Research and Technology,2008,226(3):1438-2385.
    [18]Brown P D, Tokuhisa J G, Reichelt M, Gershenzon J. Variation of glucosinolate accumulation among different organs and developmental stages of A rabidopsis thaliana[J]. Phytochemistry,2003,62,471-481.
    [19]MSc-thesis LK. Characterization of glueosinolates in a variety of sprouting Crueiferous Vegetables-effect of storage conditions and juice production[J]. British Jornal of Nutrition,2003,90(3):687-697.
    [20]Merete H, Peter M, Hilmer S, et al. Glucosinolates in Broccoli stored under controlled Atmosphere[J]. Journal of the American Society for Horticultural Science,1995,120(6): 1069-1074.
    [21]胡晔.中药中硫代葡萄糖苷及其降解产物的分析和中药莱菔子中glucoraphenin的提取纯化与催化加氢工艺研究[D],北京化工大学硕士学位论文,2009:37.
    [22]Maik Kleinwchter, Ewald Schnug, Dirk Selmar. The Glucosinolate-Myrosinase System in Nasturtium (Tropaeolum majus L.):Variability of Biochemical Parameters and Screening for Clones Feasible for Pharmaceutical Utilization[J]. J. Agric. Food Chem., 2008,56(23):11165-11170.
    [23]Fred A. Mellon, Richard N. Bennett, Birgit Holst, et al. Intact Glucosinolate Analysis in Plant Extracts by Programmed Cone Voltage Electrospray LC/MS:Performance and Comparison with LC/MS/MS Methods[J]. Analytical Biochemistry,2002,306(1):83-91
    [24]Bertrand Matthaus, Heinrich Luftmann. Glucosinolates in Members of the Family Brassicaceae:Separation and Identification by LC/ESI-MS-MS[J]. J. Agric. Food Chem.,2000,48 (6):2234-2239.
    [25]Kim-Chung Lee, Man-Wai Cheuk, Wan Chan, et al. Determination of glucosinolates in traditional Chinese herbs by high-performance liquid chromatography and electrospray ionization mass spectrometry[J]. Analytical and Bioanalytical Chemistry,2006,386(7-8): 2225-2232.
    [26]彭爱娟,唐桂芬,兰尊海,等.反相离子对色谱法测定油菜籽(饼)中硫苷[J].色谱,2000,18(1):85-87.
    [27]Jan F. Stevens, Ralph L. Reed, Susan Alber, et al. Herbicidal Activity of Glucosinolate Degradation Products in Fermented Meadowfoam (Limnanthes alba) Seed Meal[J]. J. Agric. Food Chem.,2009,57 (5):1821-1826
    [28]Natalia Bellostas, Jens C. Sorensen, Hilmer Sorensen. Qualitative and quantitative evaluation of glucosinolates in cruciferous plants during their life cycles. Agroindustria, 2004,3(3):5-11.
    [29]A. Banerjee, R. Sharma, U. C. Banerjee. The nitrile-degrading enzymes:current status and future prospects[J]. Applied Microbiology and Biotechnology,2002,60(1-2):33-44.
    [30]姜子涛,张清峰,李荣.异硫氰酸酯的产生、化学性质及测定方法[J].中国调味品,2005,4:9-14.
    [31]章绍兵.水酶法从油菜籽中提取油和生物活性肽的研究[D].江南大学博士学位论文,2008:120.
    [32]李雷,邹翔,季宇彬.十字花科植物中异硫氰酸盐的性质及活性研究[J].哈尔滨商业大学学报(自然科学版),2007,23(2):385-399.
    [33]Lijiang Songa, Paul J. Thornalley. References and further reading may be available for this article. To view references and further reading you must purchase this article[J]. Food and Chemical Toxicology,2007,45(2):216-224.
    [34]Vladimir Borek, Matthew J. Morra. Ionic Thiocyanate (SCN-) Production from 4-Hydroxybenzyl GlucosinolateContained in Sinapis alba Seed Meal[J]. J. Agric. Food Chem.,2005,53 (22):8650-8654.
    [35]Brooks, Nicole A., Wilcox, Gisela, Walker, Karen Z., et al. Beneficial effects of Lepidium meyenii (Maca) on psychological symptoms and measures of sexual dysfunction in postmenopausal women are not related to estrogen or androgen content[J]. The journal of the north American Menoparse society,2008,15(6):1157-1162.
    [36]邹翔,季宇彬,武晓丹,等.西兰花中葡萄糖异硫氰酸盐对S180小鼠抗氧化功能的影响[J].中国天然药物,2007,5(2):134-136.
    [37]Aaron Lentz, Karla Gravitt, Culley C. Carson, et al. Acute and Chronic Dosing of Lepidium meyenii (Maca) on Male Rat Sexual Behavior[J]. Journal of Sexual Medicine, 2007,4(2):332-340.
    [38]R.B. Jones, C.L. Frisina, S. Winkler, et al. Cooking method significantly effects glucosinolate content and sulforaphane production in broccoli florets[J]. Food Chemistry, 2010,123(2):237-242.
    [39]Qingguo Tiana, Robin A. Rosselota, Steven J. Schwartz. References and further reading may be available for this article. To view references and further reading you must purchase this article[J]. Analytical Biochemistry,2005,343(1):93-99.
    [40]Masood A. Shammas, Christopher S. Bryant, Sanjeev Kumar, et al. Sulforaphane, An Antioxidant Derived from Broccoli, Induces Apoptotic Cell Death in Barrett's Esophageal Adenocarcinoma Cells[J]. Gastroenterology,2008,134(4):A741.
    [41]Bettina M. Ecker, Stefan Marcel Loitsch, Dieter Steinhilber, et al. Isothiocyanate Sulforaphane Inhibits Protooncogenic Ornithine Decarboxylase Activity in Colorectal Cancer Cells via Induction of the TGFp/SMAD Signalling Pathway[J]. Gastroenterology, 2010,138,5(S1):S42.
    [42]Dong Xiao, Anna A. Powolny, Jedrzej Antosiewicz, et al. Cellular responses to dietary cancer chemopreventive agent D,L-sulforaphane in human prostate cancer cells are initiated by mitochondrial reactive oxygen species[J]. Pharm Res.2009,26(7): 1729-1738.
    [43]Olga Azarenko, Tatiana Okouneva, Keith W. Singletary, et al. Suppression of microtubule dynamic instability and turnover in MCF7 breast cancer cells by sulforaphane[J]. Carcinogenesis,2008,29(12):2360-2368.
    [44]Xiang Wu, Yu Zhu, Huiqin Yan, et al. Isothiocyanates induce oxidative stress and suppress the metastasis potential of human non-small cell lung cancer cells[J]. BMC Cancer,2010,10:269.
    [45]Clarke JD, Dashwood RH, Ho E. Multi-targeted prevention of cancer by sulforaphane[J]. Cancer Lett,2008,269(2):291-304.
    [46]肖倩,梁浩,袁其朋.温度、pH和光照对莱菔硫烷水溶液稳定性的影响[J].中国药学杂志,2007,42(3):193-196.
    [47]吴元锋,沈莲清,毛建卫,等.芸苔属植物种子中萝卜硫素的提取工艺研究.食品与生物技术学报,2009,28(5):647-651.
    [48]Hao Liang, Qipeng Yuan, Qian Xiao. Purification of sulforaphane from Brassica oleracea seed meal using low pressurecolumn chromatography[J]. Chromatography B,2005,828: 91-96.
    [49]Riedl MA, Saxon A, Diaz-Sanchez D. Oral sulforaphane increases Phase Ⅱ antioxidant enzymes in the human upper airway[J]. Clin Immunol,2009,130(3):244-51.
    [50]Stacey A. Ritz, Junxiang Wan, David Diaz-Sanchez. Sulforaphane-stimulated phase II enzyme induction inhibits cytokine production by airway epithelial cells stimulated with diesel extract[J]. Am J Physiol Lung Cell Mol Physiol,2007,292:33-39.
    [51]Carmela Fimognari, a, Patrizia Hreliaa. Sulforaphane as a promising molecule for fighting cancer[J]. Mutation Research/Reviews in Mutation Research,2007,635(2-3): 90-104.
    [52]Myzak M C, Dashwood R H. Chemoprotection by sulforaphane:keep one eye beyond Keep[J]. Cancer Lett,2006,233(2):208-218.
    [53]Changcheng Zhou, Emma-Jane Poulton, Felix Grun, et al. The Dietary Isothiocyanate Sulforaphane Is an Antagonist of the Human Steroid and Xenobiotic Nuclear Receptor[J]. Molecular Pharmacology January,2007,71(1):220-229.
    [54]Bacon J R, Williamson G, Garner R C, et al. Sulforaphane and quercetin modulate PhlP-DNA adduct formation in human HepG-2 cells and hepatocytes[J]. Carcinogenesis, 2003,24(12):1903-1911.
    [55]Banning A, Deubel S, Kluth D, et al. The GI-GPx gene is a target for Nrf2[J]. Mol Cell Biol,2005,25:4914-4923.
    [56]Hu R, Hebbar V, Kim BR, et al. In vivo pharmacokinetics and regulation of gene expression profiles by isothiocyanate sulforaphane in the rat[J]. J Pharmacot Exp Ther, 2004,310:263.
    [57]Munday R, Munday CM. Induction of phase Ⅱ detoxification enzymes in fats by plant-derived isothiocyanates:comparison of allyl isothiocyanate with sulforaphane and related compounds[J]. J Agric Food Chem,2004,52:1867.
    [58]Zhu M, Zhang Y, Cooper S, et al. Phase Ⅱ enzyme inducer, sulforaphane, inhibits UVB-induced AP-1 activation in human keratinocytes by a novel mechanism[J]. Mol Carcinog,2004,41:179.
    [59]Ian M. Copple, Christopher E. Goldring, Rosalind E. Jenkins, et al. The hepatotoxic metabolite of acetaminophen directly activates the Keapl-Nrf2 cell defense system[J]. Hepatology,2008,48(4):1292-1301.
    [60]Mc Walter GK, Higgins LG, McLellan LI, et al. Transcription factor Nrf2 is essential for induction of NAD(P)H:quinine oxidoreductase 1, glutathione-S-transferases, and glutamate cysteine ligase by broccoli seeds and isothiocyanates[J]. J Nutr,2004,134: 3499S-3506S.
    [61]Xu C, Shen G, Yuan X, et al. ERK and JNK signaling pathways are involved in the regulation of activator protein 1 and cell death elicited by three isothiocyanates in human prostate cancer PC-3 cells[J]. Carcinogenesis,2006,27:437.
    [62]Cho S D, Li G, Hu H, et al. Involvement of c-Jun N-terminal kinase in G2/M arrest and caspase-mediated apoptosis induced by sulforaphane in DU145 prostate cancer cells[J]. Nutr Cancer,2005,82(2):213-224.
    [63]Choi S, Singh S V. Bax and Bak are required for apoptosis induction by sulforaphane, a cruciferous vegetable-derived cancer chemopreventive agent[J]. Cancer Res,2005,65(5): 2035-2043.
    [64]Pham N A, Jacobberger J W, Schimmer A D, et al. The dietary isothiocyanate sulforaphane targets pathways of apoptosis, cell cycle arrest, and oxidative stress in human pancreatic cancer cells and inhibits tumor growth in severe combined immunodeficient mice[J]. Mol Cancer, Ther,2004,3(10):1239-1248.
    [65]Karmarkar S, Weinberg M S, Banik N L, et al. Activation of multiple molecular mechanisms for apoptosis in human malignant glioblastoma T98G and U87MG cells treated with sulforaphane[J]. Neuroscience,2006,141(3):1265-1280.
    [66]Jackson S J, Singletary K W. Sulforaphane:a naturally occurring mammary carcinoma mitotic inhibitor, which disrupts tubulin polymerization[J]. Carcinogenesis,2004,25: 219-227.
    [67]Chio S, Lew K L, Xiao H, et al. D, L-Sulforaphane-induced cell death in human prostate cancer cells is regulated by inhibitor of apoptosis family proteins and Apaf-l[J]. Carcinogenesis,2007,28(1):151-162.
    [68]Hui Nian, Barbara Delage, Emily Ho, et al. Modulation of histone deacetylase activity by dietary isothiocyanates and allyl sulfides:Studies with sulforaphane and garlic organosulfur compounds[J]. Environmental and Molecular Mutagenesis,2009,50(3): 213-221.
    [69]Jun-Hee Kim, Ki Han Kwon, Ji-Youn Jung, et al. Sulforaphane Increases Cyclin-Dependent Kinase Inhibitor, p21 Protein in Human Oral Carcinoma Cells and Nude Mouse Animal Model to Induce G2/M Cell Cycle Arrest[J]. J Clin Biochem Nutr,2010, 46(1):60-67.
    [70]Shen G, xu C, Chen C, et al. p53-independent G1 cell cycle arrest of human colon carcinoma cells HT-29 by sulforaphane is associated with induction of p21 CIP1 and inhibition of expression of cyclin D1[J]. Cancer Chemother Pharmacol,2006,57:317.
    [71]Dong Xiao, Anna A. Powolny, Jedrzej Antosiewicz, et al. Cellular responses to dietary cancer chemopreventive agent D,L-sulforaphane in human prostate cancer cells are initiated by mitochondrial reactive oxygen species[J]. Pharm Res.2009,26(7): 1729-1738.
    [72]Shen G, Xu C, CHEN C, et al. P53-independent G1 cell cycle arrest of human colon carcinoma cells HT-29 by sulforaphane is associated with induction of p21CIPl and inhibition of expression of cyclin D1[J]. Cancer Chemother Pharmacol,2006, (3): 317-327.
    [73]Olga Azarenko, Tatiana Okouneva, Keith W. Singletary, et al. Suppression of microtubule dynamic instability and turnover in MCF7 breast cancer cells by sulforaphane[J]. Carcinogenesis,2008,29(12):2360-2368.
    [74]Maria H. Trakaa, Karen F. Chambersa, Elizabeth K. Lund, et al. Involvement of KLF4 in Sulforaphane-and Iberin-Mediated Induction of p21wafl/cipl[J]. Nutrition and Cancer, 2009,61(1):137-145.
    [75]Asakage M, Tsuno NH, Kitayama J, et al. Sulforaphane induces inhibition of human umbilical vein endothelial cells proliferation by apoptosis[J]. Angiogenesis,2006,9(2): 83-91.
    [76]Bertl E, Bartsch H, Gerhauser C. Inhibition of angiogenesis and endothelial cell functions are novel sulforaphane mediated mechanisms in chemoprevention[J]. Mol Cancer Ther,2006,5:575.
    [77]Thejass P, Kuttan G. Antimetastatic activity of Sulforaphane[J]. Life Sci JT-Life sciences,2006,78(26):3043-3050.
    [78]Wakabayashi N, Dinkova-Kostova AT, Holtzclaw WD, et al. Protection against electrophile and oxidant stress by induction of the phase 2 response:Fate of cysteines of the Keapl sensor modified by inducers[J]. Proc Natl Acad Sci USA,2004,101: 2040-2045.
    [79]Gao X, Dinkova-Kostova AT, Talahy P. Powerful and prolonged protection of human retinal pigment epithelial cells, keratinocytes, and mouse leukemia cells against oxidative damage:The indirect antioxidant effects of sulforaphane[J]. Proc Natl Acan Sci USA,2001,98:15221-15226.
    [80]Dinkova-Kostova AT, Fahey JW, Wade KL, et al. Induction of the Phase 2 response in mouse and human skin by sulforaphane-containing broccoli sprout extracts[J]. Cancer Epidemiol Biomarkers Prev,2007,16(4):847-851.
    [81]James R. Bacon, Geoff W. Plumb, A. Forbes Howie, et al. Dual Action of Sulforaphane in the Regulation of Thioredoxin Reductase and Thioredoxin in Human HepG-2 and Caco-2 Cells[J]. J. Agric. Food Chem.,2007,55 (4):1170-1176
    [82]Brigelius-Flohe, R. Sulforaphane and selenium, partners in adaptive sespones and prevention of cancer[J]. Free Radic Res,2006,40:775-785.
    [83]Thejass P, Kuttan G, Modulation of cell-mediated immune response in B16F-10 melanoma-induced metastatic tumor bearing C57BL/6 mice by sulforaphane[J]. Immunopharmacol Immunotoxicol,2007,29:173.
    [84]Akinori Yanaka, Jed W. Fahey, Atsushi Fukumoto, et al. Dietary Sulforaphane-Rich Broccoli Sprouts Reduce Colonization and Attenuate Gastritis in Helicobacter pylori-Infected Mice and Humans[J]. Cancer Prevention Research,2009,2; 353-360.
    [85]Heiss E, Herhaus C, Klimo K. Nuclear factor kappa B is a molecular target for sulforaphane-mediated anti-inflammatory mechanisms[J]. J Biol Chem,2001,276(34): 32008-32015.
    [86]Talalay P, Fahey JW, Healy ZR, et al. Sulforaphane mobilizes cellular defenses that protect skin against damage by UV radiation[J]. Proc Natl Acad Sci USA,2007,104(44): 17500-17505.
    [87]Klebanoff SJ. Myeloperoxidase:friend and foe[J]. J Leukoc Biol,2005,77:598-625.
    [88]Dinkova-Kostova AT, Fahey JW, Wade KL, et al. Induction of the Phase 2 response in mouse and human skin by sulforaphane-containing broccoli sprout extracts [J]. Cancer Epidcmiol Biomarkers Prev,2007,16(4):847-851.
    [89]Talalay P, Fahey JW, Healy ZR, et al. Sulforaphane mobilizes cellular defenses that protect skin against damage by UV radiation[J]. Proc Natl Acad Sci USA,2007,104(44): 17500-17505.
    [90]Dinkova-Kostova AT, Jenkins SN, Fahey JW, et al. Protection against UV-light-induced skin carcinogenesis in SKH-1 high-risk mice by sulfomphane-containing broccoli sprout extracts[J]. Cancer Letters,2006,240:243-252.
    [91]Wu L, Noyan Ashraf MH, Facci M, et al. Dietary approach to attenuate oxidative rtress, hypertension, and inflammation in the cardiovascular system[J]. Proc Natl Acad Sci USA, 2004,101:7094-7099.
    [92]Yeh CT, Yen GC. Effect of sulforaphane on metallothionein expression and induction of apoptosis in human hepatoma HepG-2 cells[J]. Carcinogenesis,2005,26:2138-2148.
    [93]Hu R, Hebbar V, Kim BR, et al. In vivo pharmacokinetics and regulation of gene expression profiles by isothioeyanate sulforaphane in the rat[J]. J Pharmacol Exp Ther, 2004,310:263-271.
    [94]Shinkai Y, Sumi D, Fukami I, et al. Sulforaphane, an activator of Nrf2, suppresses cellular accumulation of arsenic and its cytotoxicity in primary mouse hepatocytesfJ]. FEBS Lett,2006,580:1771-1774.
    [1]HUANG Yin-jiu, SONG Bao-an,JIN Lin-hong, et al. Correlation between experimental results of MTT colorimetric assay and SRB assay in anti-tumor drug screening in vitro[J]. Journal of Biology,2009,4:54-57.
    [2]Engin Ulukayaa, Ferda Ozdikicioglub, Arzu Yilmaztepe Oral, et al. The MTT assay yields a relatively lower result of growth inhibition than the ATP assay depending on the chemotherapeutic drugs tested [J]. Toxicology in Vitro,2008,22(1):232-239.
    [3]姚静,李小兰,吴剑宏,等.抗肿瘤药物敏感性实验方法比较[J].中华实验外科杂志,2005,22(7):792-793
    [4]EVA HENRIKSSON, ELISABETH KJELLEN, PETER WAHLBERG, et al. Differences In Estimates Of Cisplatin-Induced Cell Kill in vitro Between Colorimetric and Cell Count/Colony Assays[J]. Society for In Vitro Biology,2006,42(10):320-323.
    [5]Diana Fridrich, Melanie Kern, Gudrun Pahlke, et al. Apple polyphenols diminish the phosphorylation of the epidermal growth factor receptor in HT29 colon carcinoma cells[J]. Molecular Nutrition & Food Research,2007,51(5):594-601.
    [6]Lei S, Chien PY, SHeikh HS, et al. Enhanced therapeutic efficacy of a novel liposom e-based form ulation of SN-38 against human tumor models in SCID mice[J]. Anticancer Drugs,2004,15(8):773-778
    [7]Vanicha Vichai, Kanyawim Kirtikara. Sulforhodamine B colorimetric assay for cytotoxicity screening[J]. Nature Protocols,2006,1:1112-1116.
    [8]徐叔云,卞如濂,陈修.药理实验方法学,第3版[M].北京:人民卫生出版社,2005:199
    [9]Peter Houghton, Rui Fang, Isariya Techatanawat, et al. The sulphorhodamine (SRB) assay and other approaches to testing plant extracts and derived compounds for activities related to reputed anticancer activity[J]. Methods,2007,42(4):377-387
    [10]Hao Jiang, Xia Shang, Hongtao Wu, et al. Combination Treatment with Resveratrol and Sulforaphane Induces Apoptosis in Human U251 Glioma Cells[J]. Neurochemical Research,2010,35(1):152-161.
    [11]顾琳娜,顾昊.天然抗肿瘤药物筛选方法的研究进展[J].医药导报,2009,28(4):496-498
    [12]赵嘉惠,张华屏,王春芳.MTT法在检测细胞增殖方面的探讨[J].山西医科大学学报2007,38(3):262-267
    [13]周思朗,屈艳妮,张健,等.SRB法与MTT法细胞计数应用比较[J].中国现代医学杂志,2005,15(17):2615-2617
    [14]Park SY, Kim GY, Bae SJ, et al. Induction of apoptosis by isothiocyanate sulforaphane in human cervical carcinoma HeLa and hepatocarcinoma HepG-2 cells through activation of caspase-3[J]. Oncol Rep,2007,18(1):181-187.
    [15]Funk D, Schrenk HH, Frei E. Serum albumin leads to false-positive results in the XTT and the MTT assay[J]. Biotechniques,2007,43(2):178-182.
    [16]黄银久,宋宝安,金林红,等.SRB法和MTT法抗肿瘤药物筛选结果相关性研究[J].生物学杂志,2009,26(4):13-16
    [1]宋成,杨惠玲.细胞周期负调控因子P27与肿瘤[J].中国病理生理杂志,2004,20(6):1116-1120。
    [2]Marcos Malumbres, Mariano Barbacid. Cell cycle, CDKs and cancer:a changing paradigm[J]. Nature Reviews Cancer,2009,9:153-166.
    [3]Flow Cytometry-Based Methods for Apoptosis Detection in Lymphoid Cells[M]. Methods in Molecular Biology,2008.2:31-42。
    [4]Lu YS, Kashida Y, Kulp SK, et al. Efficacy of a novel histone deacetylase inhibitor in murine models of hepatocellular carcinoma[J]. Hepatology.2007,46(4):1119-30。
    [5]Bucher N, Britten CD. G2 checkpoint abrogation and checkpoint kinase-1 targeting in the treatment of cancer[J]. Br J Cancer.2008,98(3):523-8.
    [6]Upadhyaya KR, Radha KS, Madhyastha HK. Cell cycle regulation and induction of apoptosis by beta-carotene in U937 and HL-60 leukemia cells[J]. J Biochem Mol Biol. 2007,40(6):1009-15.
    [7]池圣亮,韩子华.二烯丙基二硫对人结肠癌HT-29细胞的生长抑制和细胞周期滞作用[J].江西医学检验,2007,25(2):169,161
    [8]Lorenzo HK, Susin SA. Therapeutic potential of AIF-mediated caspase-independent programmed cell death[J]. Drug Resist Updat.2007,10(6):235-55.
    [9]曲歌平.低氧条件下三氧化二砷通过细胞周期阻滞及诱导凋亡抑制肺癌细胞增殖[D].第二军医大学博士学位论文.2009:42
    [10]Fulda S. Inhibitor of apoptosis proteins as targets for anticancer therapy[J]. Expert Rev Anticancer Ther.2007,7(9):1255-64.
    [11]O'Connor MJ, Martin NM, Smith GC. Targeted cancer therapies based on the inhibition of DNA strand break repair. Oncogene.2007,26(56):7816-24.
    [12]Gamet-Payrastre L, Li P, Lumeau S, et al. Sulforaphane, a naturally occurring isothiocyanate, induces cell cycle arrest and apoptosis in HT-29 human colon cancer cells[J]. Cancer Res,2008,10(5):1426-1433
    [1]Susan Elmore. Apoptosis:A Review of Programmed Cell Death[J]. Toxicologic Pathology, 2007,35(4):495-516.
    [2]Kerr, J. F., Wyllie, A. H., and Currie, A. R. Apoptosis:a basic biological phenomenon with wide-ranging implications in tissue kinetics[J]. Br J Cancer 1972,26:239-57.
    [3]李超,伏圣博,刘华玲.细胞凋亡研究进展[J].世界科技研究与发展,2007,29(3):45-53
    [4]Marc Diederich. Natural Compounds and Their Role in Apoptotic Cell Signaling Pathways [M]. Wiley-Blackwell,2009,9:5-7.
    [5]Kurosaka, K., Takahashi, M., Watanabe, N., and Kobayashi, Y. Silent cleanup of very early apoptotic cells by macrophages[J]. J Immunol,2003,171,4672-9.
    [6]Zeiss, C. J. The apoptosis-necrosis continuum:insights from genetically altered mice[J]. Vet Pathol,2003,40:481-95.
    [7]Martell AM, Zweyer, Rlochs, et al. Nuclear apoptotic changes an overview[J]. Cell BioChem,2001,82:634-646
    [8]Shun Chen A., Chun Cheng, M., Shu Wang, et al. Detection of apoptosis induced by new type gosling viral enteritis virus in vitro through fluorescein annexin V-FITC/PI double labeling[J]. World J Gastroenterol,2008,14(14):2174-2178
    [9]郭晓红,刘立新.AnnexinV/PI流式细胞分析法和TUNEL法检测肝细胞凋亡的对比研究[J].山西医科大学学报,2008,39(5):476-479
    [10]陈立军,靳秋月,王瑞珉,等.芸香苷诱导K562细胞凋亡机制[J].中草药,2006,37(5):738-741
    [11]陈金星,胡昔城,杨维.羊栖菜多糖体外诱导人大肠癌细胞凋亡[J].基础医学与临床,2008,28(2):153-159
    [12]赵婷秀,姜霞,王秀莲,等.激光共聚焦显微镜观察FITC-Annexin V/PI双染色法检测人肺癌细胞凋亡[J].湖北中医学院学报,2005,7(4):9-11
    [13]宁燕,米粲.三氧化二砷诱导人卵巢癌细胞凋亡及对线粒体的影响[J].第三军医大学学报[J].2007,29(5):425-427
    [14]叶记林,毛伟平,吴爱莲.镉诱导HEK293细胞凋亡及其线粒体凋亡途径[J].分子细胞生物学报,2007,40(1):7-15
    [15]Moroni F, Meli E, Peruginelli F, et al. Poly(ADP-ribose) polymerase inhibitors attenuate necrotic but not apoptotic neuronal death in experimental models of cerebral ischemia[J]. Cell Death Differ,2001,8 (9):921-932
    [16]Martyn K. White and Caterina Cinti. Methods in Molecular Biology[M]. Humana Press, 2004,25:105
    [17]季宇彬,高鹏,邹翔,等.莱菔硫烷通过线粒体途径诱导HepG-2细胞凋亡[J].哈尔滨商业大学学报(自然科学版),2009,25(6):641-644
    [18]Susan Elmore. Apoptosis:A Review of Programmed Cell Death [J]. Toxicologic Pathology, 2007,35:495-516
    [19]Neychev VK, Nikolova E, Zhelev N, et al. Saponins from Tribulus terrestris L are less toxic for normal human fibroblasts than for many cancer lines:influence on apoptosis and proliferation [J]. Exp Biol Med,2007,232(1):126-133.
    [20]D. R. Clemmons and L. A. Maile. Interaction between Insulin-Like Growth Factor-l Receptor and_V_3 Integrin Linked Signaling Pathways:Cellular Responses to Changes in Multiple Signaling Inputs [J]. Molecular Endocrinology,2004,19(1):1-11.
    [21]Hua Cail, Depei Liu, and Joe G. N. CaM Kinase Ⅱ-dependent pathophysiological signalling in endothelial cells [J]. Cardiovascular Research,2008,77:30-34.
    [22]KEITH R. MARTIN. Targeting Apoptosis with Dietary Bioactive Agents [J]. Society for Experimental Biology and Medicine,2006,231:117-129.
    [23]Sang Geon Kiml, Seung Jin Lee. PI3K, RSK, and mTOR Signal Networks for the GST Gene Regulation [J]. Toxicological Sciences,2007,96(2):206-213
    [1]Roberts TM, Kobor MS, Bastin-Shanower SA, et al. Slx4 regulates DNA damage checkpoint-dependent phosphorylation of the BRCT domain protein Rtt107/Esc4[J]. Molecular Biology of the Cell,2006,17(1):539-48.
    [2]Navadgi-Patil VM, Burgers PM. A tale of two tails:activation of DNA damage checkpoint kinase Mecl/ATR by the 9-1-1 clamp and by Dpbll/TopBPl[J]. DNA Repair (Amst),2009,8(9):996-1003.
    [3]Segurado M, Diffley JF. Separate roles for the DNA damage checkpoint protein kinases in stabilizing DNA replication forks[J]. Genes Dev.2008,22(13):1816-1827.
    [4]Friedel AM, Pike BL, Gasser SM. ATR/Mecl:coordinating fork stability and repair[J]. Curr Opin Cell Biol.2009,21(2):237-44.
    [5]黄炎,姜浩,周建国等.DADS诱导人胃癌细胞周期阻滞相关基因的差异表达[J].中国药理学通报,2009,25(8):1018-24
    [6]张瑞涛.G2/M期DNA损伤检验点与卵巢癌的关系[J].国际妇产科学杂志,2008,35(6):453
    [7]凌晖.DADS靶向诱导人胃癌细胞分化与周期阻滞及机理研究[D].南华大学博士学 位论文.2007:23
    [8]Hua Chen, Qiang Huang, Jun Don, et al. Overexpression of CDC2/CyclinB1 in gliomas, and CDC2 depletion inhibits proliferation of human glioma cells in vitro and in vivo[J]. BMC Cancer,2008,8(29):1-11
    [9]刘丽娟.DADS诱导HEPG-2细胞survivin表达及作用机制研究[D].南华大学硕士学位论文,2007:4
    [10]曲歌平.低氧条件下三氧化二砷通过细胞周期阻滞及诱导凋亡抑制肺癌细胞增殖[D].第二军医大学博士学位论文,2009:42
    [11]高伟.斑蝥酸钠抑制人肝癌HepG-2细胞增殖及其机制的研究[D].重庆医科大学硕士论文,2008:6
    [12]Rose Boutros, Valerie Lobjois, Bernard Ducommun. CDC25 phosphatases in cancer cells: key players? Good targets?[J]. Nature Reviews Cancer,2007,7:495-507
    [13]Lavecchia A, Di Giovanni C, Novellino E. Inhibitors of Cdc25 phosphatases as anticancer agents:a patent review[J]. Expert Opin Ther Pat,2010,20(3):405-25.
    [14]Lindqvist A,van Zon W,Karlsson Rosenthal C,et al.CyclinB1-Cdk1 activation continues after centrosome separation to control mitotic progression[J]. PLoS Biol,2007,5(5):e123.
    [15]Jiang PD, Zhao YL, Shi W, et al. Cell growth inhibition, G2/M cell cycle arrest, and apoptosis induced by chloroquine in human breast cancer cell line Bcap-37[J]. Cell Physiol Biochem,2008,22(5-6):431-40.
    [16]Lavecchia A, Coluccia A, Di Giovanni C, et al. Cdc25B phosphatase inhibitors in cancer therapy:latest developments, trends and medicinal chemistry perspective[J]. Anticancer Agents Med Chem.2008,8(8):843-56.
    [17]Gartel AL. p21(WAF1/CIP1) and cancer:a shifting paradigm? [J]. Biofactors,2009,35(2): 161-4.
    [18]Habold C, Poehlmann A, Bajbouj K, et al. Trichostatin A causes p53 to switch oxidative-damaged colorectal cancer cells from cell cycle arrest into apoptosis[J]. J Cell Mol Med,2008,12(2):607-21.
    [19]Zhao Y, Lu S, Wu L, et al. Acetylation of p53 at lysine 373/382 by the histone deacetylase inhibitor depsipeptide induces expression of p21(Waf1/Cip1) [J]. Mol Cell Biol,2006, 26(7):2782-90.
    [20]Liu PY, Chan JY, Lin HC, et al. Modulation of the cyclin-dependent kinase inhibitor p21WAF1/Cip1 gene by Zac1 through the antagonistic regulators p53 and histone deacetylase l in HeLa Cells[J]. Mol Cancer Res,2008,6(7):1204-14.
    [21]Ocker M, Schneider-Stock R. Histone deacetylase inhibitors:signalling towards p21cip1/waf1 [J]. Int J Biochem Cell Biol,2007,39(7-8):1367-74.
    [22]Van den Heuvel S. Cell-cycle regulation[J]. WormBook,2005,21:1-16.
    [23]Buck SH, Chiu D, Saito RM. The cyclin-dependent kinase inhibitors, cki-1 and cki-2, act in overlapping but distinct pathways to control cell cycle quiescence during C. elegans development[J]. Cell Cycle.2009,8(16):2613-20.
    [24]Clayton JE, van den Heuvel SJ, Saito RM. Transcriptional control of cell-cycle quiescence during C. elegans development[J]. Dev Biol,2008,313(2):603-13.
    [25]Kawabe T. G2 checkpoint abrogators as anticancer drugs[J]. Mol Cancer Ther.2004,3(4): 513-9.
    [26]Nishida H, Tatewaki N, Nakajima Y, et al. Inhibition of ATR protein kinase activity by schisandrin B in DNA damage response[J]. Nucleic Acids Res.2009,37(17):5678-89.
    [27]Varmeh S, Manfredi JJ. Inappropriate activation of cyclin-dependent kinases by the phosphatase Cdc25b results in premature mitotic entry and triggers a p53-dependent checkpoint[J]. J Biol Chem,2009,284(14):9475-88.
    [28]Begnami MD, Fregnani JH, Nonogaki S, et al. Evaluation of cell cycle protein expression in gastric cancer:cyclin B1 expression and its prognostic implication[J]. Hum Pathol,2010, 3:22
    [29]Kim DH. Prognostic implications of cyclin B1, p34cdc2, p27(Kip1) and p53 expression in gastric cancer[J]. Yonsei Med J,2007,48(4):694-700.
    [30]宋其蔓.细胞凋亡与p21关系的研究进展[J].医学综述,2008,14(6):816-818
    [1]Cusimano EM, Knight AR, Slusser JG, et al. Mitochondria:the hemi of the cell[J]. Adv Emerg Nurs J.,2009,31(1):54-62.
    [2]Ly JD, Grubb DR, Lawen A. The mitochondrial membrane potential [Deltapsi(m)] in apoptosis:an update[J]. Apoptosis,2003,8(2):115-128
    [3]Autret A, Martin SJ. Emerging role for members of the Bcl-2 family in mitochondrial morphogenesis[J]. Mol Cell,2009,36(3):355-63.
    [4]Ji BC, Hsu WH, Yang JS, et al. Gallic acid induces apoptosis via caspase-3 and mitochondrion-dependent pathways in vitro and suppresses lung xenograft tumor growth in vivo[J]. J Agric Food Chem,2009,57(16):7596-604.
    [5]Park SR, Cho HJ, Moon KJ, et al. Cytotoxic effects of novel phytosphingosine derivatives, including N, N-dimethylphytosphingosine and N-monomethylphytosphingo-sine, in human leukemia cell line HL60[J]. Leuk Lymphoma.2010,51(1):132-45.
    [6]Kwon KB, Park BH, Ryu DG. Chemotherapy through mitochondrial apoptosis using nutritional supplements and herbs:a brief overview[J]. J Bioenerg Biomembr,2007, 39(1):31-4.
    [7]Shi Y, Chen J, Weng C, et al. Identification of the protein-protein contact site and interaction mode of human VDAC1 with Bcl-2 family proteins[J]. Biochem Biophys Res Commun,2003,305(4):989-996
    [8]El-Metwally TH, Pour PM. The retinoid induced pancreatic cancer redifferentiation-apoptosis sequence and the mitochondria:a suggested obligatory sequence of events[J]. JOP,2007,8(3):268-78.
    [9]Lin J, Denmeade S, Carducci MA. HIF-lalpha and calcium signaling as targets for treatment of prostate cancer by cardiac glycosides[J]. Curr Cancer Drug Targets,2009, 9(7):881-7.
    [10]Orrenius S, Zhivotovsk B, Nicotera P. Regulation of cell death:the calcium-apoptosis link[J]. Nat Rev Mol Cell Biol.2003,4:552-565
    [11]Bernardi P, Rasola A. Calcium and cell death:the mitochondrial connection[J]. Subcell Biochem,2007,45:481-506.
    [12]Kulbacka J, Saczko J, Chwilkowska A. Oxidative stress in cells damage processes[J]. Pol Merkur Lekarski.2009,27(157):44-7.
    [13]Zhang R, Humphreys I, Sahu RP, et al. In vitro and in vivo induction of apoptosis by capsaicin in pancreatic cancer cells is mediated through ROS generation and mitochondrial death pathway[J]. Apoptosis,2008,13(12):1465-78.
    [14]Cao XH, Wang AH, Wang CL, et al. Surfactin induces apoptosis in human breast cancer MCF-7 cells through a ROS/JNK-mediated mitochondrial/caspase pathway. Chem Biol Interact.2010,183(3):357-62.
    [15]Kagan VE, Bayir A, Bayir H, et al. Mitochondria-targeted disruptors and inhibitors of cytochrome c/cardiolipin peroxidase complexes:a new strategy in anti-apoptotic drug discovery[J]. Mol Nutr Food Res.2009,53(1):104-14.
    [16]Kirkin V, Joos S. The role of Bcl-2 family members in tumorigenesis[J]. Biochim Biophys Acta.2004,1644(2-3):229-249
    [17]Cory S, Huang D C, Adams J M. The Bcl-2 family:roles in cell survival and oncogenesis[J]. Oncogenc.2003,22(53):8590-8607
    [18]Susnow N, Zeng L, Margineantu D, et al. Bcl-2 family proteins as regulators of oxidative stress[J]. Semin Cancer Biol.2009,19(1):42-9.
    [19]Sharpe J C, Arnoult D, Youle R J. Control of mitochondrial permeability by Bcl-2 family members[J]. Biochim Biophys Acta.2004,1644(2-3):107-113
    [20]Ghavami S, Hashemi M, Ande SR, et al. Apoptosis and cancer:mutations within caspase genes[J]. J Med Genet,2009,46(8):497-510.
    [21]Allan LA, Clarke PR. Apoptosis and autophagy:Regulation of caspase-9 by phosphorylation[J]. FEBS J,2009,276(21):6063-73.
    [22]Philchenkov A, Zavelevich M, Kroczak TJ, et al. Caspases and cancer:mechanisms of inactivation and new treatment modalities[J]. Exp Oncol.2004,26(2):82-97.
    [23]Billen LP, Shamas-Din A, Andrews DW., et al. Potential biological role of poly (ADP-ribose) polymerase (PARP) in male gametes[J]. Reprod Biol Endocrinol,2009,7: 143.
    [24]Gao SY, Wang QJ, Ji YB. Effect of solanine on the membrane potential of mitochondria in HepG-2 cells and [Ca2+]i in the cells[J]. World J Gastroenterol,2006,12(21): 3359-67.
    [25]季宇彬,高世勇.海嘧啶体内外抗肿瘤作用研究[J].中国药学杂志,2005,40(23):1788-1793
    [26]Kong LQ, Pu YH, Ma SK. Better performance of Western blotting:quick vs slow protein transfer, blotting membranes and the visualization methods. Nan Fang Yi Ke Da Xue Xue Bao.2008,28(1):26-9.
    [27]Sun LX, Vitolo M, Passaniti A. Runt-related gene 2 in endothelial cells:inducible expression and specific regulation of cell migration and invasion[J], Cancer Res,2002, 61:4994
    [28]Bricon TL, Stoitchkov K, Letellier S, et al. Simultaneous analysis of tyrosinase mRNA and markers of tyrosinase activity in the blood of patients with metastatic melanoma[J], Clin Chim Acta,2006,282:101
    [29]Cheung KL, Kong AN. Molecular targets of dietary phenethyl isothiocyanate and sulforaphane for cancer chemoprevention. AAPS,2010,12(1):87-97.
    [30]Telang U, Brazeau DA, Morris ME. Comparison of the effects of phenethyl isothiocyanate and sulforaphane on gene expression in breast cancer and normal mammary epithelial cells. Exp Biol Med (Maywood).2009,234(3):287-95.
    [31]Shen G, Xu C, Chen C, et al. p53-independent Gl cell cycle arrest of human colon carcinoma cells HT-29 by sulforaphane is associated with induction of p21CIPl and inhibition of expression of cyclin D1. Cancer Chemother Pharmacol,2006,57(3): 317-27.
    [32]ARUN K, RISHI ZHANG L Y, et al. Cell Cycle and Apoptosis-regulatory Protein-1 Is Involved in Apoptosis Signaling by Epidermal Growth Factor Receptor. THE JOURNAL OF BIOLOGICAL CHEMISTRY,2006,281(19):13188-13198
    [33]Jun Hong, Ismael Samudio, Sudhakar Chintharlapalli, et al. 1,1-bis(3-indolyl)-1-(p-substituted phenyl)methanes decrease mitochondrial membrane potential and induce apoptosis in endometrial and other cancer cell lines[J]. Molecular Carcinogenesis,2007, 47(7):492-507.
    [34]薛全福,王振纲.钙离子和细胞凋亡及药物控制[J].中国全科医学,2009,12(12):1126-1128
    [35]YUH-TZY LIN, JAI-SING YANG, SHUW-YUAN LIN, et al. Diallyl Disulfide (DADS) Induces Apoptosis in Human Cervical Cancer Ca Ski Cells via Reactive Oxygen Species and Ca2+-dependent Mitochondria-dependent Pathway[J]. Anticancer Research,2008, 28(5):2791-2799.
    [36]喻爱喜,周志刚,张仲宁,等.TRAIL诱导骨肉瘤HOS-8603细胞凋亡与线粒体跨膜电位关系的研究[J].现代肿瘤医学,2005,13(5):586-588
    [37]H. Llewelyn Roderick, Simon J. Cook. Ca2+ signalling checkpoints in cancer: remodelling Ca2+ for cancer cell proliferation and survival[J]. Nature Reviews Cancer, 2008,8:361-375.
    [38]C. Habold, A. Poehlmann, K. Bajbouj, et al. Trichostatin A causes p53 to switch oxidative-damaged colorectal cancer cells from cell cycle arrest into apoptosis[J]. Journal of Cellular and Molecular Medicine,2007,12(2):607-621.
    [39]Lin HL, Yang JS, Yang JH, et al. The role of Ca2+ on the DADS-induced apoptosis in mouse-rat hybrid retina ganglion cells (N18). Neurochem Res,2006,31(3):383-393
    [40]JAU-HONG LEE, YU-CHING LI, SIU-WAN IP, et al. The Role of Ca2+ in Baicalein-induced Apoptosis in Human Breast MDA-MB-231 Cancer Cells through Mitochondria- and Caspase-3-dependent Pathway[J]. Anticancer Research,2008,28(3A): 1701-1711.
    [41]Sally A. Amundson, Khanh T. Do, Lisa C. Vinikoor, et al. Integrating Global Gene Expression and Radiation Survival Parameters across the 60 Cell Lines of the National Cancer Institute Anticancer Drug Screen[J]. Cancer Res,2008,68:415-424
    [42]Gang Song, Yanlin Ming, Yubin Mao, et al. Osteopontin Prevents Curcumin-Induced Apoptosis and Promotes Survival Through Akt Activation via vβ3 Integrins in Human Gastric Cancer Cells[J]. Exp Biol Med,2008,233:1537-1545
    [43]Satya Sree N. Kolar, Rola Barhoumi, Joanne R. Lupton, et al. Docosahexaenoic Acid and Butyrate Synergistically Induce Colonocyte Apoptosis by Enhancing Mitochondrial Ca2+ Accumulation[J]. Cancer Res,2007,67(11):5561-5568.
    [44]张艳芬,范雪晖.细胞内外Ca-(2+)对细胞凋亡的影响[J].新乡医学院学报,2003,3:139-141
    [45]Virginie Aires, Aziz Hichami, Rodolphe Filomenko, et al. Docosahexaenoic Acid Induces Increases in [Ca2+]i via Inositol 1,4,5-Triphosphate Production and Activates Protein Kinase Cγ and-δ via Phosphatidylserine Binding Site:Implication in Apoptosis in U937 Cells[J]. Molecular Pharmacology December,2007,72(6):1545-1556.
    [46]Sten Orrenius, Vladimir Gogvadze, and Boris Zhivotovsky. Mitochondrial Oxidative Stress:Implications for Cell Death[J]. Annual Review of Pharmacology and Toxicology, 2007,47:143-183
    [47]N. Tugba Durlu-Kandilci, Inci Sahin-Erdemli. The effects of reactive oxygen species on calcium-and carbachol-induced contractile responses in β-escin permeabilized rat bladder[J]. Naunyn-Schmiedeberg's Archives of Pharmacology,2008,378(6):645-653.
    [48]Joern R. Steinert, Amanda W. Wyatt, Ron Jacob, et al. Redox Modulation of Ca2+ Signaling in Human Endothelial and Smooth Muscle Cells in Pre-Eclampsia[J]. Antioxidants & Redox Signaling,2009,11(5):1149-1163.
    [49]G.M. Salido. Apoptosis:Involvement of Oxidative Stress and Intracellular Ca2+ Homeostasi[M]. Springer Netherlands,2009,3:1-16
    [50]Charles E. Wenner. Cell signaling and cancer-possible targets for therapy[J]. Journal of Cellular Physiology,2010,223(2):299-308.
    [51]Gennady Ermak, Kelvin J. A. Davies. Calcium and oxidative stress:from cell signaling to cell death[J]. Molecular Immunology,2002,38(10):713-721
    [52]F.R. Boucher, M.G. Jouan, C. Moro, et al. Does selenium exert cardioprotective effects against oxidative stress in myocardial ischemia?[J]. Acta Physiologica Hungarica,2008, 95(2):187-194
    [53]Jens Christian Brasen, Lars Folke Olsena, Maurice B. Hallett. Cell surface topology creates high Ca2+ signalling microdomains[J]. Cell Calcium,2010,47(4):339-349.
    [54]Shuhong Guoa, Jingqi Yanab, Tangbin Yangd, et al. Protective Effects of Green Tea Polyphenols in the 6-OHDA Rat Model of Parkinson's Disease Through Inhibition of ROS-NO Pathway[J]. Biological Psychiatry,2007,62(12):1353-1362
    [55]Ernesto L. Schiffrin. Oxidative Stress, Nitric Oxide Synthase, and Superoxide Dismutase[J]. Hypertension,2008,51:31-32
    [56]Alessandro Federico, Floriana Morgillo, Concetta Tuccillo, et al. Chronic inflammation and oxidative stress in human carcinogenesis[J]. International Journal of Cancer,2007, 121(11):2381-2386
    [57]Li D, Mehta JL. Oxidized LDL, a critical factor in atherogenesis[J]. Cardiovasc Res, 2005,68(3):353-354
    [58]Radosavljevi T, Mladenovi D, Vucevi D. The role of oxidative stress in alcoholic liver injury[J]. Med Pregl,2009,62(11-12):547-553.
    [59]袁凌燕,陆爱云.线粒体PT孔参与运动诱导细胞凋亡机制的探讨[J].上海体育学院学报,2005,29(1):26-29
    [60]Jou MJ, Peng TI, Yu PZ, et al. Melatonin protects against common deletion of mitochondrial DNA-augmented mitochondrial oxidative stress and apoptosis[J]. J Pineal Res,2007,43(4):389-403.
    [61]Liu X, Kim CN, Yang Jet al. Induction of apoptotic program in cell-free extracts: Requirement for dATP and cytochrome C[J]. Cell,2006,86(1):147-157
    [62]马伟科,张宏艳.线粒体细胞色素C与细胞凋亡[J].实用医学杂志,2007,23(23):3786-3788
    [63]Saleh A, Srinivasula SM, Acharya Set al. Cytochrome C and dATP-mediated oligomerization of Apaf-1 is a prerequisite for procaspase-9 activation[J]. Biol Chem, 2005,274(25):17941-17945
    [64]Hu Y, Benedict MA, Ding Let al. Role of cytochrome C and dATP/ATP hydrolysis in Apaf-1-mediated caspase-9 activation and apoptosis[J]. EMBO J,2007,18(13): 3586-3595
    [65]Cheng EH, Kisch DG, Clem RT, et al. Conversion of bcl-2 to bax-like death factor by caspases[J]. Science,2005,278:1966-1968.
    [66]Halestrap AP, Doran E, Gillespie JP, et al. Mitochondria and cell death[J]. Biochem Soci Trans,2000,28:170-177.
    [67]Brenner C, Cadiou H, Vieira HLet al. Bcl-2 and Bax regulate the channel activity of the mitochondrial adenine nucleotide translocator[J]. Oncogene,2000,19(3):329-336
    [68]Tsujimoto Y, Cell death regulation by the Bcl-2 protein family in the mitochondria[J]. Cell Physiol,2003,195(2):158-167.
    [69]Stefan J. Riedl, Yigong Shi. Molecular mechanisms of caspase regulation during apoptosis. Nature Reviews Molecular Cell Biology 2004.5,897-907
    [70]Lee KB, Lee JS, Park JW, et al. Low energy proton beam induces tumor cell apoptosis through reactive oxygen species and activation of caspases. Exp Mol Med.2008,40(1): 118-29.
    [71]Marlene Jimenez Del Rio, Carlos Velez-Pardo. Transition metal-induced apoptosis in lymphocytes via hydroxyl radical generation, mitochondria dysfunction, and caspase-3 activation:an in vitro model for neurodegeneration [J]. Archives of Medical Research, 2004,35(3):185-193.
    [72]Cho SH, Chung KS, Choi JH, et al. Compound K, a metabolite of ginseng saponin, induces apoptosis via caspase-8-dependent pathway in HL-60 human leukemia cells[J]. BMC Cancer.2009,9:449.
    [73]V. Senthil, S. Ramadevi, V. Venkatakrishnan, et Al. Withanolide induces apoptosis in HL-60 leukemia cells via mitochondria mediated cytochrome c release and caspase activation [J]. Chemico-Biological Interactions,2007,167(1):19-30.
    [74]Constantinou C, Papas KA, Constantinou Al. Caspase-independent pathways of programmed cell death:the unraveling of new targets of cancer therapy? [J]. Curr Cancer Drug Targets,2009,9(6):717-28.
    [75]M Potokar, I Milisav, M Kreft, M Stenovec, et Al. Apoptosis triggered redistribution of caspase-9 from cytoplasm to mitochondria[J]. FEBS Letters,2003,514(1-3):153-159.
    [76]Shuang-Li Mi, Cheng-Cai An, Ye Wang, et Al. Trichomislin, a novel ribosome-inactivating protein, induces apoptosis that involves mitochondria and caspase-3[J]. Archives of Biochemistry and Biophysics,2005,434(2):258-265.
    [77]黄文芳,曾娅莉,刘华等.辛伐他汀诱导K562细胞凋亡过程中caspase-3、-8、-9活性变化及凋亡途径研究[J].国际检验医学杂志,2007,28(3):198-201
    [1]Raymond E, Chen, Jeremy Thorner. Function and Regulation in MAPK Signaling Pathways [J]. Biochim Biophys Acta.,2007,1773(8):1311-1340.
    [2]Irving EA, Bamford M. Role of mitogen-and stress-activated kinases in ischemic injury[J]. J Cereb Blood Flow Metab,2002,22(6):631-647.
    [3]Sara Ota, Zi-Qiang Zhou, Jason M. Link The role of senescence and prosurvival signaling in controlling the oncogenic activity of EGFR2 mutants associated with cancer and birth defects[J]. Human Molecular Genetics,2009,18(14):2609-2621.
    [4]MiRan Seo, Mi-Jeong Lee, Jin Hee Heo. G Protein Subunits Augment UVB-induced Apoptosis by Stimulating the Release of Soluble Heparin-binding Epidermal Growth Factor from Human Keratinocytes[J]. JOURNAL OF BIOLOGICAL CHEMISTRY,2007, 34(24):24720-24729.
    [5]Susan Elmore. Apoptosis:A Review of Programmed Cell Death[J]. Toxicologic Pahtology,2007,35(4):495-516.
    [6]Cheung-Yun Jiny, Dong-Oh Moon, Jae-Dong Lee. Sulforaphane sensitizes tumor necrosis factor-related apoptosis-inducing ligandmediated apoptosis through downregulation of ERK and Akt in lung adenocarcinoma A549 cells[J]. Carcinogenesis, 2007,28(5):1058-1066.
    [7]Yinfei Tan, Nathalie Dourdin, Chao Wu. Ubiquitous Calpains Promote Caspase-12 and JNK Activation during Endoplasmic Reticulum Stress-induced Apoptosis[J]. THE JOURNAL OF BIOLOGICAL CHEMISTRY,2006,281(33):16016-16024.
    [8]Heloi sa D. C. Francescatol, Roberto S. Costa, Fernando Barbosa Junior. Effect of JNK inhibition on cisplatin-induced renal damage[J]. Nephrol Dial Transplant,2007,22(16): 2138-2148.
    [9]Young-Sam Keum, Siwang Yu, Peter Pil-Jae Chang. Mechanism of Action of Sulforaphane:Inhibition of p38 Mitogen-Activated Protein Kinase Isoforms Contributing to the Induction of Antioxidant Response Element-Mediated Heme Oxygenase-1 in Human Hepatoma HepG-2 Cells[J]. Cancer Research,2006,66(17):8804-8813.
    [10]Hazel C. Thorns, Malcolm G. Dunlop, Lesley A. Stark. p38-Mediated Inactivation of Cyclin D1/Cyclin-Dependent Kinase 4 Stimulates Nucleolar Translocation of RelA and Apoptosis in Colorectal Cancer Cells [J]. Cancer Research,2007,67(4):1660-1669.
    [11]Yinfei Tan, Nathalie Dourdin, Chao Wu. Ubiquitous Calpains Promote Caspasel2 and JNK Activation during Endoplasmic Reticulum Stress-induced Apoptosis[J]. JOURNAL OF BIOLOGICAL CHEMISTRY,2006,23(9):16016-16024.
    [12]Lin Y,Choksi S,Shen HM,et al. Tumor necrosis factorinduced nonapoptotic cell death requires receptor-interacting proteinmediated cellular reactive oxygen species accumulation[J]. J.Biol.Chem,2004,279:10822-10828.
    [13]Han-Ming Shen, Shazib Pervaiz. TNF receptor superfamily-induced cell death: redox-dependent execution[J]. The FASEB Journal,2006,20:1589-1598.
    [14]Kim JS, Ann KJ, Kim JA, et al. Role of reactive oxygen species-mediated mitochondrial dysregulation in 3-bromopyruvate induced cell death in hepatoma cells:ROS-mediated cell death by 3-BrPA[J]. J Bioenerg Biomembr,2008,40(6):607-18.
    [15]Guo Yansu, Liu Yaling, Xu Lei, et al. Reduced Nrf2 and Phase Ⅱ enzymes expression in immune-mediated spinal cord motor neuron injury[J]. Neurological Research,2010, 32(5):460-465.
    [16]Boucher MJ, Jean D, Vezina A, Rivard N. Dual role of MEK/ERK signaling in senescence and transformation of intestinal epithelial cells[J]. Am J Physiol Gastrointest Liver Physiol,2004,286(5):G736-46.
    [17]McCubrey JA, Steelman LS, Chappell WH, et al. Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance. Biochim Biophys Acta[J]. 2007,1773(8):1263-84.
    [18]Changjiang Xu, Guoxiang Shen, Xiaoling Yuan. ERK and JNK signaling pathways are involved in the regulation of activator protein 1 and cell death elicited by three isothiocyanates in human prostate cancer PC-3 PC-3 cells[J]. Carcinogenesis,2006, 27(3):437-445.
    [19]Deng X, Xiao L, Lang W, et al. Novel role for JNK as a stress-activated Bcl2 kinase[J]. J Biol Chem,2001,276(26):23681-8.
    [20]Shin-Hee Leea, Sang Won Parka, Chul-Woong Pyoa, et al. References and further reading may be available for this article. To view references and further reading you must purchase this article[J]. Advances in Lactoferrin Research,2009,91(1):102-108.
    [21]袁静萍,凌晖,张孟贤,等.P38通路在二烯丙基二硫诱导人胃癌MGC803细胞G2/M期阻滞中的作用[J].癌症,2004,23(2):169-172.
    [22]Frey RS, Singletary KW. Genistein activates p38 mitogen-activated protein kinase, inactivates ERK1/ERK2 and decreases Cdc25C expression in immortalized human mammary Epithelial cells[J]. J Nutr,2003,133(1):226-231.
    [23]Gustavo J. Gutierrez, Toshiya Tsuji, Janet V. Cross, et al. JNK-mediated Phosphorylation of Cdc25C Regulates Cell Cycle Entry and G2/M DNA Damage Checkpoint[J]. Journal of Biological Chemistry,2010,285:4217-14228.
    [24]Moon DO, Kim MO, Kang SH, et al. Induction of G2/M arrest, endoreduplication, and apoptosis by actin depolymerization agent pextenotoxin-2 in human leukemia cells, involving activation of ERK and JNK[J]. Biochem Pharmacol.2008,76(3):312-21.
    [25]Wang CC, Chiang YM, Sung SC, et al. Plumbagin induces cell cycle arrest and apoptosis through reactive oxygen species/c-Jun N-terminal kinase pathways in human melanoma A375.S2 cells[J]. Cancer Lett.2008 Jan 18;259(1):82-98.
    [26]Tarek Abbasl, Anindya Dutta. p21 in cancer:intricate networks and multiple activities[J]. Nature Reviews Cancer,2009,9:400-414.
    [27]Ravi P. Sahu, Ruifen Zhang, Sanjay Batra, et al. Benzyl isothiocyanate-mediated generation of reactive oxygen species causes cell cycle arrest and induces apoptosis via activation of MAPK in human pancreatic cancer cells[J]. Carcinogenesis,2009,30(10): 1744-1753.
    [28]Yong Chan Lee, Chun-Yu Chuang, Pak-Kei Lee, et al. TRX-ASK1-JNK signaling regulation of cell density-dependent cytotoxicity in cigarette smoke-exposed human bronchial epithelial cells[J]. Am J Physiol Lung Cell Mol Physiol,2008,294: L921-L931.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700