丝裂原激活蛋白激酶对金鱼发育的调控作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
丝裂原激活蛋白激酶(mitogen-activated protein kinases,MAPKs)是细胞内的至关重要的蛋白激酶。研究证实,MAPK信号转导通路存在于大多数细胞内,将细胞外刺激信号转导至细胞及其核内,并引起细胞生物学反应(如细胞增殖、分化、转化及凋亡等)的过程中具有至关重要的作用。MAPK可分为三个主要的亚群,即细胞外信号调节激酶(ERK),应激活化蛋白激酶(JNK)和p38MAPK。本文应用Western Blot分析、免疫沉淀、激酶活性分析、显微注射等技术研究和探讨了MAPK对金鱼发育的影响和调控作用。所得实验结果如下:
     (1)MAPK三种主要成员在金鱼的晶体上皮、晶体纤维、视网膜、大脑、心脏以及肌肉六种组织中的表达和活性存在着组织特异性。ERK的表达和活性水平最高,在金鱼的六种组织中都存在着强烈的表达和活性水平;JNK1只在晶体纤维、视网膜、大脑和心脏中表达,在晶体上皮中的表达极其微弱;JNK2在视网膜、心脏、大脑以及肌肉组织中均有一定程度的表达;但在晶体上皮,JNK2只有微弱的表达;p38在金鱼的视网膜、大脑、心脏以及肌肉中存在表达,而在晶状体的上皮和纤维中没有表达,在金鱼六种组织中不存在p38的磷酸化活性。
     (2)克隆了金鱼的ERK2基因编码区序列全长。金鱼erk2基因编码区共有1110个碱基。翻译成369个氨基酸。金鱼erk2基因核苷酸序列在斑马鱼、鼠、沟鼠、人、狗、鸡、牛、爪蟾同源性依次降低。金鱼erk2核苷酸与斑马鱼同源性最高,与爪蟾同源性最低。而金鱼ERK2蛋白同源性与斑马鱼最高,其次是爪蟾,与鼠类的同源性最低,但同源度仍然高达89.9%。这为进一步研究更深入的探索ERK蛋白在金鱼发育中的调控机制和以及此过程所涉及的调控因子具有极其重要的意义。
     (3)对ERK2基因和JNK1基因在金鱼的9种组织和10个发育时期mRNA水平的表达进行了分析。实验结果显示,ERK和JNK在金鱼早期胚胎发育各个时期都有很高水平的表达,呈现出典型的时间表达模式。同时,ERK、JNK在金鱼成体的多种组织中分布也很广泛,在各种不同组织间具有组织表达差异性。二者均在卵巢组织中表达最高。本实验的结果表明ERK、JNK是金鱼体内重要的蛋白激酶。
     (4)将ERK的显性突变体基因通过显微注射转染至金鱼的受精卵,分析ERK信号通路被抑制后对金鱼发育的影响。通过激酶活性分析证实注射的DNM-ERK使金鱼胚胎的内源性ERK的活性被抑制。对注射DNM-ERK的金鱼胚胎的连续的显微观察发现,抑制ERK信号通路将导致金鱼多种器官的形成出现障碍,尤其是外胚层来源的眼睛以及中胚层来源的肌肉体节。本实验揭示了ERK在脊椎动物的早期胚胎发育的至关重要的主导作用。
     (5)将JNK的显性突变体基因通过显微注射转染至金鱼的受精卵,探索JNK信号通路被抑制后对金鱼发育的影响。实验结果显示JNK在金鱼发育过程中必不可少,抑制JNK信号通路将导致金鱼多种器官的形成出现障碍,特别是眼睛、神经管以及肌肉。本实验揭示了JNK在脊椎动物的早期胚胎发育的至关重要的主导作用。首次运用功能缺失的方法确定了JNK在脊椎动物眼睛发育过程中的重要作用。
Mitogen-activated protein kinases (MAPKs), a family of special protein kinases, exist in most cells and play significant roles in signal transduction from extra-cellular circumstances to nuclei, which mediate various cellular processes such as proliferation, differentiation, transformation and apoptosis. Through Western blot analysis、immunoprecipitation-linked kinase assays、and microinjection of the dominant negative mutant RAF,MEK and ERK, the expression patterns of MAPKs and the function of the ERK signaling pathway on development of gold fish have been investigated and the results are summarized below:
     (1)、The three types of MAPKs are differentially expressed in lens epithelium, lens fiber, retina, heart, brain and muscle of gold fish with distinct tissue specificity. Among three types of MAPKs, the expression and activities of the extracellular signal-regulated kinases (ERK1/2) are the most abundant in all of the six tissues examined. The expression of c-jun N-terminal kinase 1 (JNK1) is only observed in lens fiber, retina and brain tissues. In contrast, expression of JNK2 is detected in retina, heart, brain and muscle with minor expression in lens epithelium. The expression of p38 is detected in retina, heart, brain and muscle. However, its activity is absent in all the tissues of gold fish examined.
     (2)、The whole length open reading frame (ORF) of gold fish ERK2 gene has been cloned. It is 1100 bp long and encodes a protein of 369 amino acid residues. A decreased homology can be obtained of gold fish ERK2 gene to those of zebrafish, mouse, rat, human, dog, chicken, bovine and Xenopus laevis, among which zebrafish is the highest while Xenopus laevis the lowest. However, at the amino acid level, the highest homology is of gold fish ERK2 to zebrafish, and to Xenopus laevis the second high, while the lowest to mouse or rat, despite an 89.9% high score can still be drawn to both of these rodents. These data greatly contribute to further exploring the regulatory mechanism of ERK and the understanding of involved transcription factors in the development process of gold fish.
     (3)、It has been analyzed of the two major MAP kinases of ERK2 and JNK1 in nine different gold fish tissues in ten gold fish developing stages at the mRNA level. Experimental results show that in different early embryonic developing stages of gold fish, the two genes of ERK and JNK are highly expressed, which demonstrates a time-dependent pattern. Meanwhile, ERK and JNK are widely expressed in different tissues of adult gold fish, and an apparent tissue-specific difference can be observed among all these tissues, among which ovary expression is the highest. All these results indicate that ERK and JNK are two important protein kinases in gold fish.
     (4)、Microinjection of dominant negative mutant ERK( DNM-ERK) into gold fish zygotes apparently blocks the ERK signaling pathway of the injected embryos as reflected by the attenuated or abolished ERK activity at different stages of development. When the ERK signaling pathway is blocked by DNM-ERK, the development of gold fish is severely interrupted as shown by the appearance of abnormal phenotypes of stunted embryos and abnormal phenotypes which include abnormal shape of ocular lens, asymmetric pigment, reduced somite number, curled tails, reduced heartbeat, unconspicuous movement of muscles and high lethality rate, etc.These results indicate ERKs play an impotant role in vertebrate embryo development.
     (5)、The DNMJNK gene has been microinjected into zygote of gold fish to explore its affection on development after blocking the JNK signaling pathway. Experimental results display an absolutely necessary role of JNK in gold fish development, for the inhibition of JNK signaling pathway can obstruct the formations of many gold fish organs, especially eye, nervous tube and muscle. The present experiment demonstrates that JNK plays an important leading role in the early embryonic developing period of vertebrate, and this firstly confirms that JNK serves a significant function in vertebrate eye development by the method of functional absence.
引文
1.陈良恩,杨志华,吴铭权.JNK信号转导通路及其在应激中的作用.国外医学·生理、病理科学与临床分册,2001,21:169-171.
    2.龚小卫,姜勇.丝裂原活化蛋白激酶(MAPK)生物学功能的结构基础.生物化学与生物物理学报,2003,19:5-11.
    3.姜勇,龚小卫.MAPK信号转导通路对炎症反应的调控.生理学报,2000,52:267-277.
    4.姜勇,韩家淮.p38 MAPK信号转导通路.生命科学,1999,11:102-106.
    5.姜勇,刘爱华,赵克森.丝裂原活化蛋白激酶信号转导通路,第一军医大学学学报,1999,13:454-462.
    6.张璐,姜勇,张琳等.丝裂素活化蛋白激酶信号转导通路研究进展.国外医学·生理、病理科学与临床分册,1999,19:84-87.
    7.张璐,张琳,姜勇等.丝裂原激活蛋白激酶信号转导通路在细胞凋亡中的作用.生命的化学,1998,18:16-18.
    8.周志琦,刘强.真核生物的MAPK级联信号传递途径.生物化学与生物物理进展,1998,25:496-503.
    9.Abe JM,Kusuhara RJ,Ulevitch B C,et al.Bigmitogen-activated protein kinase l(BMKl)is a redoxsensitive kinase.J Bio Chem,1996,271:6586-16590.
    10.Ashworth AS,Nakielny P,Cohen,et al.The amino acid sequence of a mammalian MAP kinase Oneogene,1992,7:2555-2556.
    11.BagrodiaS,Derijard B,Davis RJ,et al.Cdc42 and PAK-mediated signaling leads to Jun kinase and p38 mitogen-aefivated protein kinasc activation.J Biol Chem,1995,270:27995-27998.
    12.Bardwell L,Cook JC,Chang EC,et al.Signaling in the yeast pheromone response pathway:specific and high-affinity interaction of the mitogen-activated protein(MAP)kinases Kssl and Fus3 with the upstream MAP kinase kinase Ste7.Mci Cell Blot,1996,16:3637-3650
    13.Bonny C,Nicod P,Waeber G.IB1,a J1P-1-related nuclear protein in insulin-secreting cells.J Biol Chem,1998,273:1843-1846.
    14. Canagarajah BJ, Khokhlatchev A, CobbMH, et al. Activation mechanism of the MAP kinase ERK2 by du-al phosphorylation. Cell, 1997, 90: 859-869.
    15. Chen YR, WangX, TemptctonD, et al. The role of c-Jun N-terminal kinase (JNK) in apoptosisinduced by ultraviolet C and ganlma irradiation. Duration of JNK activatiion may deternfine cell death and proliferation. J Biol Chem, 1996, 271: 31929-31936.
    16. Chow CW, Rineom M, Cavanagh J, ct al. Nuclear aecmnulation of NFAT4 opposed by the JNK signal transduction pathway. Science, 1997, 278: 1638-1641.
    17. Crawley JB, Rawlinso L, Lali FV, et al. T cell proliferation in response to interleuhns 2 and 7 requires p38MAP LBase activation. J Biol Chem, 1997, 272:15023-15027.
    18. Downward J, et, al. Control of ras act acation. Cancer Surv, 1996, 27: 87-100.
    19. Ellinger H, BrownK, Kelly K, et al. Direct activation of the stress-activated protein kinase (SAPK) and extracellula signal-regulated protein kinase (ERK) pathways by ailinducible mitogen-activated protein kiilase/ERK " Basekinase 3 (MEKK) derivative. J Biol Chem, 1997, 272: 2668-2674.
    20. Fallgu CR, Cerwins P, Widmann C, et al. MEKKs, GCKs, MLKs, TAPKs, and Tpls: upstream-regulators of the c-Jun amino-terminal kinases? Curr Opin Genet Dev, 1997, 7:67-74.
    21. Faris M, Kokot N, Latinis K, et al. the c-Jun N-terminal kinase cascadeplays a role in stress-induted apoptosis in Jurkat cells by up regu-lating Fas ligaild expression. J. Immunol, 1998, 160: 134-144.
    22. Hirai SI, Izawa M, Osada SI, et al. Activation of the JNK pathway by distantly related proteinkinases, MEKK and MUK. Oneogene, 1996, 12:641-650.
    23. Jiang Y, Chen C, Li Z, et al. Characterization of the structure and funetion of the fourth mereber of p38 group mitogen-activaled protein kinases, P38δ . J Biol Chem, 1999, 272: 30122-30128.
    24. Jiang Y, Chen C, Li Z, et al. Charaeterization of the structure and funetion of a new mitogen-activated protein kinase (p38β). J Biol Chem, 1996, 271:17920-17926.
    25. Johnson LN, Cardher AM, Diener KM, et al. Signal transduction pathways regulated by mitogen-activated / extracellular response kinase kinase kinase induce cell death. J Biol Chem, 1996, 271:3229-3237.
    26. Kato TJ, Okazaki K, Murakami H, et al. Stress signal, mediated by a Hogl-like MAP kinase, controls sexual development in fission yeast. FEBS Lett, 1996, 378:207-212.
    27. Kato Y, Kravchenko VV, Tapping RI, et al. BMK1 / ERK5 regulates serum-induced eady gene expression through transchption factor ME2C. EMBO J, 1997, 16: 7054-7066.
    28. Kyriakis JM, Baneuee P, Nikolakaki E, et al. The stress-activated protein kinase Subfamily of c-Junkina-scs. Nature, 1994, 369: 156-160.
    29. Giannelli G, Bergamini C, Fransvea E, et al. Human hepa—tocellular carcinoma(HCC)cells require both alpha3beta1 integrin and matrix metallopr Oteinases activity for migra—tion and invasion. Lab Invest, 2001, 81(4): 613-624.
    30. Bu W , Tang ZY, Sun FX, et al. Effects of matrix metal-loproteinase inhibitor BB-94 on liver cancer growth and metastasis in a patient-like orthotopic model. Hepatogastroenterology, 1998, 45(22): 1056-1070.
    31. Adeyinka A, Nui Y, Cherlet T, et al. Activated mitogenactivated protein kinase expression during human breast tumorigenesis and breast cancer progression. Clin Cancer Ras, 2002, 8: 1747-1752. .
    32. Bonni A, Brunet A, W est AE, et al. Cell Survival promoted by the ras-MAPK signaling pathway by transcription-dependent and independent mechanisms. Science, 1999, 286: 1358-1366.
    33. Plotkin LI, Aguirre JI, Kousteni S, et al. Bisphosphonates and estrogens inhibit osteoeyte apoptosis via distinct molecular mechanisms downstream of extracellular signal--regulated kinase activation. J Biol Chem, 2005,280:7317-7323.
    34. Chen JR, Plotkin LI, Aguirre Jl, et al. Transient versus sustained phosphorylation and nuclear accumulaion of ERKs underlie anti—versus pro-apoptotic effects of estrogens. J Biol Chem, 2005, 280: 4632-4641.
    35. Pumiglia KM, et al. Cell cycle arrest mediated by the MEK/mitogen activated protein. kinase pathway. Proc Nail Acad Sci , 1998 , 94 : 448-452.
    36. Yuan LL, Adams JP, Swank M , et al. Protein kinase modulation of dendritic K+ channels in hippocampus involves a mitogen-activated protein kinase pathway. J Neurosci, 2002, 22(12): 4860-4868.
    37. Morozov A, Muzzio IA, Bourtchouladze R, et al. Rap1 couples cAMP signaling to a distinct pool of p42 / 44 MAPK regulating excitability, synaptic plasticity, learning, and memory. Neuron, 2003, 39(2): 309-325.
    38. Watabe AM , Zaki PA, O"Dell TJ. Coactivation of beta—adrenergic and cholinergic receptors enhances the induction of long-term potentiation and synergistically activates mitogen-activated Signallingmechanisms protein kinase in the hippocampal CA 1 region. JNeurosci, 2000, 20(16): 5924-5931.
    39. Kelly A, Laroche S, Davis S. Activation of mitogen-activated protein kinase/extracellular signal-regulated kinase in hippocampal circuitry is required for consolidation and reconsolidation of recognition memory. J Neurosci, 2003, 23(12): 5354-5360.
    40. Selcher JC, Weeber EJ, Christian J, et al. A role for ERK MAP kinase in physiologic temporal integration in hippocampal area CA1. Learn Mem, 2003, 10: 26-39.
    41. Watanabe S, Hofman DA , Migliore M, et al. Dendritic K channels contribute to spike-timing dependent long-term potentiation in hippocampal pyramidal neurons. Proc Natl Acad Sci USA, 2002, 99(12): 8366-8371.
    42. BozonB, Kelly A, Josselyn SA. MAPK, CREB and zif268 are all required for the consolidation of recognition memory. Philos Trans R Soc Lond B Biol Sci, 2003, 358(1432): 805-814.
    43. Swank MW , Sweatt JD. Increased histone acetyhransferase and lysine acetyhransferase activity and biphasic activation of the ERK / RSK cascade in insular cortex during novel taste learning. J Neurosci, 2001, 21(10): 3383-3391.
    44. Neufeld B, Grosse WA, Hofmeyer A, et al. Serine / Threonine kinases 3pK and MAPK-activated protein kinase 2 interact with the basic helix-loop-helix transcription factor FA7 and repress its transcriptional activity. J Biol chem, 2000, 275(27): 20239-20242.
    45. Chuang SM, WangIC。 YangJL. Roles of. JNK. p38 and ERK mitogen-activated protein kinases in the growth inhibition and apoptosis induced by cadmium. Carcinogenesis, 2000, 21(7): 1423-1432.
    46. Awazu M, lshikma K. Hida M, et al. Mechanisms of mitogen-activated protein kinase activation in experimental diabetes. J Am Soc Nephrol, 1999, 10(4): 738-745.
    47. Coroneos E, Wang Y, Panuska JR, et al. Sphingolipid metabolites differenfially Teglllate extracellular signal-regulated kinase and stress-activated protein kinase cascades. Biochem J, 1996, 33:313-316.
    48. Kyriahs , JM , App H , ZhallS XF , et al. Raf-1 activate MAP kinase-kinase. Nature, 1992, 358: 417-421.
    49. Lee FS, Hagler J, Chen ZJ, et al. Activation of the I-kappa-Ba kinase complex by MEKK1, a kinase of the JNK pathway. Cell, 1997, 88: 213-222.
    50. Ligtennk W, Kroj T, Nieden. UZ, et al. Receptor-mediated activation of a MAP kinase in pathogen defense of plants. Science, 1997, 276: 2054-2057.
    51. Miguel DC, Kligmand D, Patel J, et al. Molecular analysis of microtubule-associated protem-2 kinase cD-NA from mouse and rat brain. DNA Cell Biol, 1991, 10: 505-514.
    52. Mizoguchi T, Lchimura K, Shinozaki K. Environmental stress response in plants: the of mitogen activated protein kinases. TIBTECH, 1997, 15:15-19.
    53. Muda M, Boseherr U, Smith A, et al. Molecular clonmg and funetional characterization of a novel mitogen-activated proteinnase-phosphatase, MKP4. J Cell Bi01, 1997, 272: 5141-5151.
    54. Whitmarsh AJ, el al. Disruption of the Jip1 gene in mice by homologous recombination prevented JNK activation. Genes&Development, 2001, 15:2421-2427.
    55. Nishina H, Fischer KD, Radvanyi L, Shahinian A, Hakem R, Rubie EA, Bernstein A, Mak TW, Woodgett JR, Penninger JM. Stress-signalling kinase Sek1 protects thymocytes from apoptosis mediated by CD95 and CD3. Nature, 1997, 385(6614): 350-353.
    56. Tounier C et al. Requirement of JNK for stress-induced activation of the cytochrome c-mediated death pathway. Science, 2000, 288: 870-874.
    57. Lefkoith JB. Leukocyte migration in immune complex glomeronephntis: role of adhesion receptors. Kidney Int, 1997, 51(5): 1469-1472.
    58. De Cesaris P, Starace D, Riccioli A, Padula F, Filippini A, Ziparo E. Activation of c-jun N-temerminal kinase/stress activated protein kinase pathway by Tumor necrosis factor alpha leads lo Inter-cellular adhesion molecule-1 expression. J Biol Chem, 1999, 274(41):978-989.
    59. Stein B, Brady H, Yang MX, et al. 1996. Cloning and charactenzatlon of MEK6, a novel member of the mitogen-activated protein kinase kinase cascade. J Biol Chem, 271: 11427-11433
    60. De Cesaris P, Starace D, Riccioli A, Padula F, Filippini A, Ziparo E. Tumor necrosis factor-alpha induces interleukin-6 production and integrin ligand expression by distinct transduction pathways. J Biol Chem, 1998, 273(13):7566-7571.
    61. Lin SJ, Shyue SK, Hung YY, Chen YH, Ku HH, Chen JW, Tam KB, Chen YL. Superoxide dismutase inhibits the expression of vascular cell adhesion molecule-1 and intracellular cell adhesion molecule-1 induced by tumor necrosis factor-alpha in human endothelial cells through the JNK/p38 pathways. Arterioscler Thromb Vasc Biol, 2005, 25(2): 334-340.
    62. Read MA, Whitley MZ, Gupta S, Pierce JW, Best J, Davis RJ, Collins T. Tumor necrosis factor alpha-induced E-selectin expression is activated by the nuclear factor-kappaB and c-JUN N-terminal kinase/p38 mitogen-activated protein kinase pathways. J Biol Chem, 1997, 272(5): 2753-2761.
    63. De Cesaris P, Starace D, Starace G, Filippini A, Stefanini M, Ziparo E. Activation of Jun N-terminal kinase/stress-activated protein kinase pathway by tumor necrosis factor alpha leads to intercellular adhesion molecule-1 expression. J Biol Chem, 1999, 274(41):28978-28982.
    64. Kurokawa M, Mitani K, Yamagata T, et al. The evi-1 oncoprotein inhibit c-Jun N -terminal kinase and prevents stress-induced cell geath. EMBO J, 2000, 19: 2958—2968.
    65. Weiya Mal. Remi Quifion. Partial sciatic nerve ligation induces increasein the phosphorylation of extra ceHular signal-regulated kinase (ERK)and c-Jun N-terminal kinase (JNK)in astrecytes in thelumbar spinal dorsal horn and the gracilenucleus. Pain, 2002, 99: 175-184.
    66. Lu DQ, Bei JX, Feng LN, Zhang Y, Liu XC, Wang L, Chen JL, Lin HR. Interleukin-lbeta gene in orange-spotted grouper, Epinephelus coioides: molecular cloning, expression, biological activities and signal transduction. Mol Immunol, 2008, 45(4):857-867.
    67. Ignatovich VF. Enhancement of the antigenic activity and virulence of the vaccine strain E of Rickettsia prow azeki by passages in cell culture. Acta Virol, 1975, 19(6):481-485.
    68. Chakravortty D, Kato Y, Koide N, et al. Extrancelular matrix components prevent bovine arterial endothelial cel - mjury by inhibiting p38 mitogen-activated protein kinase. Thromb Res, 2000, 98(2):187-189.
    69. Katoh I, Yoshinaka Y, Ikawa Y. Bovine leukemia virus trans-activator p38tax activates heterologous promoters with a common sequence known as a cAMP-responsive element or the binding site of a cellular transcription factor ATF. EMBO J, 1989, 8(2):497-503.
    70. Floor E, Leeman SE. Identification and characterization of the major proteins of mammalian brain synaptic vesicles. J Neurochem, 1988, 50(5): 1597-1604.
    71. Valentine-Braun KA, Hollenberg MD, Fraser E, Northup JK. Isolation of a major human placental substrate for the epidermal growth factor (urogastrone) receptor kinase: immunological cross-reactivity with transducin and sequence homology with lipocortin. Arch Biochem Biophys, 1987, 259(2):262-282.
    72. Mitsui K, Teraoka H, Tsukada K. Complete purification and immunochemical analysis of S-adenosylmethionine synthetase from bovine brain. J Biol Chem, 1988, 263(23):11211-11216.
    73. Schilling K, Gratzl M. Quantification of p38/synaptophysin in highly purified adrenal medullary chromaffin vesicles. FEBS Lett, 1988, 233(1): 22-24.
    74. Obendorf D, Schwarzenbrunner U, Fischer-Colbrie R, Laslop A, Winkler H. In adrenal medulla synaptophysin (protein p38) is present in chromaffin granules and in a special vesicle population. J Neurochem, 1988, 51(5): 1573-1580.
    75. Redecker P, Grube D, Jahn R. Immunohistochemical localization of synaptophysin (p38) in the pineal gland of the Mongolian gerbil (Meriones unguiculatus). Anat Embryol, 1990, 181(5):433-440.
    76. Widmann C,Gibson S,Jarpe MB,et al. Mitogen-activated protein kinase: Conservation of a three-kinase module from yeast to human. Physiol Rev, 1999, 79:143-180.
    77. Marshall CJ. Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signal-regulated kinase activation. Cell, 1995, 80(2): 179-185.
    78. Guichard A, Biehs B, Sturtevant MA, Wickline L, Chacko J, Howard K, Bier E. rhomboid and Star interact synergistically to promote EGFR/MAPK signaling during Drosophila wing vein development. Development, 1999, 126(12):2663-2676.
    79. Frantz S, Kelly RA, Bourcier T. Role of TLR-2 in the activation of nuclear factor kappaB by oxidative stress in cardiac myocytes. J Biol Chem, 2001, 276(7):5197-5203.
    80. Shibata W, Banno H, Ito Y, eL al. A tobacco protein kinase, NPK2, has a domain homologous toa domam found inactlvators of mitogen activated proteinkinase (MAPKKs). Mol Gen Genet, 1995, 246:401-410
    81. Nishihama R, Banno H, Shibata W, Hirano K, Nakashima M, Usami S, Machida Y. Plant homologues of components of MAPK (mitogen-activated protein kinase) signal pathways in yeast and animal cells. Plant Cell Physiol, 1995, 36(5):749-757.
    82. Mockaitis K, Howell SH. Auxin induces mitogenic activated protein kinase (MAPK) activation in roots of Arabidopsis seedlings. Plant J, 2000, 24(6): 785-796.
    83. Mockaitis K, Howell SH. Auxin induces mitogenic activated protein kinase (MAPK) activation in roots of Arabidopsis seedlings. Plant J, 2000, 24(6): 785-96.
    84. Ligterink W, Hirt H. Mitogen-activated protein (MAP) kinase pathways in plants: versatile signaling tools. Int Rev Cytol, 2001, 75:209-215.
    85. Seiji Mabuchi, Masahide Ohmichi, Yukihiro Nishio, Tadashi Hayasaka, Akiko Kimura, Tsuyoshi Ohta, Jun Kawagoe, Kazuhiro Takahashi. Inhibition of Inhibitor of Nuclear Factor- B Phosphorylation Increases the Efficacy of Paclitaxel in in Vitro and in Vivo Ovarian Cancer Models. Clinical Cancer Research, 2004, 10:7645-7654.
    86. Paulo Ottino, Jiucheng He, Thomas W. Axelrad, and Haydee E. P. Bazan. PAF-Induced Furin and MT1-MMP Expression Is Independent of MMP-2 Activation in Corneal Myofibroblasts. IOVS, 2005, 46:487-496.
    87. 秦建华, 陈明. p38丝裂原活化蛋白激酶与细胞迁移. 泸州医学院学报, 2006,2:243-250.
    88.潘勤,谢渭芬,张忠兵,张新,韩泽广,PAN Qin,XIE Wei-fen,ZHANG Zhong-bing,ZHANG Xin,HAN Ze-guang.细胞外信号调节激酶对肝纤维化逆转的影响及其机制.第二军医大学学报,2005,9:119-126.
    89.Bradford,M.M.A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding.Anal Biochem,1976,72:248-254.
    90.刘妍.MAP激酶在四倍体鲤鲫及亲本不同组织中的表达模式.湖南师范大学硕士学位论文,2006。
    91.Seger R,Krebs EG.The MAPK signaling cascade.FASEB J,1995,9(9):726-732.
    92.姜勇,刘爱华,赵克森.丝裂原活化蛋白激酶信号转导通路.第一军医大学学报,1999,19(1):59-62.
    93.张璐,姜勇,张琳.丝裂原活化蛋白激酶研究进展.国外医学:生理科学与临床分册,1999,19(2):84-87.
    94.姜勇,韩家淮.P38信号传导通路.生命科学,1999,11(3):102-106.
    95.Lee JC,Laydon JT,McDonnell PC et al.Identification and characterization of a novel protein kinase involved in the regulation of inflammatory cytokine biosynthesis.Nature,1994,372(6508):732-739.
    96.Cobb MH,Goldsmith EJ.How MAP kinases are regulated.J Biol Chem,1995,270(25):143-148.
    97.Déri jard B,Raingeaud J,Barrett T,Wu IH,Han J,Ulevitch RJ,Davis RJ.Independent human MAP-kinase signal transduction pathways defined by MEK and MKK isoforms.Science,1995,267:682-685.
    98.John M,Kyriakis,Josph Avruch.Mammalian mitogen-activated protrin kinase signak transduction pathways activated by stress abd inflammation.Phhysioligical Reviews,2001,81(2):807-869.
    99.Li DW,Liu JP,Wang J,Mao YW,Hou LH.Expression and activity of the signaling molecules for mitogen-activated protein kinase pathways in human,bovine,and rat lenses.Invest Ophthalmol Vis Sci,2003,44(12):5277-5286.
    100.田兆方,李述庭.MAPK级联途径在脑发育与脑损伤修复中的作用.国外医 学:生理科学与临床分册.2000,20(3):184-186.
    101.Drewes G,Lichtenberg-Kraag B,Doring F,Mandelkow EM,Biernat J,Goris J,Dorée M,Mandelkow E.Mitogen activated protein(MAP)kinase transforms tau protein into an Alzheimer-like state.EMBO J,1992,11(6):2131-2138.
    102.Hyman BT,Elvhage TE,Reiter J.Extracellular signal regulated kinases.Localization of protein and mRNA in the human hippocampal formation in Alzheimer's disease,1994,144(3):565-572.
    103.Nakamura S,Kawamoto Y,Nakano S,Akiguchi I,Kimura J.Cyclin-dependent kinase 5 and mitogen-activated protein kinase in glial cytoplasmic inclusions in multiple system atrophy.J Neuropathol Exp Neurol,1998,57(7):690-698.
    104.许纲,丁树哲.骨骼肌丝裂原活化蛋白激酶信号级联与运动.中国运动医学杂志.2004,23(5):577-583.
    105.Widegren U,Ryder JW,Zierath JR.Mitogen-activated protein kinase signal transduction in skeletal muscle:effects of exercise and muscle contraction.Acta Physiol Scand,2001,172:227-238.
    106.Widegren U,Jiang XJ,Krool A.Divergent effects of exercise on metabolic and mitogenic signaling pathways in human skeletal muscle.FASEB J,1998,12:1379-1389.
    107.刘季芳。异源四倍体鲫鲤Sox基因及黄鳝类固醇激素合成酶研究。湖南师范大学博士学位论文,2006。
    108.Sturgill TW,Ray LB,Anderson NG,Erickson AK.Purification of mitogen-activated protein kinase from epidermal growth factor-treated 3T3-L1 fibroblasts.Methods Enzymol,1991,200:342-351.
    109.Pelech SL.Kinase connections on the cellular intranet.Signalling pathways.Curr Biol,1996,6(5):555-554.
    110.Pages,G.,Guerin,S.,Grall,D.,Bonino,F.,Smith,A.,Anjuere,F.,Auberger,P.and Pouysse' gut,J.Defective thymocyte maturation in p44 MAP kinase(Erk1)knockout mice.Science,1999,286:1374-1377.
    111.Mazzucchelli,C.,Vantaggiato,C.,Ciamei,A.,Fasano,S.,Pakhotin,P.,Krezel,W.,Welzl,H.,Wolfer,D.P.,Page s,G.and Valverde,O. Knockout of ERK1 MAP kinaseenhances synaptic plasticity in the striatum and facilitatesstriatal-mediated learning and memory. Neuron, 2002, 34:807-820.
    112. Schaeffer, H. J., Catling, A. D., Eblen, S. T., Collier, L. S., Krauss, A. and Weber, M. J. MP1: A MEK binding partner that enhances enzymatic activation of the MAP kinase cascade. Science, 1998, 281:1668 - 1671.
    113. Saba-El-Leil, M. K., Vella, F.D. J., Vernay, B., Voisin, L , Chen, L., Labrecque, N., Ang, S. L. and Meloche, S. An essential function of the mitogen-activated protein kinase Erk2 in mouse trophoblast development. EMBO, 2003, 4:964-968.
    114. Yao, Y., Li, W., Wu, J., Germann, U. A., Su, M. S. S., Kuida, K. and Boucher, D.M. Extracellular signal-regulated kinase 2 is necessary for mesoderm differentiation. Proc. Natl. Acad. Sci. USA, 2003, 100:12759-12764.
    115. Ornitz, D. and Itoh N. Fibroblast growth factors. Genome Biol, 2001, 2:3005.1-3010.
    116. S. F. Gabby Krens, Herman P. Spaink, B. Ewa Snaar-Jagalska. Functions of the MAPK family in vertebrate-development. FEBS Letters, 2006, 580:4984-4990.
    117. Han J, Lee JD, Bibbs L, Ulevitch RJ. A MAP kinase targeted by endotoxin and hyperosmolarity in mammalian cells. Science, 1994, 265(5173): 808-811.
    118. Li Z, Jiang Y, Ulevitch RJ, Han J. The primary structure of p38 gamma: a new member of p38 group of MAP kinases. Biochem Biophys Res Commun, 1996, 228(2): 334-340.
    119. Jiang Y, Gram H, Padova FD, et al. Characterization of the structure and function of the fourth member of p38 group MAP kinases-p38d. J Biol Chem, 1997, 272(48):301-312.
    120. Huang D, Ding Y, Luo WM, Bender S, Qian CN, Kort E, Zhang ZF, VandenBeldt K, Duesbery NS, Resau JH, Teh BT. Inhibition of MAPK kinase signaling pathways suppressed renal cell carcinoma growth and angiogenesis in vivo. Cancer Res, 2008, 68(1):81-88.
    121. Falin RA, Cotton CU. Acute downregulation of ENaC by EGF involves the PY motif and putative ERK phosphorylation site. J Gen Physiol,.2007,130(3):313-328.
    122.Pollack V,Sarkozi R,Banki Z,Feifel E,Wehn S,Gstraunthaler G,Stoiber H,Mayer G,Montesano R,Strutz F,Schramek H.Oncostatin M-induced effects on EMT in human proximal tubular cells:differential role of ERK signaling.Am J Physiol Renal Physiol.,2007,293(5):14-26.
    123.王文丽 李孝生.丝裂原激活的蛋白激酶信号转导通路与肝纤维化.江苏医药,2000,33:1028-1029.
    124.Wolpert DM,Goodbody SJ,Husain M.Maintaining internal representations:the role of the human superior parietal lobe.Nat Neurosci,1998,1(6):529-533.
    125.Gibson KM,Christensen E,Jakobs C,Fowler B,Clarke MA,Hammersen G,Raab K,Kobori J,Moosa A,Vollmer B,Rossier E,Iafolla AK,Matern D,Brouwer OF.The clinical phenotype of succinic semialdehyde dehydrogenase deficiency(4-hydroxybutyric aciduria):case reports of 23 new patients.Pediatrics,1997,99(4):567-574.
    126.Marais R,Marshall CJ.Control of the ERK MAP kinase cascade by Ras and Raf.Cancer Surv,1996,27:101-125.
    127.Mosin AF,Gabal VL,Makarova IuM,Mosina VA.Specificity of morphological changes and DNA degradation in the Ehrlich ascite carcinoma cells exposed to various damaging agents.Tsitologiia,1997,39(3):209-217.
    128.Pownall ME,Tucker AS,Slack JM,Isaacs HV.eFGF,Xcad3 and Hox genes form a molecular pathway that establishes the anteroposterior axis in Xenopus.Development,1996,122(12):3881-3892.
    129.Kitahara T,Kiryu S,Ohno K,Morita N,Kubo T,Kiyama H.Up-regulation of ERK(MAP kinase)and MEK(MAP kinase kinase)transcription after rat facial nerve transection.Neurosci Res,1994,20(3):275-80.
    130.Crossley PH,Martinez S,Martin GR.Midbrain development induced by FGF8 in the chick embryo.Nature,1996,380(6):6566-6569.
    131. Lombardo A, Slack JM. Postgastrulation effects of fibroblast growth factor on Xenopus development. Dev Dyn, 1998, 212(1):75-85.
    132. Lombardo A, Isaacs HV, Slack JM. Expression and functions of FGF-3 in Xenopus development. Int J Dev Biol, 1998, 42(8):1101-1107.
    133. Irigoyen JP, Besser D, Nagamine Y. Cytoskeleton reorganization induces the urokinase-type plasminogen activator gene via the Ras/extracellular signal-regulated kinase (ERK) signaling pathway. J Biol Chem, 1997, 272(3):1904-1909.
    134. Umbhauer M, Marshall CJ, Mason CS, Old RW, Smith JC. Mesoderm induction in Xenopus caused by activation of MAP kinase. Nature, 1995, 376(5): 58-62.
    135. Marchant A, Hartley MR. Mutational studies on the alpha-sarcin loop of Escherichia coli 23S ribosomal RNA. Eur J Biochem, 1994, 226(1): 141-147.
    136. LaBonne C, Burke B, Whitman M. Role of MAP kinase in mesoderm induction and axial patterning during Xenopus development. Development, 1995, 121 (5):1475-1486.
    137. B. Christen et al. Spatial response to fibroblast growth factor, signaling in Xenopus embryos. Development, 1998, 126:119-125.
    138. Christina Yoon et al. Zebrafish vasa homologue RNA is localized to the cleavage planes of 2- and 4-cell-stage embryos and is expressed in the primordial germ cells. Development, 1997, 124:3157-3166.
    139. Bagowski CP, Xiong W, Ferrell JE Jr. C-Jun N-terminal kinase activation in Xenopus laevis eggs and embryos. A possible non-genomic role for the JNK signaling pathway. J Biol Chem, 2001, 276(2): 1459-1465.
    140. Kolch W. Meaningful relationships: the regulation of the Ras/Raf/MEK/ERK pathway by protein interactions. Biochem J, 2000, 351:289-305.
    141. Shrode LD, Rubie EA, Woodgett JR, Grinstein S. Cytosolic alkalinization increases stress-activated protein kinase/c-Jun NH2-terminal kinase (SAPK/JNK) activity and p38 mitogen-activated protein kinase activity by a calcium-independent mechanism. J Biol Chem, 1997, 272:13653-13659.
    142. Ludt J, Sandvig K, Olsnes S. Rapid increase in pH setpoint of the Na~+-in-dependent chloride/bicarbonate antiporter in Vero cells exposed to heat shock. J Membr Biol, 1993, 134:143-153.
    143. Rozanski GJ, Witt RC. Interleukin-1 enhances beta-responsiveness of cardiac L-type calcium current suppressed by acidosis. Am J Physiol, 1994, 267:1361-1367.
    144. Rosette C, Karin M. Ultraviolet light and osmotic stress: activation of the JNK cascade through multiple growth factor and cytokine receptors. Science, 1996, 274:1194 -1197.
    145. Han J, Lee JD, Bibbs L, Ulevitch RJ. A MAP kinase targeted by endotoxin and hyperosmolarity in mammalian cells. Science, 1994, 265:808-811.
    146. Seko Y, Takahashi N, Tobe K, Kadowaki T, Yazaki Y. Hypoxia and hypoxia/reoxygenation activate p65PAK, p38 mitogen-activated protein kinase (MAPK), and stress-activated protein kinase (SAPK) in cultured rat cardiac myocytes. Biochem Biophys Res Commun, 1997, 239:840 - 844.
    147. Pages G, Lenormand P, L Allemain G et al. Mitogen-activated proein kinase p42mapk and p44mapk are required for fibroblast proliferation. Proc Natl Acad Sci USA, 1993, 90:8319-8327.
    148. Meriin AB, Yaglom JA, Gabai VL, Zon L, Ganiatsas S, Mosser DD, et al. Protein-damaging stresses activate c-Jun N-terminal kinase via inhibition of its dephosphorylation: a novel pathway controlled by HSP72. Mol Cell Biol, 1999, 19:2547-2555.
    149. Xia Z, Dickens M, Raingeand J et al. Opposing effects of ERK and JNK-p38 MAP kinase on apoptosis. Science, 1995, 270:13326-13335 .
    150. Wang YB, Su B, Sah VP et al. Cardiac Hypertrophy induced by mitogen-activated protein kinase kinase 7, a specific activator for c-Jun HN2-terminal kinase in ventricular cells, J Biol Chem, 1998, 273(10): 5423-5233.
    151. Antonyak MA, Moscatello DK, Wong AJ. Constitutive activation of c-Jun N-terminal kinase by a mutant EGF receptor. J Biol Chem, 1998, 273(5): 2817-2825.
    152. Li W, Whaley CD, Mondino A. Blocked signal transduction to the ERK and JNK protein kinase in anergrc CD~+4 T cells. Science, 1996, 271 (5): 1272-1283.
    153. Berberich Z, Shu G, Siebelt F et al. Cross-linking on B cells preferentially induced stress-activated proteins rather than mitogen-activated protein kinases. J EMBO, 1996, 15(1):92-99.
    154. Wang YB, Su B, Sah VP et al. Cardiac Hypertrophy induced by mitogen-activated protein kinase kinase 7, a specific activator for c-Jun HN2-terminal kinase in ventricular cells. J Biol Chem, 1998, 273(10): 5423-5431.
    155. Guanghong Liao, Qinghua Tao, Matthew Kofron, Juei-Suei Chen, Aryn Schloemer, Roger J. Davis, Jen-Chin Hsieh, Chris Wylie, Janet Heasman, and Chia-Yi Kuan. Jun NH2-terminal kinase (JNK) prevents nuclear_-catenin accumulation and regulates axis formation in Xenopus embryos. PNAS, 2006, 44:16313-16318.
    156. Wallingford JB, Rowning BA, Vogeli KM, Rothbacher U, Fraser SE, Harland RM. Dishevelled controls cell polarity during Xenopus gastrulation. Nature, 2000, 405:81-85.
    157. Christian Lange, Eilhard Mix, Katja Rateitschak, Arndt Rolfs. Wnt Signal Pathways and Neural Stem Cell Differentiation. Neurodegenerative Dis, 2006, 3:76-86.
    158. AJ Muslin, A M MacNicol and L T Williams. Raf-1 protein kinase is important for progesterone-induced Xenopus oocyte maturation and acts downstream of mos. Mol Cell Biol, 1993, 13(7): 4197-4202.
    159. Bagowski CP, Myers JW, Ferrell JE Jr. The classical progesterone receptor associates with p42 MAPK and is involved in phosphatidylinositol 3-kinase signaling in Xenopus oocytes. J Biol Chem,2001,276(40):37708-37714.
    160.Lewellyn A.L.;Maller J.L.MAP Kinase Is Activated during Mesoderm Induction in Xenopus laevis.Developmental Biology,1994,163(2):521-524.
    161.田勇泉等.《分子生物学方法》.湖南科学出版社.1990.
    162.J.Sambrook.et al.The complete sequence and segregational stability analysis of a new cryptic plasmid pIGWZ12 from a clinical strain of Escherichia coll.Molecular Cloning A Laboratory Manual Cold Spring Harbor Laboratory Press,1998,56:334-350.
    163.蔡良婉.《核酸研究技术》下册.科学出版社.1990.
    164.陈永福.《转基因动物》.科学出版.2002.
    165.喻小燕,曹晶,陈妍,谢锦云,梁宋平.受精卵反义寡核苷酸显微注射影响因素的研究.生命科学研究,2007,11:334-337.
    166.范昌发,左琴,李保文,李波,岳秉飞.一种便捷而经济的显微注射针填充方法.中国比较医学杂志,2007,17:0025-0026.
    167.Patton DE,Goldin AL.A voltage-dependent gating transition induces use-dependent block by tetrodotoxin of rat IIA sodium channels expressed in Xenopus oocytes.Neuron,1991,7(4):637-647.
    168.Said A.Goueli,Kevin Hsiao,Tingyun Lu and Dan Simpson.U0126:A Novel,Selective and Potent Inhibitor of MAP Kinase Kinase(MEK).Promega Notes,1998,69-77.
    169.Merkx GF,Hopman AH,Akkermans-Scholten AC,et,al.Evidence for specificity of the DA/DAPI technique.Cytogenet Cell Genet,1990,54(1-2):62-64.
    170.莫永胜.DAPI及其应用研究.生命的化学,1989,9:27-28.
    171.孔庆亮,李宗芸,傅美丽,王勤,满影,王宏宇.鳙鱼染色体的DAPI核型分析.四川动物,2006,25:64-67.
    172.Cano E,Mahadevan LC.Parallel signal processing among mammalian MAPKs.TIBS,1995,20:117-123.
    173.Gupta S,Barrett T,Whitmarsh AJ et al.Selective interaction of JNK protein kinase isoforms with transcription factors.EMBO J,1996,15(11):2760.
    174.杜宏举,汤宁.丝裂原活化蛋白激酶信号通路及其生物学功能.国外医学 卫生学分册, 2005, 32:197-201.
    175. Cutler D, Lane C, Colman A. Non-parallel kinetics and the role of tissue-specific factors in the secretion of chicken ovalbumin and lysozyme from Xenopus oocytes. J Mol Biol, 1981, 153(4):917-931.
    176. Ballivet M, Nef P, Couturier S, Rungger D, Bader CR, Bertrand D, Cooper E. Electrophysiology of a chick neuronal nicotinic acetylcholine receptor expressed in Xenopus oocytes after cDNA injection, 1988, 1(9):847-52.
    177. Ymer SI, Stevenson JL, Herington AC. Differences in the developmental patterns of somatotrophic and lactogenic receptors in rabbit liver cytosol. Endocrinology, 1989, 125(1):516-23.
    178. Swick AG, Janicot M, Cheneval-Kastelic T, McLenithan JC, Lane MD. Promoter-cDNA-directed heterologous protein expression in Xenopus laevis oocytes. Proc Natl Acad Sci U S A, 1992, 89(5):1812-1816.
    179. Xiao Jx, Yang L. Thermodynamic properties of alpha -helix protein: A soliton approach. Phys Rev A, 1991, 44(12):8375-8379.
    180. Valle G, Besley J, Colman A. Synthesis and secretion of mouse immunoglobulin chains from Xenopus oocytes. Nature, 1981, 291(5813):338-340.
    181. Lane CD, Colman A, Mohun T, Morser J, Champion J, Kourides I, Craig R, Higgins S, James TC, Applebaum SW, Ohlsson RI, Paucha E, Houghton M, Matthews J, Miflin BJ. The Xenopus oocyte as a surrogate secretory system. The specificity of protein export. Eur J Biochem, 1980, 111(1): 225-235.
    182. Dunn SE, Ehrlich M, Sharp NJ, Reiss K, Solomon G, Hawkins R, Baserga R, Barrett JC. A dominant negative mutant of the insulin-like growth factor-I receptor inhibits the adhesion, invasion, and metastasis of breast cancer. Cancer Res, 1998, 58(15):3353-3361.
    183. JIRI VACHTENHEIM and BLANKA DRDOVA. A Dominant Negative Mutant of Microphthalmia Transcription Factor (MITF) Lacking Two Transactivation Domains Suppresses Transcription Mediated by Wild Type MITF and a Hyperactive MITF Derivative. PIGMENT CELL RES, 2004, 17: 43-50.
    184. Nirmala Chandrasekar, Sanjeeva Mohanam, S. Sajani Lakka, Dzung H. Dinh, William C. Olivero, Meena Gujrati, et, al. Glial Cell-induced Endothelial Morphogenesis Is Inhibited by Interfering with Extracellular Signal-regulated Kinase Signaling. Clinical Cancer Research, 2003, 9:2342-2349.
    185. Hitomi Kawano, Shokei Kim, Kensuke Ohta, et, al. Differential Contribution of Three Mitogen-Activated Protein Kinases to PDGF-BB-Induced Mesangial Cell Proliferation and Gene Expression. J Am Soc Nephrol, 2003, 14: 584-592.
    186. Anja Jaeschke, Mercedes Rinco, Beth Doran, Judith Reilly, Donna Neuberg, Dale L. Greiner, Leonard D. Shultz. Disruption of the Jnk2 (Mapk9) gene reduces destructive insulitis and diabetes in a mouse model of type I diabetes. PNAS, 2005, 102: 6931-6935.
    187. Goldbeter A, Pourquié O. Modeling the segmentation clock as a network of coupled oscillations in the Notch, Wnt and FGF signaling pathways. J Theor Biol, 2008, 18:346-352.
    188. Ren Y, Cheng L, Rong Z, Li Z, Li Y, Zhang X, Xiong S, Hu J, Fu XY, Chang Z. hSef potentiates EGF-mediated MAPK signaling through affecting EGFR trafficking and degradation. Cell Sinaling, 2008, 20(3): 518-533.
    189. Kang HB, Kim JS, Kwon HJ, Nam KH, Youn HS, Sok DE. Basic fibroblast growth factor activates ERK and induces c-fos in human embryonic stem cell line MizhES1. Stem Cells, 2008, 26: 767-774.
    190. WL Kuo, KC Chung and MR Rosner. Differentiation of central nervous system neuronal cells by fibroblast-derived growth factor requires at least two signaling pathways: roles for Ras and Src. Mol. Cell. Biol., 1997, 17(8): 4633-4643.
    191. Takamura H, Ichisaka S, Hayashi C, Maki H, Hata Y. Monocular deprivation enhances the nuclear signalling of extracellular signal-regulated kinase in the developing visual cortex. Eur J Neurosci, 2007, 26(10):2884-2898.
    192. Corson, L. B., Yamanaka, Y., Lai, K. M. V. and Rossant, J. Spatial and temporal patterns of ERK signaling during mouse embryogenesis. Development, 2003, 130: 4527-4537.
    193. Pages, G., Guerin, S., Grall, D., Bonino, F., Smith, A., Anjuere, F., Auberger, P. and Pouyssegur, J. Defective thymocyte maturation in p44 MAP kinase (Erk 1) knockout mice. Science, 1999, 286:1374-1377.
    194. McFarland DC, Pesall JE. Phospho-MAPK as a marker of myogenic satellite cell responsiveness to growth factors. Comp Biochem Physiol B Biochem Mol Biol., 2008, 149(3):463-467.
    195. Yang H, Xia Y, Lu SQ, Soong TW, Feng ZW. Basic fibroblast growth factor-induced neuronal differentiation of mouse bone marrow stromal cells requires FGFR-1, MAPK/ERK, and transcription factor AP-1. J Biol Chem, 2008, 283(9):5287-5295.
    196. Gotoh, Y., Masuyama, N., Suzuki, A., Ueno, N. and Nishida, E. Involvement of the Map kinase cascade in Xenopusmesoderm induction. EMBO J, 1995, 14:2491-2498.
    197. Saba-El-Leil, M. K., Vella, F. D. J., Vernay, B., Voisin, L., Chen, L., Labrecque, N., Ang, S. L. and Meloche, S. An essential function of the mitogen-activated protein kinase Erk2 in mouse trophoblast development. EMBO, 2003, 4: 964-968.
    198. Yao, Y., Li, W., Wu, J., Germann, U.A., Su, M. S. S., Kuida, K. and Boucher, D. M. Extracellular signal-regulated kinase 2 is necessary for mesoderm differentiation. Proc. Natl. Acad. Sci, 2003, 100:12759 - 12764.
    199. Ornitz, D. and Itoh. N. Fibroblast growth factors. Genome Biol, 2001, 2(3): 3005-3010.
    200. Saha MS, Servetnick M, Grainger RM. Vetebrate eye development. Curr Opin Genet Dev, 1992, 2(4):582-588.
    201. Grainger RM, et, al. Embryonic lens induction: shedding light on vertebrate tissue determination. Trend Genet, 1992, 8(10):349-355.
    202. Kampmann E, Mey J. Retinoic acid enhances Erk phosphorylation in the chick retina. Neurosci Lett, 2007, 426(1):18-22.
    203. Zhang J, Wu Y, Jin Y, Ji F, Sinclair SH, Luo Y, Xu G, Lu L, Dai W, Yanoff M, Li W, Xu GT. Intravitreal injection of erythropoietin protects both retinal vascular and neuronal cells in early diabetes. Invest Ophthalmol Vis Sci., 2008., 49(2):732-742
    204. Oliveira CS, Rigon AP, Leal RB, Rossi FM. The activation of ERK1/2 and p38 mitogen-activated protein kinases is dynamically regulated in the developing rat visual system. Int J Dev Neurosci., 2008, 21(10):2831-2817.
    205. Liu IH, Zhang C, Kim MJ, Cole GJ. Retina development in zebrafish requires the heparan sulfate proteoglycan agrin. Dev Neurobiol, 2008, 21:5543-5551.
    206. Mazzucchelli, C., Vantaggiato, C., Ciamei, A., Fasano, S., Pakhotin, P., Krezel, W., Welzl, H., Wolfer, D. P., Page's, G. and Valverde, O. Knockout of ERK1 MAP kinase enhances synaptic plasticity in the striatum and facilitates striatal-mediated learning and memory. Neuron, 2002, 34:807-820.
    207. Saba-El-Leil, M. K., Vella, F. D. J., Vernay, B., Voisin, L., Chen, L., Labrecque, N., Ang, S. L. and Meloche, S. An essential function of the mitogen-activated protein kinase Erk2 in mouse trophoblast development. EMBO, 2003, 4: 964-968.
    208. Kato, T., Ohtani-kaneko, R., Ono, K., Okado, N. and Shiga, T. Developmental regulation of activated ERK expression in the spinal cord and dorsal root ganglion of the chick embryo. Neurosci, 2005, 52:11 -19.
    209. Shinya, M., Koshida, S., Sawada, A., Kuroiwa, A. and Takeda, H. Fgf signalling through MAPK cascade is required for development of the subpallial telencephalon in zebrafish embryos. Development, 2001, 128: 4153-4164.
    210. Pulverer B J, Kyriakis J M, Avruch J, et al. Phosphorylation of c-jun mediated by MAP kinase. Nature, 1991, 353(6345), 670-674.
    211. Evenas J, Malmendal A, Forsen S. Calcium, et, al. Development of a 1-μl Scale Assay for Mitogen-Activated Kinase Kinase 7 Using 2-D Fluorescence Intensity Distribution Analysis Anisotropy. Journal of Biomolecular Screening, 2002, 7(5): 419-428.
    212. Stbphane NoseHi and Fraqois Agnkst. Roles of the JNK signaling pathway in Drosophila morphogenesis. Curr Opin Genet Dev, 1999, 9(4): 466-472.
    213. Kuan CY, Yang DD, Samanta Roy DR, Davis RJ, Rakic P, Flavell RA. The Jnk1 and Jnk2 protein kinases are required for regional specific apoptosis during early brain development. Neuron, 1999, 22(4): 667-676.
    214. S. F. Gabby Krens, Herman P. Spaink, B. Ewa Snaar-Jagalska. Functions of the MAPK family in vertebrate-development. FEBS Letters, 2006, 80 :4984-4990.
    215. Dong, C., Yang, D. D., Wysk, M., Whitmarsh, A. J., Davis, R. J. and Flavell, R. A. Defective T cell differentiation in the absence of Jnk1. Science, 1998, 282:2092-2095.
    216. Yang, D. D., Conze, D., Whitmarsh, A. J., Barrett, T., Davis, R. J., Rincon, M. and Flavell, R. A. Differentiation of CD4~+ T cells to Th1 cells requires MAP kinase JNK2. Immunity, 1998, 9:575-585.
    217. Sabapathy, K., Kallunki, T., David, J. P., Graef, I., Karin, M. and Wagner, E. F. c-Jun NH2-terminal kinase (JNK)1 and JNK2 have similar and stage-dependent roles in regulating T cell apoptosis and proliferation. J. Exp. Med, 2001, 193:317-328.
    218. Kuan, C. Y., Yang, D. D., Roy, D. R. S., Davis, R. J., Rakic, P. and Flavell, R. A. The Jnkl and Jnk2 protein kinases are required for regional specific apoptosis during early brain development. Neuron, 1999, 22:667-676.
    219. Weston, C. R., Wong, A., Hall, J. P., Goad, M. E. P., Flavell, R.A. and Davis, R. J. JNK initiates a cytokine cascade that causes Pax2 expression and closure of the optic fissure. Genes Dev, 2003, 17:1271 - 1280.
    220. Bagowski, C. P., Xiong, W. and Ferrell Jr., J. E. c-Jun N-terminal kinase activation in Xenopus laevis eggs and embryos. A possible non-genomic role for the JNK signaling pathway. J. Biol. Chem, 2001, 276:1459-1465.
    221. Constant SL d Z, et, al. Inflammation and Metabolism in peritoneal dialysis-factors associated with peritoneal function, peritonitis and dialysis solutions. J Immunol, 2000, 165: 2671-2682.
    222. Yamanaka, H., Moriguchi, T., Masuyama, N., Kusakabe, M., Hanafusa, H., Takada, R., Takada, S. and Nishida, E. JNK functions in the non-canonical Wnt pathway to regulate convergent extension movements invertebrates. EMBO, 2002, 3:69-75.
    223. Kim, G. H., Park, E. and Han, J. K. The assembly of POSH-JNK regulates Xenopus anterior neural development. Dev. Biol, 2005, 286:256-269.
    224. Krens, S. F. G., He, S., Spaink, H. P. and Snaar-Jagalska, B. E. Characterization and expression patterns of the MAPK family in zebrafish. Gene Expression Patterns, 2006, 6(8):1019-1026.
    225. Mihaly J, Kockel L, Gaengel K, Weber U, Bohmann D, Mlodzik M. The role of the Drosophila TAK homologue dTAK during development. Mech Dev, 2001, 102:67-79.
    226. Takatori A, Geh E, Chen L, Zhang L, Meller J, Xia Y. Differential transmission of MEKK1 morphogenetic signals by JNK1 and JNK2. Development, 2008, 135(1):23-32.
    227. Liao G, Tao Q, Kofron M, Chen JS, Schloemer A, Davis RJ, Hsieh JC, Wylie C, Heasman J, Kuan CY. C-Jun NH2-terminal kinase (JNK) prevents nuclear beta-catenin accumulation and regulates axis formation in Xenopus embryos. Proc Natl Acad Sci, 2006, 103(44):16313-16318.
    228. Boutros M, Paricio N, Strutt DI, Mlodzik M. Dishevelled activates JNK and discriminates between JNK pathways in planar polarity and wingless signaling. Cell, 1998, 94:109-118.
    229. Heasman J, Holwill S, Wylie CC. Relationship between ectopic germinal vesicle breakdown in Xenopus oocytes and dorsal development of the embryo. Methods Cell Biol, 1991, 36:213-230.
    230. Liu J, Minemoto Y, Lin A. c-Jun N-terminal protein kinase 1 (JNK1), but not JNK2, is essential for tumor necrosis factor alpha-induced c-Jun kinase activation and apoptosis. Mol Cell Biol, 2004, 24(24): 10844-10856.
    231. Wallingford JB, Rowning BA, Vogeli KM, Rothbacher U, Fraser SE, Harland RM. Dishevelled controls cell polarity dur ing Xenopus gastrulation. Nature, 2000, 405:81-85.
    232. Leno GH, Laskey RA. The nuclear membrane determines the timing of DNA replication in Xenopus egg extracts. J Cell Biol, 1991, 112(4): 557-566.
    233. Morriss-Kay GM. Growth and development of pattern in the cranial neural epithelium of rat embryos during neurulation. J Embryol Exp Morphol, 1981, 65:225-241.
    234. Campbell P, et al. The coming surfactant era in neonatology: report of a Ross conference. Aust Paediatr J, 1986, 22(2):147-158.
    235. Harris MJ, Juriloff DM. Genetic landmarks for defects in mouse neural tube closure. Teratology, 1997, 56(3):177-87.
    236. Sabapathy K, Jochum W, Hochedlinger K, Chang L, Karin M, Wagner EF. Defective neural tube morphogenesis and altered apoptosis in the absence of both JNK1 and JNK2. Mech Dev, 1999, 89(1-2):115-124.
    237. Le-Niculescu H, Bonfoco E, Kasuya Y, Claret FX, Green DR, Karin M. Withdrawal of survival factors results in activation of the JNK pathway in neuronal cells leading to Fas ligand induction and cell death. Mol Cell Biol, 1999, 19(1):751-763.
    238. Sabapathy K, Jochum W, Hochedlinger K, Chang L, Karin M, Wagner EF. Defective neural tube morphogenesis and altered apoptosis in the absence of both JNK1 and JNK2. Mech Dev, 1999, 89(2):115-124.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700