PtDRG01基因原核表达分析及遗传转化的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
毛白杨(Populus tomentosa Carr.)是我国特有的乡土杨树,具有速生、优质和抗逆性强等特性,在我国北方,尤其是在黄河中下游林业生产和生态环境建设中占有重要地位。但随着栽培面积的不断扩大,一些病害的发生严重影响着它的推广。叶锈病是危害最为严重的病害之一,以马格栅锈菌(Melampsora magnusiana Wanger)致病性为最强。它通常侵害幼苗及成年树的叶片和芽,从而形成黄色小斑点,致使植物光合效率降低,造成受害叶片提早落叶,严重时则会形成大型枯斑,病叶和病芽枯死,严重影响了杨树的生长和发育。而目前有关毛白杨抗病方面的研究还很少,尤其在抗病遗传资源筛选、抗病品种选育和抗病基因定位与克隆等方面还未见报道,因此,在对毛白杨抗病遗传资源研究的基础上,分离抗叶锈病基因并对其产物的功能进行研究显得尤为必要,最终获得抗叶锈病的毛白杨转基因植株,将对毛白杨抗病性状的遗传改良具有重要的理论意义和生产价值。本研究克隆了NBS型抗病相关基因PtDRG01,并对其进行了原核表达分析和毛白杨RNAi基因转化研究,得到了如下主要结论:
     1.在已分离的NBS型抗病候选基因PtDRG01的基础上,构建了其原核表达载体pGEX-KG-Pt01,并导入大肠杆菌XA90,经IPTG诱导表达后,SDS-PAGE电泳分析显示,PtDRG01表达的蛋白分子量约为79kD。同时对原核表达体系以及融合蛋白的表达特性进行了优化与分析。结果表明,最佳诱导表达条件为1mmol/L IPTG在37℃下诱导4h,所表达的融合蛋白为胞内分泌的可溶性蛋白。利用谷胱苷肽-琼脂糖亲和层析柱纯化获得了电泳纯级的目的蛋白,然后采用改良钼蓝比色法对PtDRG01蛋白进行生化功能分析。结果显示该蛋白仅能微弱地催化ATP的水解,其生化特性还有待采用同位素标记法等更灵敏的方法进一步研究。
     2.本研究成功建立了三倍体毛白杨无性系[(P. tomentosa×P. bolleana)×P. tomentosa]高效的叶片再生体系,构建了PtDRG01基因的RNAi表达载体,并采用基因枪法进行三倍体毛白杨高抗无性系的遗传转化研究,获得了一批卡那霉素抗性植株,PCR检测证实外源基因已整合到三倍体毛白杨基因组内,进一步的分子检测与抗病试验正在进行之中。
     本研究为毛白杨抗病基因的功能鉴定及抗病性状的分子育种提供了重要的科学理论依据,具有重要的应用价值。
The Chinese white poplar (Populus tomentosa Carr.), indigenous to China, is a fast growing poplar species, with an excellent wood quality and outstanding resistance to abiotic stress. It has played a key role in forest production and ecological environment construction along the Yellow River. However, it is susceptible to a couple of diseases, particularly the leaf rust caused by Melampsora magnusiana Wagner. It is normally invade into the seedlings and leaves and shoots located in the senior tree, resulted in yellow dot of pathogen and in turn lowered the efficiency of photosynthesis, this consequently severely affected the growth and development of the poplar. But, it is little known about the research of disease resistance in P. tomentosa, especially in the study of disease resistance, including selection of germplasm and breeding, gene mapping and map based cloning of disease resistant gene had not been reported. Therefore, it is indispensable to isolate the gene controlling of leaf rust and analyze the function of gene’s product, based on the germplasm of disease resistance, and eventually the transgenic plants with disease resistant genes would be produced. These will have the significance in the theory and practical value for the improvement of disease resistance in P. tomentosa. In this study, the prokaryotic expression of a candidate disease resistant gene PtDRG01 and genetic transformation of RNAi constructed PtDRG01 had been conducted. The major results and conclusions are described as follows.
     1. The prokaryotic expression vector pGEX-KG with the full-length open reading frame of isolated disease resistance candidate gene PtDRG01 isolated form P. tomentosa ( Accession number:EF157840)) was successfully constructed and transferred into an expression host E. coli strain XA90. The fusion protein of PtDRG01 induced by IPTG treatment was separated by SDS-PAGE electrophoresis, and the result indicated that the size of the fusion protein was about 79 kD, which was consistent with the predicted value. The prokaryotic expression system was also optimized. The result suggested that 1 mmol/L IPTG treatment for 4 h at 37 oC was most effective, and the product was predominately soluble and not extra-cellular secreting. Further, the fusion protein was purified with the affinity chromatography column of Glutathione Sepharose 4B. Catalyses ability of the hydrolysis of ATP with weakly effect by the purified protein with the modified colorimetry of molybdenum blue method was determined.
     2. The regeneration system of genetic transformation with leave disc was established in P. tomentosa and the plant binary expression vector of Pbi121-PtDRG01 RNAi was constructed and transferred into the triploid poplar through particle bombardment. Many transgenic poplars were obtained and the integration of RNAi sequences into the host genome was confirmed by the PCR detection. The further molecular detection and experiment of disease resistance is ongoing.
     The above results, therefore, provided the important foundation for function detection of PtDRG01 gene and molecular breeding of new germplasms with disease tolerance in P. tomentosa, have the important practical value in the forest production.
引文
1) 马立农, 陈杖榴. 对柔嫩艾美耳球虫敏感株与抗药株ATP酶活性的检测. 西北植物学报, 2006, 15(4): 89-9.
    2) 尹建允, 闫苏华, 郑义伦. 杨树新无性系定植试验. 江苏林业科技,1998,(3): 10~15.
    3) 戈家英, 阮芸玮. 植物的抗病机理探讨. 湖北植保, 2000,5: 32~34.
    4) 王友红,张鹏飞,陈建群.植物抗病基因及其作用机理. 植物学通报, 2005, 22(1):92~99.
    5) 王玉华. 辽宁省小钻杨优树无性系的区域选择.辽宁林业科技, 1994,(6):1~6.
    6) 王晓萍, 温玉琴, 郭东林, 徐淑红, 李新玲, 徐香玲, 李集临. 植物抗病基因研究进展. 黑龙江农业科学, 2003, (4): 42~45.
    7) 王海燕, 刘大群, 杨文香. 植物抗病基因类似序列研究进展及展望. 河北农业大学学报, 2002, 25(增刊): 164~168.
    8) 王善平, 许智宏, 卫志明. 毛白杨外植体的遗传转化.植物学报. 1990, 32(3):172-177.
    9) 韦大器. 林木抗病基因工程研究进展(综述). 亚热带植物科学, 2005, 34(3): 74~77.
    10) 左维新. 银白杨锈病的研究. 新疆林业科技,1984,(1):9~16.
    11) 田呈明, 李振岐, 康振生. 青杨叶锈病(Melampsora larici-populina Kleb)研究进展. 西北林学院学报, 1999, 14(2):81~88
    12) 田呈明,康振生,赵彦修等. 用叶盘法测定杨树对落叶松-杨栅锈菌的抗性.林业科学研究, 2000, 13(专):119~124.
    13) 田呈明,梁英梅,康振生,李振岐,赵彦修.杨树与栅锈菌互作的细胞学研究. 林业科学,2002, 38(3):87~96.
    14) 刘学芝, 王晋生, 钟浩然. 欧美杨胶合板材和纸浆材良种选育研究. 河南林业科技, 1996,(2):12~15.
    15) 刘杰, 刘丽君, 吴俊江, 陈伊里. 植物抗病基因类似序列的研究进展及应用策略. 东北农业大学学报, 2004, 35(4): 500~504.
    16) 刘晓光, 项存悌, 马丽亚. 杨树冰核细菌溃疡病危险等级划分. 东北林业大学学报, 1999, 27(4): 18~23.
    17) 刘晓光, 项存悌, 刘雪峰. 杨树冰核细菌溃疡病流行的时间动态. 东北林业大学学报, 1999, 27(2): 24~26.
    18) 刘碧荣,沈瑞祥. 杨树枝枯病病原菌初步研究. 森林病虫讯,1984,(3):8~9.
    19) 向玉英,梁彦, 黄东森. 苦楝、银杏和樟树内含物对杨树溃疡病作用的研究. 林业科技通讯, 1996,(7):17~19.
    20) 向玉英. 杨树上发生的两种病毒. 林业科学研究,1990,3(6):553~557.
    21) 孙雪峰,王敬等.江苏沛县杨树烂皮病的发病原因及防治方法.防护林科技,2000,22(2):52~58.
    22) 阳传和. 杨树溃疡病接种方法的比较. 北京林学院学报, 1985,(2):76~81.
    23) 齐慧霞.植物抗病反应及其信号分子.河北职业师范学院学报,2002,16(3):55~58.
    24) 吴玉柱,全德全等.山东杨树溃疡病的研究.山东林业科技,1998,(5):21~23.
    25) 张红梅,张艳华, 王伟.植物抗病基因工程研究进展. 黑龙江八一农垦大学学报, 2004, 16(1): 23~26.
    26) 张谦,林善枝,林元震,张志毅,王泽亮,杨俊杰.树木抗病基因研究进展.西北植物学报, 2005, 25(9):1921~1930.
    27) 张谦.毛白杨抗锈病基因筛选与 NBS 型抗病基因分析. 北京: 北京林业大学, 2007.
    28) 张谦, 张志毅, 林善枝, 郑会全, 李琰, 乔梦吉, 安新民. 基于毛白杨NBS型抗病基因类似序列克隆毛果杨抗病基因. 2006 年全国博士生学术论坛论文集,中国北京, 93~99.
    29) 李云主编. 林果花菜组织培养快速育苗技术. 中国林业出版社, 2001
    30) 李环子, 尉春平, 李云华, 等. 228-379 杨等杨树造林对比试验总结. 山东林业科技, 1997,(4):16~18.
    31) 李祥羽, 常敬礼, 孙培昕, 韩凌, 张艳菊. 植物抗细菌病害基因工程研究进展. 黑龙江农业科学, 2006, (1): 74~77.
    32) 杜建玲, 刘红霞, 于淑平. 杨树不同种(品种) 间抗溃疡病差异的比较. 河北林果研究, 2000,15(1): 55~60.
    33) 杨自湘,汪太振等.杨树抗烂皮病与早春抗冰冻能力.林业科学研究,1994,7(1):25~28.
    34) 杨勤忠, 杨佩文, 王群, 刘继梅, 鄢波, 李家瑞, 黄兴奇. 水稻抗病基因同源序列的克隆及测序分析. 中国水稻科学, 2001, 15(4): 241~247.
    35) 汪太振,姜常丰等.杨树烂皮病研究进展.东北林学院学报,1981,(1):18~28.
    36) 汪太振.杨树烂皮病研究.防护林科技,1983,(1):40~48.
    37) 陈占洲. 植物抗病毒的可能机制—基因沉默. 中国植保导刊, 2006, 26(3): 10~13.
    38) 陈原,杨旺.北京杨溃疡病抗病性研究.北京林业大学学报,1994,(2):51~57.
    39) 周仲铭,沈瑞祥,贺正兴. 毛白杨对马格栅锈菌所致锈病抗病性研究. 北京林学院学报,1979(1):61~66.
    40) 周仲铭,袁毅. 杨树叶锈病的研究概况. 北京林学院学报, 1985(4):84~102.
    41) 尚衍重,裴明浩. 山杨叶锈病的研究. 东北林学院学报,1984,12(1):47~55.
    42) 苘胜军, 陈鸿雕, 刘志成. 鲁×山等杨树无性系对水泡溃疡病抗性的测定. 辽宁林业科技, 1994,(Z1):102~114.
    43) 范文艳,姜述君,李明来.植物抗病性及抗病信号转导的研究进展.中国农学通报,2005,21(2): 249~252.
    44) 金凤.抗病和抗虫转基因植物研究与应用概述. 金陵科技学院学报, 2004,20(3):36~41.
    45) 金志明, 叶雅玲, 张玉起. 晚花杨引种. 吉林林业科技,1997,(6):1~6.
    46) 胡景江,朱玮, 袁雪丽. 溃疡病对杨树细胞壁中HRGP和木质素的诱导作用. 西北林学院学报, 1997, 12(3): 4~17.
    47) 胡景江,朱玮. 溃疡病菌对杨树几丁质酶、B-N-乙酰氨基葡萄糖苷酶的诱导作用.植物病理学报,1997,27(2):181~185.
    48) 赵书喜. 南方型杨树引种与发展战略研究.河南林业科技,1994,21(3):1~4.
    49) 赵世民,祖国诚,刘根齐等,通过农杆菌介导法将兔防御素 NP-1 基因导入毛白杨(Populus tomentosa), 遗传学报, 1999,26(6):711~714.
    50) 赵仕光, 朱玮, 岳红艳. 杨树溃疡病菌毒素对杨树树皮愈伤组织超微结构的影响. 林业科学研究, 1998,11(3): 253~259.
    51) 钟兆康. 杨树疡壳孢溃疡病的研究. 东北林学院学报,1982,(2):63~69.
    52) 夏启中, 张明菊. 植物抗病反应分子机理. 黄冈职业技术学院学报, 2005,7(1):59~63.
    53) 袁嗣令.中国乔灌木病害.中国林业出版社,1998,110~112.
    54) 袁毅. 我国杨树叶锈病菌种类研究. 北京林学院学报,1984,(1):48~52.
    55) 郝贵霞, 朱祯, 朱之悌. 毛白杨遗传转化系统优化的研究[J]. 植物学报,1999 ,41(6) :936 – 940
    56) 康振生, 黄丽丽, 李振岐. 小麦对条锈菌入侵反应的超微结构研究. 西北农业学报, 1993, 2(3):25~28.
    57) 康振生. 植物病原真菌超微结构.中国科学技术出版社,1996,1~74.
    58) 景耀,翁俊华,杨启青. 河北杨叶斑病研究初报. 西北林学院学报,1990,5(3):17~21.
    59) 曾大鹏, 张永祥, 汪来发,等.北方杨树上冰核活性细菌的研究.林业科学研究, 1994, 7(5):488~491.
    60) 韩德俊, 曹莉, 陈耀锋, 李振岐. 植物抗病基因与病原菌无毒基因互作的分子基础. 遗传学报, 2005, 32(12): 1319~1326
    61) 蓝海燕. 表达 β-1,3-葡聚糖酶及几丁质酶基因的转基因烟草及其抗真菌的研究. 遗传学报, 2000, 27(1): 70~77.
    62) 解荷锋,于中奎, 陈一山. 黑杨派杨树基因库内无性系病虫发生的调查研究. 林业科技通讯, 1995,(4): 24~25.
    63) 裴明浩,尚衍重. 青杨叶锈病的研究. 东北林学院学报,1984,12(2):40~49.
    64) 潘成良,刘志成,孙运清.杨树抗溃疡病选择育种研究.辽宁林业科技,1997,25(5):5~14.
    65) Axtell MJ, Staskawicz BJ. Initiation of RPS2-specified disease resistance in Arabidopsis is coupled to the AvrRpt2-directed elimination of RIN 4 . Cell, 2003, 112: 369-377.
    66) Baulcombe DC. Viruses and gene silencing in plants . Arch Virol Suppl, 1999, 15: 189~201.
    67) Bent AF, Kunkel BN, Dahlbeck D, Brown KL, Schmidt R, Giraudat J, Leung J, Staskawicz BJ. RPS2 of Arabidopsis thaliana: a leucine-rich repeat class of plant disease resistance genes . Science, 1994, 265: 1856-1860.
    68) Bonas U, Lahaye T. Plant disease resistance triggered by pathogen-derived molecules: refined models of specific recognition . Current Opinion in Microbiology, 2005, 5(1): 44-50.
    69) Brandwagt BF, Mesbah LA, Takken FL, Laurent PL, Kneppers TJ, Hille J, Nijkamp HJ. A longevity assurance gene homolog of tomato mediates resistance to Alternaria alternate f. sp. lycopersici toxins and fumonisin B1 . PNAS, 2000, 97: 4961-4966.
    70) Brueggeman R, Rostsks N, Kudma D, Kilian A, Han F, Chen J, Druka A, Steffenson B, Kleinhofs A. The barley stem rustresistance gene Rpg1 is a novel disease-resistance gene with homology to receptor kinases . PNAS, 2002, 99: 9328-9333.
    71) Bryan GT, Wu KS,Farrall L,Jia Y,aHershey HP, McAdams SA, Donaldson G, Tarchini R,Valent B. A single amino acid difference distinguishes resistant and susceptible alleles of the rice blast resistance gene Pi-ta [J]. Plant Cell, 2000, 12: 2033-2046.
    72) Büschges R, Hollricher K, Panstruga R, Simons G, Wolter M, Frijters A, van Daelen R, van der Lee T, Diergaarde P, Groenendijk J, Topsch S, Vos P, Salamini F, Schulze-Lefent P. The barley Mlo gene: a novel control element of plant pathogen resistance . Cell, 1997, 88: 695-705.
    73) Büttner D, Bonas U. Common infection strategies of plant and animal pathogenic bacteria . Current Opinion in Plant Biology, 2003, 6: 312-319.
    74) Campbell M M, Brunner A, Jones H M, strauss S H. Forestry’s fertile crescent: the application of biotechnology to forest trees. Plant Biotechnol , 2003,J, 1: 141-154.
    75) Carolyn N, Lemieux C, Jorgensen R. Introduction of achimetic chalcone synthase gene into petunia results in reversible co-suppression or homologous genes intrans . Plant Cell, 1990, 23: 279-289.
    76) Cervera M T, Storme V, Ivens B, Gusmao J, Liu B H, Hostyn V, Van Slycken J, Van Montagu M, Boerjan W. Dense Genetic Linkage Maps of Three Populus Species (Populus deltoides, P. nigra and P. trichocarpa) Based on AFLP and Microsatellite Markers. Genetics, 2001, 158: 787-809.
    77) Cervera, M. T., Gusmno, J., Steenackers, M., Peleman, J., Storme, V., Vanden Broeck. A., Van Montagu, M., and Boerjan, W. Identification of AFLP molecular markers linked to for resistance to Melampsora larici-populina in Populus. Theor. Appl. Genet. 1996, 93: 733-737.
    78) Chisholm ST, Dahlbeck D, Nandini K, Day B, Sjolander K, Staskawicz BJ. Molecular characterization of proteolytic cleavage sites of the Pseudomonas syringae effector AvrRpt2. PNAS, 2005, 102(6): 2087-2092.
    79) Dangl JL, Jones JD. Plant pathogens and integrated defense responses to infection. Nature, 2001, 411: 826-833.
    80) Delaney T P, Uknes S, Vernooij B. A central role of salicylic acid in plant disease resistance . Science, 1994, 18: 1247-1250.
    81) Deslandes L, Olivier J, Peeters N, Dong XF, Khounlotham MH, Boucher C, Somssich I, Genin S, Marco Y. Physical interaction between RRS1-R, a protein conferring resistance to bacterial wilt, and PopP2, a type Ⅲ effector targeted to the plant nucleus . Proc Natl Acad Sci USA, 2003,100, 8024-8029.
    82) Deslandes L, Olivier J, Theulières F, Hirsch J, Dong XF, Peter BE, Beynon J, Marco Y. Resistance to Ralstonia solanacearum in Arabidopsis thaliana is conferred by the trcessive RRS1-R gene, a member of a novel family of resistance genes. PNAS, 2002,99(4): 2404-2409.
    83) Dixon MS, Hatzixanthis K, Jones DA, Harrison K, Jones JD. The tomato Cf-5 disease resistance gene and six homologs show pronounced allelic variation in leucine-rich repeat copy number. Plant Cell, 1998, 10: 1915-1925.
    84) Dodds PN, Lawrence GJ, Catanzariti AM,Ayliffe MA,Ellis JG. The melampsora lini AvrL567 avirulence genes are expressed in Haustoria and their products are recognized inside plant cells. The Plant Cell. 2004, 16: 755-768.
    85) Dowkiw A, Bastien C. Characterization of two major genetic factors controlling quantitative resistance to Melampsora larici-populina leaf rust in hybrid poplars: Strain specificity, field expression, combined effects, and relationship with a defeated qualitative resistance genes. Phytopathol, 2004. 94: 1358-1367.
    86) Dowkiw, A., Husson, C., Frey, P., and Bastien, C. Partial resistance to Melampsora larici-populina leaf rust in hybrid poplars: genetic variability in inoculated excised leaf disk bioassay and relationship with complete resistance. Phytopathology, 2003.93: 421-427.
    87) Faivre-Rampant F. Bataille L, Bresson A, Boudet N, Chalhoub B, Jorge V, Dowkiw A, Guerin V, Masle J P, Villar M, Bastien C. Genetic and physical mapping of a genetic factor involving in partial rust resistance in Populus trichocarpa. International Poplar Symposium IV Abstracts. 2006, pp27.
    88) Feuillet C, Travelle S, Stein N, Albar L, Nublat A, Keller B. Map-based isolation of the leaf rust disease resistance gene Lr10 from the hexaploid wheat (triticum aestivum L.) genome. PNAS, 2003, 100, 25: 15253-15258.
    89) Grant MR, Godiard L, Straube E, Ashfiedl T, Lewald J, Sattler A, Innes RW, Dangl JL.Structure of the Arabidopsis RPM1 gene enabling dual specificity disease resistance. Science, 1996, 269: 843-846.
    90) Halterman D, Zhou F, Wei F, Wise RP, Schulze-Lefert P. The MLA6 coiled-coil, NBS-LRR protein confers AvrMla6- dependent resistance specificity to Blumeria graminis f. sp. Hordei in barley and wheat. Plant J, 2001, 25: 335-348.
    91) Hammond-Kosack K, Parker J. Deciphering plant-pathogen communication: fresh perspectives for molecular resistance breeding . Current Opinion Biotechnology, 2003, 14: 177-193.
    92) Hammond-Kosack KE, Jones JDG. Plant disease resistance genes. Annual Review Plant Physiol Plant Mol Biol, 1997, 48: 575-607.
    93) Hsiang T, Chastagner G A, Dunlap J M, Stettler R F. Genetic variation and productivity of Populus trichocarpa and its hybrids. VI. Field susceptibility of seedlings to Melampsora occidentalis leaf rust. Can J For Res, 1993, 23: 436-441.
    94) Hsiang T, Chastagner G A. Variation in Melampsora occidentalis rust on poplars in the Pacific Northwest. Can J Plant Pathol, 1993, 15: 175-181.
    95) Huang L, Brooks SA, Li WL, Fellers JP, Trick HN, Gill BS. Map-based cloning of leaf rust resistance gene Lr21 from the large and polyploidy genome of bread wheat. Genetics, 2003, 164, 655-664.
    96) Innes L, Marchand L, Frey P, Bourassa M, Hamelin RC.First report of Melampsora larici-populina on Populus spp. in eastern North America. Plant Dis, 2004, 88: 85.
    97) Jaynes JM, Nagpala P, Beltran L, et al.. Expression of a ceropin B lytic peptide analog in transgenic tobacco confers enhanced resistance to bacterial wilt caused by Pseudomonas solarnacearum. Plant Science Limerlck, 1993, 89: 43-53.
    98) Jia Y, McAdams SA, Bryan GT, Hershey HP, Valent B. Direct interaction of resistance gene and avirulence gene products confers rice blast resistance. The EMBO Journal, 2000, 19: 4004-4014.
    99) Johal GS, Briggs SP. Reductase activity encoded by the HM1 disease resistance gene in maize. Science, 1992, 258: 985-987.
    100) Johnson R. A critical analysis of durable resistance. Annu Rev Phytopathol, 1984. 22: 309-330.
    101) Jones DA, Thomas CM, Hamond-Kosack KE, Balint-Kurti PJ, Jones JDG. Isolation of the tomato Cf-9 gene for resistance to Cladosporium fulvum by transposon tagging. Science, 1994, 266: 789-793.
    102) Kawchuk LM, Hachey J, Lynch DR, Kulcsar F, van Rooijen G, Waterer DR, Robertson A, Kokko E, Byers R, Howard RJ, Fischer R, Prüfer D. Tomato Ve disease resistance genes encode cell surface-like receptors . PNAS, 2001, 98: 6511-6515.
    103) Lahaye T, Bonas U. Molecular secrets of bacterial type Ⅲ effector proteins. Trends Plant Sci, 2001, 6:479-485.
    104) Lamb C, Dixon R A. The oxidative burst in plant disease resistance . Annu Rev Plant Physiol Plant Mol Biol, 1997, 48: 251-275
    105) Laugé R, de Wit JGM. Fungal avirulence genes: Structure and possible functions. Fungal Genetics and Biology, 1998, 24: 285-297.
    106) Lefevre, F., Goue-Mourier, M. C., Faivre-Rampant, P., and Villar, M. A single gene cluster controls incompatibility and partial resistance to various Melampsora larici-populina races in hybrid poplars. Phytopathology 1998. 88: 156-163.
    107) Legionnet A, Muranty H, Lefevre F. Genetic variation of the riparian pioneer tree speciesPopolus nigra. II. Variation in susceptibility to the foliar rust Melampsora larici-populina. Heredity, 1999. 82: 318-327.
    108) Lescot, M., Rombauts, S., Zhang, J., Aubourg, S., Mathé, C., Jansson, S., Rouzé, P., and Boerjan, W. Annotation of a 95-kb Populus deltoids genomic sequence reveals a disease resistance gene cluster and novel class I and Class II transposable elements. Theor. Appl. Genet. 2004.109: 10-22.
    109) Lindbo JA, Dougherty WG. Untranslatable transcripts of the tobacco etch virus coat protein gene sequence can interfere with tobacco etch virus replication in transgenic plants and protoplasts. Virology, 1992, 189: 725-733.
    110) Lindbo JA, Silva-Rosales L, Proebsting WM. Induction of a highly specific antiviral state in transgenic plants implications for regulation of gene expression and virus resistance. Plant cell, 1993, 5: 1749-1759.
    111) Newcombe G, Chastagner G A. First report of the Eurasian poplar leaf rust fungus. Melampsora larici-populina in North America. Plant Dis, 1993a, 77: 532-535
    112) Newcombe G, Chastagner G A. A leaf rust epidemic of hybrid poplar along the lower Columbia River caused by Melampsora medusae. Plant Dis, 1993b, 77: 528-531.
    113) Newcombe G, Chastagner GA, Schuette W, Stanton, BJ. Mortality among hybrid poplar clones in a stool bed following leaf rust caused by Melampsora medusae f. sp. deltoidae. Can J For Res, 1994, 24:1984-1987.
    114) Newcombe G, Stirling B, Bradshaw HD, McDonald S. Melampsora × columbiana, a natural hybrid of M. medusae and M. occidentalis. Mycol Res, 2000, 104:261-274.
    115) Newcombe G, Stirling B, Bradshaw Jr H D. Abundant pathogenic variation in the new hybrid rust Melampsora × columbiana on hybrid poplar. Phytopathol, 2001, 91: 981-985.
    116) Pearce F. 1995. Seeing the wood for the trees. New Sci. 145 (1960): 12-13.
    117) Pei, M. H., Ruiz, C., Harris, J., and Hunter, T. Quantitative inoculation of poplars with Melampsora larici-populina. Euro. J. Plant Path. 2003.109: 269-276.
    118) Picot C, Teissier du Cros E. Susceptibility of P. deltoids Bartr. to Melampsora larici-populina and M. allii-populina I. Quantitative analysis of a 6×6 factorial mating design. Silvae Genetica, 1993a. 42: 179-1187.
    119) Picot C, Teissier du Cros E. Susceptibility of P. deltoids Bartr. to Melampsora larici-populina and M. allii-populina II. Quantitative analysis of a 6 × 6 factorial mating design. Silvae Genetica, 1993b.42: 188-199.
    120) Pinon J, Newcombe G, Chastagner G A. Identification of races of Melampsora larici-populina, the Eurasian rust fungus, on Populus species in California and Washington. Plant Dis, 1994, 78: 101
    121) Pinon J. Variability in the genus Populus in sensibility to Melampsora rusts. Silvae Genetica, 1992, 41: 25-33.
    122) Pinon J. van Dam B C, Genetet I, De Kam M. Two pathogenic races of Melampsora larici-populina in north-western Europe. Eur J For Pathol, 1987, 17: 47-53.
    123) Spiers A G, Hopcroft D H. Comparative studies of the popular rust Melampsora medusae, M. laricis-populina, and their interspecific hybrid M. medusae-populina. Mycological Research, 1994. 98: 889-903.
    124) Spiers A G, Hopcroft H D. Ultrastructural studies of interactions between resistant and susceptible poplar cultivars and the rusts, Melampsora medusae and Melampsora larici-populina. New Zealand J Bot, 1990, 28: 307-322.
    125) Steimel J, Chen W, Harrington T C. Development and characterization of microsatellite markers for the poplar rust fungi Melampsora medusae and Melampsora larici-populina. Mol Ecol Notes, 2005, 5: 484-486.
    126) Sterky F, Regan S, Karlsson J, Hertzberg M, Rohde A, Holmberg A, Amini B, Bhalerao R, Larsson M, Villarroel R, Van Montagu M, Sandberg G, Olsson O, Teeri T T, Boerjan W, Gustafsson P, Uhlen M, Sundberg B, Lundeberg J. Gene discovery in the wood-forming tissues of poplar: Analysis of 5692 expressed sequence tags. Proc Natl Acad Sci USA, 1998, 95: 13330-13335.
    127) Stirling B, Newcomb G, Vrebalov J, Bosdet I, Bradshaw Jr H D. Suppressed recombination around the MXC3 locus, a major gene for resistance to poplar leaf rust. Theor Appl Genet, 2001. 103: 1129-1137.
    128) Tabor, G. M., Kubisiak, T. L., Klopfenstein, N. B., Hall, R. B., and McNab, H. S. Jr. Bulked segregant analysis identifies markers linked to Melampsora medusae resistance in Populus deltoides. Phytopathology , 2000, 90: 1039-1042.
    129) Villar M, Lefevre F, Bradshaw Jr H D, Teissier du Cros E. Molecular genetics of rust resistance in poplars (Melampsora larici-populina Kleb/Populus sp.) by bulked segregant analysis in a 2×2 factorial mating design. Genetics, 1996. 143: 531-536.
    130) Yin, T. M., DiFazio, S. P., Gunter, L. E., Jawdy, S. S., Boerjan, W., and Tuskan, A. Genetic and physical mapping of Melampsora rust resistance genes in Populus and characterization of linkage disequilibrium and flanking genomic sequence. New Phytologist , 2004, 164: 95-105.
    131) Zhang Q, Zhang Z Y, Lin S Z, Lin Y Z. resistance of transgenic Hybrid Triploids in populus tomentosa Carr. Against 3 species of lepidopterans following two winter dormanicies conferred by high level expression of cowpea trypsin inhibitor gene. Silvae Genetica, 2005, 4: 108-116.
    132) Zhang Q. Zhang Z Y, Lin S Z, Zheng H Q, Lin Y Z, An X M, Li Y, Li H X. Characterization of resistance gene analogs with a nucleotide binding site isolated from a triploid white poplar. Plant Biology,2008, 10: 310~322(SCI)
    133) Zhang. J, Steenackers, M., Storme, V., Neyrinck, S., Van Montagu, M., Gerats, and Boerjan, W. Fine mapping and identification of nucleotide binding site/leucine-rich repeat sequences at the MER locus in Populus deltoides s9-2. Phytopathology, 2001, 91: 1069-1073.
    134) Zhu Z T, Zhang Z Y. The status and advances of genetic improvement of Populus tomentosa Carr. J Beijing For Uni (English Ed.), 1997, 6(1): 1-7.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700