铜对断奶仔猪采食量的影响及其机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本试验旨在研究日粮中添加铜对断奶仔猪采食量的影响以及探索铜调节断奶仔猪采食量的机理。实验选用100头28日龄健康DLY断奶仔猪,随机分为4个处理,每个处N5个重复,每个重复5头猪。4个处理分别饲喂含10、100、175、250mg/kg铜的日粮。实验期为21天,记录采食量和日增重,在试验的第21天从每个重复随机选取一头猪进行屠宰,采集前腔静脉血液和下丘脑样品待测。
     试验结果表明,随着铜添加剂量的增加,平均日采食量表现为增加的趋势,与10mg/kg铜添加组相比,100、175、250mg/kg铜添加组仔猪的平均日采食量分别提高了23%、31.8%和54.6%,当添加量达到250mg/kg时差异达到显著水平(P<0.05);平均日增重同样随着铜添加剂量的增加而增加,与10mg/kg铜添加组相比,100、175、250mg/kg硫酸铜添加组仔猪的平均日增重分别提高了41%、60.7%和81.5%,当添加量达到175和250mg/kg时差异达到显著水平(P<0.05);同时,175和250mg/kg硫酸铜添加组饲料转化效率分别提高了20.1%(P<0.05)和16.4%(P>0.05)。各组下丘脑铜、锌、铁含量差异均不显著,250mg/kg硫酸铜添加组仔猪下丘脑铜的含量有提高的趋势(P=0.053)。添加250mg/kg硫酸铜显著提高了断奶仔猪下丘脑NPY的mRNA丰度(P<0.05);POMC的mRNA丰度随着铜的添加剂量增加而降低,当添加量达到175和250mg/kg时差异达到显著水平(P<0.05);100、175、250mg/kg铜添加组下丘脑瘦素长型受体的mRNA的丰度均低于10mg/kg铜添加组,差异极显著(P<0.01)。AMPKa2、MC4R、Orexin、OrexinR2的mRNA丰度无显著差异(P>0.05)。各组血浆瘦素水平和胰岛素水平均高于10mg/kg铜添加组,但是差异不显著(P>0.05)。
     以上结果表明,高铜能提高断奶仔猪采食量,促进生长。同时,高铜对采食量的调节可能与降低下丘脑瘦素长型受体的表达,影响下丘脑NPY神经元细胞和POMC神经元细胞的神经内分泌活动有关。
The current study evaluated gene expression of appetite regulators in hypothalamus and levels of appetite regulating hormones in plasma in response to copper supplementation to investgate the effects of high dietary copper on the feed intake of weanling pigs and the underlying mechanism.100 crossbred pigs were randomly assigned to one of four groups with five replicates,based on body weight and gender.Cu was supplemented at the levels of 10,100,175 and 250 mg/kg in form of CuSO_4.Feed intake and weight gain were determined.On d 21 of the experiment 1 pig from each replicate was slaughtered and the hypothalami was collected for determining mRNA expression levels of appetite-regulating genes.Blood samples were also collected for determination of hormone levels.
     The results showed that average daily feed intake(ADFI) and average daily gain (ADG) were higher(P<0.05) in 250 and 175,250 mg/kg copper-supplemented groups than in the control group.Feed:gain(F:G) ratio was lower in pigs fed the diets with 250 mg/kg copper(P<0.05) than in the control group.250 mg/kg copper supplemention tended to increase copper concentration in the hypothalamus (P=0.053),while the concentration of zinc and iron were not affected(P>0.05). Furthermore,The abundance of NPY mRNA in hypothalamus was higher in 250 mg/kg copper-supplemented group(P<0.05),whereas the abundances of POMC and long-form Leptin receptor mRNA were significantly reduced in 175,250 mg/kg and 100,175,250 mg/kg copper-supplemented groups respectively(P<0.05).No differences were found for AMPKα2 subunit,melanocortin-4 receptor(MC4R),orexin, type 2 orexin receptor mRNA expression(P>0.05).Both Leptin and insulin levels in the plasma were numerically elevated by copper supplementation(P>0.05).
     These data suggest that copper has a stimulative effect on feed intake of weanling pigs which plays a pivotal role to elevate growth performance.Furthermore,the down-regulation of long-form Leptin receptor mRNA expression might contribute to the stimulation of high dietary copper supplementation via regulation of NPY and POMC mRNA expression.
引文
[1]Edmonds C.A.,Izquierdo O.A.,Baker D.H..Feed additive studies with newly weaned pigs efftcicy of supplemental copper,antibiotics and organic acids[J].J Anim Sci,1985,60(2):462-469.
    [2]Burnell T.W.,Cromwell G.L.,Stably T.S..Effect of dried whey and copper sulfate on the growth responses to organic acid in diet for weanling pigs[J].J Anim Sci,1988,66(5):1100-1108.
    [3]Lauridsen C.,Nielsen J.H.,Henckel P.,et al.Antioxidative and oxidative status in muscles of pigs fed rapessed oil,vitamin E,and copper[J].J Anim Sci,1999,77(1):105-115.
    [4]Kornegay E.T.,Van Heugten P.H.,Lindemann M.D.,et al.Effects of biotin and high copper levels on performance and immune response of weanling pigs[J].J Anim Sci,1989,67(6):1471-1477.
    [5]Barnea A.,Hartter D.E.,Cho G.,et al.Further characterization of the process of In vitro up take of radiolabeled copper by t he rat rain[J].J Chem,1987,40(2):103-110.
    [6]Zhou W.,Konregay E.T.,Lindemann M.D..Stimulation of growth by Intra -venous in jection of copper in weaning pigs[J].J Anim Sci,1994a,72(9):2395-2403.
    [7]吴新民,高梅生,蒋海生.不同化学形式栩盐对仔猪生长性能和微量元素代谢的影响[J].养猪,1998,(2):2-4.
    [8]赵颖彩.日粮铜源及其水平对猪中枢内多巴胺代谢的影响[M]吉林农业大学硕士论文,2005.
    [9]Jiakui L.,Lianyu Y.,Xin Z.,et al.Effect of high dietary copper on weight gain and neuropeptide Y level in the hypothalamus of pigs[J].Journal of Trace Elements in Medicine and Biology,2008,22:33-38.
    [10]Kuenzel W.J..Central neuroanatomical systems involved in the regulation of food intake in birds and mammals[J].The Journal of nutrition.1994,124(8 Suppl):1355S-1370S.
    [11]Powley T. L..The ventromedial hypothalamic syndrome, satiety, and a cephalic phase hypothesis[J]. Psychol. Rev. 1977, 84: 89-126.
    [12]Inoue S., Bray G. A.. An autonomic hypothesis for hypothalamic obesity[J].Life Science, 1979,25:561-566.
    [13]Bray G. A., York D. A.. Hypothalamic and genetic obesity in experimental animals:an automatic and endocrine hypothesis[J].Physiological Reviews, 1979,59: 719-801.
    [14]Richards M. P.. Genetic regulation of feed intake and energy balance in poultry[J].Poutry Science, 2003, 82: 907-916.
    [15]Woods S. C., Lutz T. A., Geary N., et al. Pancreatic signals controlling food intake:insulin,glucagon and amylin[J].Philosopgical Transaction of Royal Society B:Biological Sciences, 2006, 361: 1219-1235.
    [16]Jose Miguel. Neuropeptide Y family of peptides: Structure, anatomical expression,function, and molecular evolution[J].Cell Biol, 2000, 78: 371-392.
    [17]Obici S, Ros setti L.. Minireview: nutrients ensing and the regulationof insulin action and energy balance[J]. Endocrinology, 2003,144(12): 5172-5178.
    [18] Tschop M., Statnick M. A., Suter T. M., et al. GH-releasing peptide-2 increases fat mass in mice lacking NPY: indication for a crucial mediating role of hypothalamic agouti-related protein[J]. Endocrinology, 2002, 143(2): 558-568.
    [19] Niswender, K. D. Intracellular signalling. Key enzyme in Leptin-induced anorexia[J]. Nature, 2001, 413: 794-795.
    [20] Lynch R. M., Tompkins L. S., Brooks H. L., et al. Localization of glucokinase gene express ion in the rat brain[J]. Diabetes, 2000, 49(5): 693-700.
    [21] Levin B. E., Dunn Meynell A. A., Routh V. H.. CNS sensing and regulation of peripheral glucos e levels[J].Int Rev Neurobiol,2002,51:219-258.
    [22] Baskin D. G, Hahn T. M., Schwartz M. W.. Leptin sensitive neurons in the hypothalamus[J]. Horm Metab Res, 1999, 31(5): 345-350.
    [23] Chai B. X., Neubig R. R., Millhauser G. L., et al. Inverse agonist activity of agouti and agouti-related protein[J]. Peptides, 2003, 24(4): 603-609.
    [24] Chen P., Li C, Haskell C. L., et al. Altered expression of agouti-related protein and its colocalization with neuropeptide Y in the arcuate nucleus of the hypothalamus during lactation[J]. Endocrinology, 1999,140(6): 2645-2650.
    [25] Lu X. Y., Shieh K. R., Kabbaj M., et al. Diurnal rhythm of agouti-related protein and its relation to corticosterone and food intake[J].Endocrinology, 2002, 143(10): 3905-3915.
    [26] Qu S. Y, Yang Y K., Li J. Y, et al. Agouti-related protein is a mediator of diabetic hyperphagia[J]. Regul Pept,2001, 98 (1): 69 -75.
    [27]Chang G Q., Karatayev O., Davydova Z., et al.Circulating triglycerides impact on orexigenic peptides and neuronal activity in hypothalamus[J].Endocrinology,2004, 11(8): 345-350.
    [28] Graham M, Shutt er J. R., Sarmiento U., et al. Overexpression of Agrt leads to obesity in transgenic mice[J]. Nat Genet, 1997, 17 (3): 273-274.
    [29]Qian S., Chen H., Weingarth D., et al. Neither agouti-related protein nor neuropeptide Y is critically required for the regulation of energy homeostasis in mice[J]. Mol. Cell Biol, 2002, 22(14): 5027-5035.
    [30] Liu H., Kishi T., Roseberry A. G, et al. Transgenic mice expressing green fluorescent protein under the control of the melanocortin-4 receptor promoter[J].J Neurosci, 2003, 23 (18): 7143-7154 .
    [31] Steiner R. A., Kabigting E., Lent K.. Diurnal rhythm in proopiomelanocortin mRNA in the arcuate nucleus of the male rat[J]. J. Neuroendocrinol, 1994, 6(6):603-608.
    [32] Zhu Y, Yamanaka A., Kunii K., et al . Orexin-mediated feeding behavior involves both Leptin-sensitive and insensitive pathways[J].Physiol. Behav., 2002,77(2): 251-257.
    [33] Douglass J., McKinzie A. A., Couceyro P.. PCR differential display identifies a rat brain mRNA that is transcriptionally regulated by cocaine and amphetamine[J]. J Neuro Sci, 1995, 15(3): 2471-2481.
    [34] Tachibana T. Central administration of cocaine and amphetamine-regulated transcript inhibits food intake in chicks[J]. Neurosci Letters, 2003, 337(3):131-134.
    [35] Kristensen P., Judge M. E., Thim L., et al . Hypothalamic CART is a new anorectic peptide regulated by Leptin[J]. Nature, 1998, 393(6680): 72-76.
    [36] Rexford S. A., Joseph K., Joel K. E. ,et al. Distinct Physiologic and Neuronal Responses to Decreased Leptin and Mild HyperLeptinemia[J].Endocrinology,1999,140 : 11-18.
    [37] Philip D. L., Pastor R. G, Kathleen M. M., et al. CART Peptides in the Central Control of Feeding and Interactions With Neuropeptide Y[J].INC SYNAPSE, 1998, 29: 293-298.
    [38] Liu H., Kishi T., Roseberry A. G, et al. Transgenic mice expressing green fluorescent protein under the control of the melanocortin-4 receptor promoter[J].J Neurosci,2003, 23(18): 7143-7154 .
    [39] Steiner R. A., Kabigting E., Lent K.. Diurnal rhythm in proopiomelanocortin mRNA in the arcuate nucleus of the male rat[J]. J Neuroendocrinol,1994, 6(6):603-608.
    [40] Heisler L. K., Cowley M. A., Tecott L. H., et al. Activation of central melanocortin pathways by fenfluramine[J].Science, 2002, 297(5581): 609-611.
    [41] Broberger C, Lecea L., Sutcliffe J. G Hypocretin/orexin and melanin- concentrating hormone-expressing cells form distinct populations in the rodent lateral hypothalamus: relationship to the neuropeptide Y and agouti gene-related protein systems[J]. J Comp Neurol, 1998,402(4): 460-474.
    [42] Zhu Y., Yamanaka A., Kunii K., et al .- Orexin-mediated feeding behavior involves both Leptin-sensitive and insensitive pathways[J].Physiol Behav, 2002,77(2): 251-257.
    [43] Toshinai K., Date Y, Murakami N., et al. Ghrelin-induced food intake is mediated via the orexin pathway[J]. Endocrinology, 2003, 144(4): 1506-1512.
    [44] Yamanaka A., Beuckmann C. T., Willie J. T., et al. Hypothalamic orexin neurons regulate arousal according to energy balance in mice[J].Neuron, 2003, 38(5): 701-713.
    
    [45] Wortley K. E., Chang G Q., Davydova Z., et al. Peptides that regulate food intake: orexin gene expression is increased during states of hyper triglyceridemia [J]. Am J Physiol Regul Integr Comp Physiol, 2003,284 (6): 1454-1465.
    
    [46] Haynes A. C, Jackson B., Overend P., et al.Effects of single and chronic intracerebro ventricular administration of the orexins on feeding in the rat[J].Peptides, 1999,20(9): 1099-1105.
    
    [47] Andersson U., Filipsson K., Abbott C. R., et al. AMP-activated protein kinase plays a role in the control of food intake[J]. J Biol Chem 2004,279:12005-12008.
    
    [48] Minokoshi Y., Alquier T., Furukawa N., et al. AMP-kinase regulates food intake by responding to hormonal and nutrient signals in the hypothalamus[J]. Nature,2004, 428:569-574.
    
    [49] Lee K., Li B., Xi X., Suh Y, Martin R. J.Role of neuronal energy status in the regulation of adenosine 5(?)-monophosphate-activated protein kinase,orexigenic neuropeptides expression, feeding behavior[J]. Endocrinology, 2005, 146: 3-10.
    
    [50] Chau-Van C, Gamba M., Salvi R.,et al. Metformin inhibits adenosine 5(?)-monophosphate-activated kinase activation and prevents increases in neuropeptide y expression in cultured hypothalamic neurons[J]. Endocrinology,2007,148:507-511.
    
    [51] Cai F., Gyulkhandanyan A. V., Wheeler M. B., et al. Glucose regulates AMP-activated protein kinase activity and gene expression in clonal,hypothalamic neurons expressing proopiomelanocortin: additive effects of Leptin or insulin[J].J Endocrinol, 2007, 192: 605-614.
    
    [52] Shimizu H.,Arima H.,Watanabe M.,et.al.Glucocorticoids Increase Neuropeptide Y and Agouti-Related Peptide Gene Expression via Adenosine Monophosphate-Activated Protein Kinase Signaling in the Arcuate Nucleus of Rats[J].Endocrinology, 2008, 149(9): 4544-4553.
    
    [53] Rutkoski N. J., Fitch C. A., Yeiser E. C.,et.al.Regulation of neuropeptide Y mRNA and peptide concentrations by copper inrat olfactory bulb[J]. Brain Res Mol Brain Res, 1999, 65: 80-86.
    
    [54] Hossner K. L.. Cellular, molecular and physiological aspects of Leptin:potential application in animal producton[J].Canadian Journal of Animal Science, 1998,78(2): 463-472.
    
    [55] Qian H.,Barb C. R.,Compton M. M.,et al. Leptin mRNA expression and serum Leptin concentrations as in fluenced by age,weight,and estradiol in pigs[J].Domest Anim Endocrinol, 1999,16(2): 135-143.
    
    [56] Cameron N. D., Penman J. C, McCullough E.. Serum Leptin concentration in Pigs selected for high or low daily food intake[J].Genet Res,2000,75(2):209-213.
    [57] Barb C. R.,Yan X., Azain M. J.,et al. Recombinant porcine Leptin reduces feed intake and stimulates growth hormone secretion in swine[J].Domest Anim Endocrinol, 1998, 15(1): 77-86.
    [58] Denbow D. M., Meade S., Robertson A.,et al.Leptin induced decrease in food intake in chickens[J] .Physiology and Behavior, 2000,69: 359-362.
    [59] Bungo T., Shimojo M., Masuda T.,et al.Intraventricular administration of mouse Leptin does not reduce food intake in the chicken[J].Brain Research, 1999, 817:196-198.
    [60] Friedman J. M.,Halaas J. L.Leptin and the regulation of weight in mammals[J].Nature, 1998, 395: 763-770.
    
    [61] Mizuno T., Kleopoulos S. P., Bergen H. T.. Hypothalamic pro-opiomelanocortin mRNA is reduced by fasting and corrected in ob/ob and db/db mice,but is stimulated by Leptin[J]. Diabetes, 1998,47: 294-297.
    
    [62] Seaquist E. R., Damberg G. S., Tkac I.,et al.The effect of insulin on in vivo cerebral glucose concentrations and rates of glucose transport/metabolism in humans[J].Diabetes, 2003, 50: 2203-2209.
    [63] Banks W. A.. The source of cerebral insulin[J].European Journal of Pharmacology, 2004, 490: 5-12.
    [64] White M. R. Insulin signaling in health and disease[J].Science, 2003, 302: 1710-1711.
    [65] Plum L., Schubert M., Bruning J. C. The role of insulin receptor signaling in the brain[J].Trends in Endocrinology and Metabolism, 2005,16: 59-65.
    [66] Riedy C. A., Chavez M., Figlewiez D. P., et al.Central insulin enhances senstivity to cholecystokinin[J].Physiology and Behavior, 1995, 58: 755-760.
    [67] Chavez M., Kalyala K., Madden L. J., et al. Intraventricular insulin and the level of maintained body weight in rats[J].Behavioral Neuroscience, 1995, 109:528-531.
    [68] McGowan M. K., Andrews K. M., Grossman S. P.. Chronic intrahypothalamic infusions of insulin or insulin antibodies alters body weight and food intake in the rat[J].Physiology and Behavior, 1992, 51: 753-766.
    [69] Sipols A. J., Baskin D. G, Schwartz M. W.. Effect of intracerebroventricular insulin infusion on diabetic hyperphagia and hypothalamic neuropeptide gene expression[J].Diabetes, 1995,44: 147-151.
    [70] Benoit S. C., Air E. L., Coolen,et al.The catabolic action of insulin in the brain is mediated by melanocortins[J]. J Neurosci, 2002, 22: 9048-9052.
    [71] Cromwell G. L., Stahly T. S., Monegue H. J.. Effects of source and level of copper on performance and liver copper stores in weanling pigs[J]. J Anim Sci,1989, 67: 2996-3002.
    [72] Dove C. R., Haydon. The effect of copper addition to diets with various iron levels on the performance and hematology of weanling swine[J]. J Anim Sci,1991, 69: 2013-2019.
    [73] Dove C. R.. The effect of copper level on nutrient utilization of weanling pigs[J].J Anim Sci, 1995,73: 166-171.
    [74] Davis M. E., C. V. Maxwell, D. C. Brown. Effect of dietary mannan oligo-saccharides and(or) pharmacological additions of copper sulfate on growth performance and immunocompetence of weanling and growing/finishing pigs[J].J Anim Sci, 2002, 80: 2887-2894.
    [75] Ward T. L., Watkins K. L., Southern L. L., et al. Interactive effects of sodium zeolite-A and copper in growing swine:growth,and bone and tissue mineral concentrations[J].J Anim Sci,1991,69:726-733.
    [76]Lauridsen,C.,Hφjsgaard S.,Sφrensen M.T..Influence of dietary rapeseed oil,vitamin E,and copper on the performance and the antioxidative and oxidative status of pigs[J].J Anim Sci,1999,77:906-916.
    [77]Pekas J.C..Animal growth during liberation from appetite suppression[J].Growth,1985,49:19-24.
    [78]程忠刚,林映才,许梓荣.高铜促生长机理综述[J].兽药与饲料添剂,2001,6(3):33-35.
    [79]张喜春,池连武,高明.高锌高铜日粮对断奶仔猪生产性能的影响[J].沈阳农业大学学报,2001,32(5):399-400.
    [80]周桂莲,倪莪英,栾冬梅,等.高铜日粮对断奶仔猪的饲喂效果[J].黑龙江畜牧兽医,1996,12:27-28.
    [81]Zhou W.E.,Kornegay T.,van Laar H.,et al.The role of feed consumption and feed efficiency in copper-stimulated growth[J].J Anim Sci,1994b,72:2385-2394.
    [82]Choi B.S.,Zheng W..Copper transport to the brain by the blood-brain barrier and blood-CSF barrier[J].Brain Research,2009,1248:14-21.
    [83]Pau K.Y.F.,Khorram O.,Kynard A.H.,et al.Simultaneous Induction of Neuropeptide Y and Gonadotropin-Releasing Hormone Release in the Rabbit Hypothalamus[J].Neuroendocrinology,1980,49:197-201.
    [84]Forbes J.M..The role of the brain in the control of voluntary feed intake in pigs[J].Pig News and Information,1989,10(3):457-463.
    [85]Pinto,S.,Roseberry,A.G,Liu,H.,et al.Rapid rewiring of arcuate nucleus feeding circuits by Leptin[J].Science,2004.304:110-115.
    [86]Campfield L.A.,Smith F.J.,Guisez Y.,et al.Recombinant mouse OB protein:Evidence for a peripheral signal linking adiposity and central neural networks[J].Science,1995,269:546-549.
    [87]Rohner-Jeanrenaud R.,Cusin I.,Sainsbury A.,et al.The loop system between neuropeptide Y and Leptin in normal and obese rodents[J].Horm Metab Res, 1996,28: 642-648.
    [88] Wang Q., Bing C, Al-Barazanji K., et al. Interactions between Leptin and hypothalamic neuropeptide Y neurons in the control of food intake and energy homeostasis in the rat[J]. Diabetes, 1997,46: 335-341.
    [89] Wilson B. D., Bagnol D., Kaelin C. B., et al. Physiological and anatomical circuitry between agouti-related protein and Leptin signaling[J]. Endocrinology,1999, 140: 2387-2397.
    [90] Thornton J. E., Cheung C. C, Clifton D. K., et al. Regulation of hypothalamic proopiomelanocortin mRNA by Leptin in ob/ob mice[J].Endocrinology, 1997,138: 5063-5066.
    [91] Yaswen L., Diehl N., Brennan M. B., et al. Obesity in the mouse model of pro-opiomelanocortin deficiency responds to peripheral melanocortin[J]. Nature Med,1999, 5: 1066-1070.
    [92] Kitamura T.. Forkhead protein FoxO1 mediates Agrp-dependent effects of Leptin on food intake[J]. Nature Med,2006,12:534-540.
    [93] Diano S., Horvath B., Urbanski H. F., et al.Fasting activates the nonhuman primate hypocretin(orexin) system and its postsynaptic targets[J]. Endocrinology,2003, 144: 3774-3778.
    [94] Yamamoto Y, Ueta Y, Date Y, et al. Down regulation of the prepro-orexin gene expression in genetically obese mice[J]. Brain Res Mol Brain Res,1999, 65:14-22.
    [95] Adrian M. S., Jaroslaw S., Andrey P., et al. Circadian Expression of Genes Regulating Food Intake[J]. Obesity, 2007, 15: 607-615.
    [96] Ai-Jun L.,Thu T. Dinh, Sue R.. Hyperphagia and obesity produced by arcuate injection of NPY-saporin do not require upregulation of lateral hypothalamic orexigenic peptide genes[J]. Peptides, 2008,29: 1732-1739.
    [97] Baura G. D., Foster D. M., Porte D. J., et al. Saturable transport of insulin from plasma into the central nervous system of dogs in vivo A mechanism for regulated insulin delivery to the brain[J]. J Clin Invest, 1993, 92: 1824-1830.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700