不同温度热疗对小鼠恶性黑色素瘤增殖和侵袭能力的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景恶性黑色素瘤是由黑色素细胞恶性转化形成的一种高度恶性肿瘤,发病率为全身恶性肿瘤的1%-2%,占皮肤恶性肿瘤的20%。其侵袭性强,易发生远处转移,最常见的转移部位包括肺、骨和肝脏,进展期黑色素瘤患者平均生存期仅6-9个月,对人民群众的生命带来极大危害。治疗恶性黑色素瘤的关键在于控制其远处转移,由于其对常规治疗手段如化疗、放疗等敏感性较低,目前对于进展期恶性黑色素瘤还无有效的预防治疗方法。
     肿瘤热疗(Hyperthermia)是一种以非电离辐射方式作用于肿瘤的物理治疗方法,与化疗和放疗相比其优势在于较少受限于其毒副作用,并能够多次重复使用,且可以增强放射治疗和化学药物治疗的效果,被国际医疗界称为“绿色疗法”。传统的肿瘤热疗方法常常不能将肿瘤加热到治疗温度,新近研发的磁感应加温治疗可以将肿瘤组织加热到50℃左右,而使正常组织保持不升温,有效杀灭靶区内的肿瘤组织。近年来的动物实验证明了热疗不仅可抑制肿瘤细胞的增殖,还可抑制其远处转移。也有研究报道了热疗对转移相关蛋白表达的影响。但对热疗抑制肿瘤侵袭转移能力的具体机制尚不十分清楚,有待进一步探索。
     基于以上观点,本研究将采用不同温度体内外加热小鼠黑色素瘤,系统的研究41℃-50℃范围内不同温度热疗对B16F10细胞的增殖、侵袭、运动能力的影响,并研究其相关分子机制,将有助于临床个体化的热疗方案,为热疗治疗恶性黑色素瘤的临床应用提供部分理论和实验依据。
     目的探讨不同温度热疗对黑色素瘤B16F10细胞增殖以及周期分布的影响。
     方法采用水浴对黑色素瘤B16F10细胞行41℃、43℃、45℃、47℃、50℃实验组和对照组(37℃)热疗,四甲基偶氮唑蓝(MTT)检测细胞增殖抑制率,流式细胞术仪测定细胞周期分布的变化。
     结果45℃,47℃,50℃组的细胞增殖抑制率在24h、48h、72h、96h明显高于41℃和43℃组(P<0.05)。47℃,50℃组的细胞增殖抑制率在24h、48h、72h、96h均明显高于45℃组(P<0.05)。在47℃、50℃两组之间,各时间段的差异无显著性(P>0.05)。与37℃对照组相比,41℃、43℃组的G0/G1期细胞明显增多,而S期细胞明显减少(P<0.05)。47℃和50℃组的G0/G1期细胞比37℃组明显减少(P<0.05),而S期细胞明显增多(P<0.05),在47℃和50℃组之间无明显差异。与37℃对照组相比,43℃组的G2/M期细胞明显增多(P<0.05)。
     结论45℃及以上温度热疗可明显抑制B16F10细胞的体外增殖能力;45℃热疗对B16F10细胞S期比例无明显影响,47℃及以上温度热疗使其发生S期阻滞。结果提示:45℃及以上温度热疗不仅可以有效抑制B16F10细胞的增殖活性,且可以减少热耐受的产生,而高于47℃的热疗并不产生更强的抑制作用。
     目的研究不同温度热疗对黑色素瘤B16F10细胞形态、运动能力及体外侵袭能力的影响。
     方法采用水浴对黑色素瘤B16F10细胞行41℃、43℃、45℃、47℃、50℃实验组和37℃对照组热疗,倒置显微镜下观察热疗后不同时间点细胞形态的变化;透射电镜观察热疗后24h细胞显微结构的改变。取43℃、45℃、47℃实验组和37℃对照组热疗后的细胞进行划痕实验检测细胞的运动能力;侵袭小室实验检测细胞体外侵袭能力;明胶酶谱法检测不同温度热疗后24h内B16F10细胞的MMP-2及MMP-9的分泌量及活性。
     结果(1)B16F10细胞在41℃、43℃加热后更趋于成熟,分化更好,恶性程度降低,而45℃及以上温度热疗后细胞结构破坏明显,细胞活力下降。(2)与37℃(对照组)相比,43℃、45℃、47℃组细胞运动能力均减弱,45℃、47℃组细胞运动能力下降尤其明显。(3)37℃(对照组)、43℃,45℃及47℃热疗后,平均每个视野中B16F1O细胞穿过Matrigel胶到达Transwell小室膜背面的细胞数随热疗温度升高而降低,各组间均存在明显差异(P<0.05)。(4)与37℃组相比,43℃、45℃、47℃热疗后24h内B16F10细胞MMP-2及MMP-9的分泌量及活性明显下降(P<0.05),并且与43℃组相比,45℃、47℃热疗组MMP-2的分泌量及活性进一步下降(P<0.05),而45℃、47℃热疗组之间无明显差异(P>0.05)。
     结论不同温度热疗后细胞形态及超微结构发生不同程度的改变,45℃及以上温度热疗的主要表现为细胞结构的破坏;43℃、45℃及47℃热疗均可抑制B16F10细胞的运动能力,且对黑素瘤细胞明胶酶活性均有抑制作用,45℃、47℃热疗组MMP-2的分泌量及活性较43℃下降更明显;43℃、45℃及47℃对肿瘤细胞的体外侵袭能力的抑制作用随热疗温度升高而增强。说明B16F10细胞侵袭能力的减弱主要与细胞运动能力及明胶酶活性受到抑制有关。
     目的研究小鼠黑色素瘤B16F10细胞经过不同温度热疗后TGF-β1等侵袭转移相关基因和蛋白的表达变化。
     方法采用水浴对黑色素瘤B16F10细胞行43℃、45℃、47℃实验组和37℃对照组热疗,免疫细胞化学检测不同温度热疗后24hTGF-β1、VEGF蛋白在细胞内的表达变化,rt-PCR检测不同温度热疗后继续培养2h、6h、12h、4h TGF-β1、Smad4、VEGF、MMP-2及MMP-9在mRNA水平的表达变化。Western Blotting检测不同温度热疗后继续培养2h、6h、12h、24h TGF-β1、Smad4在蛋白水平的表达变化。
     结果(1)不同温度热疗后24h细胞内TGF-β1蛋白表达降低,43℃、45℃、47℃组的平均光密度值(AOD)与37℃对照组相比,明显降低(P<0.05);同样,VEGF蛋白表达也下降,43℃、45℃、47℃组的平均光密度值(AOD)与37℃对照组相比,也明显降低(P<0.05),二者均呈现一定程度的温度依赖性。(2)与37℃对照组相比,43℃热疗后各时间点MMP-9、VEGF mRNA的表达均降低(P<0.05),43℃热疗后6h-24h MMP-2、TGF-β1、mRNA的表达明显降低(P<0.05);45℃及47℃热疗后各时间点TGF-β1、VEGF、MMP-2及MMP-9 mRNA的表达均降低;各时间点Smad4 mRNA的表达均无明显变化。(3)与37℃对照组相比,43℃热疗后12h-24h出现TGF-β1蛋白表达降低及Smad4蛋白表达升高(P<0.05);45℃热疗后6h-24hTGF-β1蛋白表达明显下降,6h-12h Smad4蛋白表达升高(P<0.05);47℃热疗后各个时间点TGF-β1蛋白的表达均降低(P<0.05),而Smad4蛋白表达的增加(P<0.05)只出现在热疗后2h-6h(P<0.05)。
     结论小鼠黑色素瘤B16F10细胞中TGF-β1、Smad4在mRNA和蛋白水平的表达变化与热疗温度和热疗后继续培养的时间有关。43℃及以上温度热疗使(MMP)-2/VEGF的基因表达明显抑制,同时有TGF-β1基因表达的下调,此三者之间可能存在相互影响。而TGF-β1蛋白水平的上调相对滞后于其基因水平的变化,Smad蛋白表达一过性增加。总之,实验结果说明了TGF-β1表达的下调可能为热疗抑制B16F10细胞增殖及体外侵袭能力的机制之一。
     目的探讨不同温度磁热疗对小鼠恶性黑色素瘤皮下移植瘤的作用。
     方法用小鼠黑色素瘤B16F10细胞株建C57BL6小鼠皮下移植瘤模型,将Fe3O4磁性纳米颗粒直接注入肿瘤组织内,在交变磁场中进行磁感应加热治疗,控温在45℃和50℃分别持续30min和10min,24h后重复加热,共加热3次,比较45℃组磁热疗组(H1)、50℃磁热疗组(H2)、单纯磁流体组(M组)、单纯磁场组(T组)和对照组的肿瘤体积的大小、生存期和TGF-β1的阳性指数。
     结果与对照组相比,45℃磁热疗组和50℃磁热疗组均能抑制肿瘤的生长(P<0.05)。与45℃磁热疗组比较,50℃磁热疗组抑瘤作用更显著,有57.1%的肿瘤完全消退率(P<0.05)。45℃MFH组和50℃MFH组的生存期分别为(40.286±8.592)d和(60.143±13.319)d比对照组的(17.429±3.054)d明显延长(P<0.05)。TGF-β1的阳性指数在50℃磁热疗组显著降低为16.4%,与其它组相比,差异具有显著性(P<0.05)。
     结论45℃磁热疗和50℃磁热疗均能抑制小鼠恶性黑色素皮下移植瘤的生长,延长荷瘤小鼠的生存期,抑制肿瘤组织中TGF-β1的表达。50℃磁热疗组的抑瘤作用较45℃磁热疗组更为显著,可以达到57.1%的肿瘤完全消退率。
Background Melanoma is a cancer that arises from melanocytes, specialized pigmented cells that are found predominantly in the skin. The incidence of melanoma is rising steadily in China. Invation and metastasis is the most important biologic characteristics for malignant carcinoma, which also chiefly accounts for clinic death of cancer patients. Thus, inhibiting invation and metastasis is the key to succeed in curing cancer patient. In its early stages malignant melanoma can be cured by surgical resection, but once it has progressed to the metastatic stage it is extremely difficult to treat and does not respond to current therapies(such as radiation therapy and themotherapy).
     Hyperthermia is appealing because it is a physical treatment with fewer side effects than chemotherapy and radiotherapy, and repeated treatments should be feasible without concern for cumulative toxic side effects. Clinical experiments have shown that hyperthermia, as part of multimodal regimens, is a tolerable and clinically practical supplementary therapy for patients with advanced malignant tumor, recurrent tumor and metastatic disease. In recent years, magnetic targeted hyperthermia could heating at higher temperature(50℃) and avoiding nomal tissue to be damaged.
     Recently, it is reported that hyperthermia could delay tumor growth and inhibit lymph node metastasis in animal model. Furthermore, the expression of some genes associated with metastasis was shown to be down-regulated by heating, suggesting that hyperthermia may alter the character of tumor with high metastatic potential via regulating some metastasis related genes. However the concrete mechanism need futher research. B16F10 cells is a promising experimental model of invation for their metastasis biologic characteristics. Therefore, in order to find the appropriate temperature for melanoma treatment, we heat B16F10 cells at different temperature in vitro and in vivo then explore the effect on proliferation、invation and migration of cells.
     Objective To investigate the effect of hyperthermia on the proliferation and cell cycle of B16F10 cells.
     Methods B16F10 cells were heated at 41℃,43℃,45℃, 47℃,50℃and 37℃in temperature-controlled water bath, MTT assay, flow cytometry were applied to analyze the growth inhibition and cell cycle.
     Results The inhibitive rates of cell growth after 24h,48h,72h,96h at 45℃、47℃and 50℃was remarkably higher than at 41℃and 43℃(P <0.05). The inhibitive rates of cell growth after 24h,48h,72h,96h at 47℃and 50℃was remarkably higher than that of at 45℃(P< 0.05).There is no significant difference in inhibitive effect of cell growth between 47℃and 50℃(P<0.05). Results from flow cytometry indicate G0/G1 phase cells after 24h at 41℃,43℃were remarkably higher than that of the control group (P<0.05). However, S phase cells was remarkably lower as compared with the control group (P<0.05).G0/G1 phase cells after 24h at 47℃,50℃were remarkably lower than that of the control group (P<0.05) and S phase cells was remarkably higher as compared with the control group (P<0.05).G2/M phase cells after 24h at 43℃were remarkably higher than that of control group.
     Conclusions The hyperthermia at 45℃or higher termperature could remarkably inhibit the proliferation of B16F10 cells. The hyperthermia at 47℃or higher termperature could arrest the cells cycle in S phase.
     Objective To investigate the effect of hyperthermia on migration and invasion ability in vitro of B16F10 cells.
     Methods To observe the B16F10 cells after heating under invert microscope and transmission electron microscope. B16F10 cells were harvested after heating treatment at 43℃,45℃,47℃and 37℃in temperature-controlled water bath. The migration ability was measured by the scratch wound assay. In vitro cells invasion ability was evaluated by matrigel invasion assay. The activity of matrix metalloproteinase (MMP)-2/9 was investigated by gelatin zymographic assays.
     Results (1) Cells morphous and ultra-structure changed to different extent after heating at different temperature and showed temperature dependence.(2) The migration ability of B16F10 cells was reduced after heated at 43℃, and remarkably reduced at 45℃and 47℃.(3) The number of invading cells were 29.6±6.0、18.2±2.4 and 1.6±1.1 at 43℃,45℃and 47℃respectively, which were remarkably lower than that of control group (P<0.05).(4) (MMP)-2/9 secretion and enzymatic activity were suppressed at 43℃,45℃and 47℃which showed temperature dependence.
     Conclusions Cells morphous and ultra-structure changed after heating; In vitro migration and invasion of B16F10 cells was inhibited by heating; (MMP)-2/9 secretion and enzymatic activity were suppressed after heating.All above showed temperature dependence.
     Objective To study the effect of temperatures for in vitro heating treatment of B16F10 cells on the protein and mRNA expression of TGF-β1/Smad4, mRNA expression of TGF-β1/Smad4、(MMP)-2 /9 and VEGF.
     Methods B16F10 cells were harvested at 2h,6h,12h and 24h after heating treatment at 43℃,45℃,47℃and 37℃for 30min in temperature-controlled water bath, rt-PCR, western blotting, as well as immunohistochemical technique were employed to determine the mRNA and protein expressions of TGF-β1/Smad4、MMP-2/9 and VEGF.
     Results (1) Immunohistochemical analysis demonstrates that the expression of TGF-β1 and VEGF decreased with the increase of the temperature for heating treatment. (2) Compared with the control group, the mRNA expression of MMP-2、VEGF at 43℃was lower within 24h (P <0.05);expression of MMP-9、TGF-β1 at 43℃was lower from 6h to 24h with statistical significance (P<0.05); expression of TGF-β1、VEGF、MMP-2 and MMP-9 at 45℃、47℃was lower within 24h(P<0.05). (3) When compared with the control group, the protein expression of TGF-β1 was remarkably decreased and Smad4 was increased(P<0.05) from 12 h to 24 h at 43℃; the protein expression of TGF-β1 was remarkably decreased from 6 h to 24 h and Smad4 was increased from 6 h to 12 h at 45℃(P<0.05); at 47℃the protein expression of TGF-P, was remarkably decreased within 24 h and Smad4 was increased from 2 h to 6 h(P<0.05).
     Conclusions Protein and mRNA expression of TGF-β1/Smad4 was dependent on the temperature and culture time. The upregulation of Smad4 protein lasts only a period of very short time.The hyperthermia at 43℃or higher termperature could inhibit the mRNA expression of MMP-2/9 and VEGF, which may be associated with down regulation of TGF-β1.
     Objective To study the temperature effect of magnetic fluid hyperthermia (MFH) at 45℃or 50℃in a murine xenograft model of mouse melanoma
     Methods Murine xenograft model of mouse melanoma was established by transplanting cultured B16F10 cells into the subcutaneous tissue of the back of nude mouse. The tumor-bearing mice then underwent radiation by an alternative magnetic filed (AMF) after the Fe3O4 magnetic fluid (MF) was locally injected in the tumor area. The parameters of the AMF were carefully adjusted until a local tumor temperature (45℃or 50℃) was maintained for 30 min and 10 min respectively. The MFH was performed three times with 24h interval. The tumour volume, mice survival and the index of TGF-β1 were examined.
     Results MFH at 45℃or 50℃could inhibit the tumor growth. Compared with 45℃MFH,50℃MFH had a greater inhibitive effect on tumor growth (P<0.05). The survival of 50℃MFH group and 47℃MFH group were more prolonged than that of control group (P<0.05). When compared with the other groups, the expression of TGF-β1 was remarkably decreased at 50℃MFH group (P<0.05).
     Conclusion MFH at 45℃or 50℃could inhibit the tumor growth, prolong survival as well as decreased the expression of TGF-β1 with more remarkable effect at 50℃MFH group, in which the rate of total tumour regression was 57.1%.
引文
[1]Zwischenberger JB, Vertrees RA, Bedell EA, et al. Percutaneous venovenous perfusion-induced systemic hyperthermia for lung cancer:a phase I safety study[J]. Ann Thorac Surg,2004,77:1916-1924.
    [2]Tranberg KG.Percutaneous ablation of liver tumours[J]. Best Pract Res Clin Gastroenterol,2004,18:125-145.
    [3]Hildebrandt B, Wust P, Ahlers O, et al. The cellular and molecular basis of hyperthermia [J]. Crit Rev Oncol Hematol,2002,43(1):33-56
    [4]Fukami T, Nakasu S, Baba K, et al. Hyperthermia induces translocation of apoptosis-inducing factor (AIF) an apoptosis in human glioma cell lines [J]. J Neurooncol,2004,70(3):319-331.
    [5]Tang R, Zhu ZG, Qu Y, et al. The impact of hyperthermic chemotherapy on human gastric cancer cell lines:preliminary results [J]. Oncol Rep,2006,16(3): 631-641.
    [6]秦春宏,李永国,张树友,等.重复加热对肝癌HepG2细胞增增殖及细胞周期蛋白D1的影响[J].中国医学工程,2006,14(12):125-127.
    [7]Hildebrandt B, Wust P, Ahlers O, et al. The cellular and molecular basis of hyperthermia[J]. Crit Rev Oncol Hematol,2002,43:33-56.
    [8]Choi EK, Park SR, Lee JH, et al.Induction of apoptosis by carboplatin and hyperthermia alone or combined in WERI human retinoblastoma cells [J].Int J Hyperthermia,2003,19:431-443.
    [9]Wachsberger PR, Burd R, Bhala A, et al.Quercetin sensitizes cells in a tumour-like low pH environment to hyperthermia[J].Int J Hyperthermia,2003, 19:507-519.
    [10]Ohtsubo T, Igawa H, Saito T, et al. Acidicenvironment modifies heat-or-radiation-inducedapoptosis in human maxillary cancer cells [J]. Int J Radiat Oncol Biol Phys,2001,49:1391-1398.
    [11]Jin ZH, Matsumoto H, Hayashi S, et al. P53-independent thermosensitization by mitomycin C in human non-small-cell lung cancer cells [J]. Int J Radiat Oncol Biol Phys,2004,59:852-860.
    [12]Callari D, Sinatra F, Paravizzini G, et al.All transretinoic acid sensitizes colon cancer cells to hyperthermia cytotoxic effects[J]. Int J Oncol,2003,23:181-188.
    [13]刘宝瑞,钱晓萍。肿瘤热化疗的基础与临床研究进展[J].国外医学肿瘤学分册,
    2003,31 (1):34-37.
    [14]Upadhyay S,Neburi M,Chinni SR, et al.Differential sensitivity of normal and maliganant breast epithelia cells to genistein is partly mediated by P21WAF1[J].Clin Cancer Res,2001,17(6):1782-1789.
    [15]Truong K,Vielh P,Malfoy B,et al.Fluorescence-based analysis of DNA ploidy and cell proliferation within fine-needle samplings of breast tumors:A new approach using automated image cytometry[J].Cancer,1998,84:309-316.
    [16]Namer M,Ramaioli A,hery M,et al.Facteurs pronostiques et strategie therapeutique du cancer du sein[J].Rev Prat 1998,48:45-51.
    [17]Tertappen W,Rao C,Gross S.Flow cytometry-principles and feasibility in transfusion medicine.Enumeration of epithelial derived tumor cells in peripheral blood[J].Vox Sang,1998:74(Suppl2):269-274.
    [18]Zolzer F, Strefer C. G2-phase delays after irradiation and/or heat treatment as assessed by two-parameter flow cytometry[J]. Radiat Res,2001,155 (1):50-56.
    [19]Webb CP, Woude GF1 Genes that regulate metastasis and angiogenesis[J]. J Neuro Oncol,2000,50 (122):712811.
    [20]彭瑞清,伍国号,陈文宽,等.44例原发性鼻黏膜恶性黑色素瘤临床特征及预后分析[J].癌征,2006,25(10):1284-1286.
    [21]O'Day SJ, Kim CJ, Reintgen DS. Metastatic melanoma :chemotherapy to biochemotherapy [J]. Cancer Cont rol,2002,9 (1):31-38.
    [22]Slominski A, Wortsman J, Carlson AJ, et al. Malignant melanoma[J]. Malignant melanoma:An update. Arch Pathol LabMed,2001,125 (10):1295-1306.
    [23]Nagashima K, Takagi R, Hoshina H. Effect of local hyperthermia on metastases in oral squamous cell carcinoma [J]. Int J Oral MaxillofacSurg,2002,31(1):84-89.
    [24]吴敬波,陈成钦.鼻腔内微波热疗合并放射治疗鼻咽癌的临床对照研究.齐鲁肿瘤杂志.1996,3(3):200-202.
    [25]田中革,陈东基,楊秀芳 等.微波热疗加放疗对颈淋巴结转移癌的近期疗效[J].中国现代实用医学杂志.2004,3(4):9.
    [26]Tohnai I, Hayashi Y, Mitsudo K, et al. Prognostic evaluation of preperative theramochemoradiotherapy for N(3) cervical lymph node metastasis of oral cancer[J]. Oncology,2002,62(3):234-240.
    [27]Ocharonrat P, Rhysevans PH, Eccles SA.Expression of matrix metalloproteinases and their inhibitors correlates with invasion and metastasis in squamous cell carcinoma of the head and neck[J].Arch Otolaryngol Head Neck Surg,2001, 127:813-820.
    [28]Kleier DE, Stetler-stevenson WG. Quantitative zymography:detection of picogram quantities of gelatinases[J].AnalyBiochem,1994,218:325-329.
    [29]Friedl P, Wolf K. Tumour cell invasion and migration:dirersity and escape mechanisms [J]. Nat Rev Cancer,2003,3 (5):362-374.
    [30]Liotta LA. Tumor invasion and metastases:Role of the basement membrane. Am J Pathol,1984,117:339-348.
    [31]Huntington JT, Shields JM,Der CJ,et al.Overexpression of collagenase 1 (mmp-1) is mediated by the erk pathway in invasive melanoma cells:Role of braf mutation and fibroblast growth factor signaling[J].J Biol Chem,2004,279:33168-33176.
    [32]Natayi C, Labuousse AL, Debret T,et al.Elastin-derived peptides up regulate matrix metalloproteinase-2-mediated melanoma cell invasion through elastin-binding protein[J].J Invest Dermatl,2004,122:256-265.
    [33]Lu J,Chua HH,Chen SY,et al. Regulation of matrix metalloproteinase-1 by Epstein-Barr virus proteins[J].Cancer Res,2003,63(1):256-262.
    [34]Watanabe H,Iwase M,Ohashi M,et al. Role of interleukin-8 secreted from human oral squamous cell carcinoma cell lines[J].Oral Oncol,2002,38(7):670-679.
    [35]Moilanen M,Pirila E,Grenman R,et al.Expression and regulation of collagenase-2(MMP-8)in head and neck squamous cell carcinomas [J].J Pathol,2002,197(1):72-81.
    [36]Mannello F.Cirbulating 2-kilodalton matrix metalloproteinase(MMP-9)activity is enhanced in the euglobulin plasma fraction of head and neck squamous cell carcinoma[J].Cancer,2003,97(1):201-203.
    [37]Mandic R,Dunne AA,Eikelkamp N,et al. Expression of MMP-3、 MMP-13,TIMP-2 and TIMP-3 in the VX2 carcinoma of the New Zealand white rabbit[J].Anticancer Res,2002,22(6A):3281-3284.
    [38]Kleiner DE,Stetler-Steuenson WGQuantitatiue zymography.detection of picongran quantities of gelatinases[J].Anal Biochem,1994,218(2):325-346.
    [39]张金库.基质金属蛋白酶及其抑制剂与肿瘤关系的研究进展[J].诊断病理学杂志,2004,11:269-271.
    [40]Airola K, Fusenig NE. Differential stromal regulation of mmp-1 expression in benign and malignant keratinocytes[J].J Invest Dermatol,2001,116:85-92.
    [41]Huntington JT, Shields JM,Der CJ,et al.Overexpression of collagenase 1 (MMP-1) is mediated by the ERK pathway in invasive melanoma cells:role of BRAF mutation and fibroblast growth factor signaling[J].J Biol Chem,2004,279: 33168-33176.
    [42]Natayi C, Labuousse AL, Debret T,et al.Elastin-derived peptides up regulate matrix metalloproteinase-2-mediated melanoma cell invasion through elastin-binding protein[J].J Invest Dermatl,2004,122:256-265.
    [43]Sawaji Y, Sato T, Seiki M, et al. Heat shock-mediated transient increase in intracellular 3',5'-cyclin AMP results in tumor specific supp ression of membrane type matrix met alloproteinase production and progelatinase A activation [J]. Clin Exp Metastasis,2000,18 (2):131 - 138.
    [44]Sato T, Sawaji Y, Matsui N, et al. Heat shock supp reassesmembrane typematrixmet allop roteinase production and progelatinase A activation in human fibrosarcoma HT1080 cells and there by inhibits cellular invasion[J]. Biochem Biophys Res Commun,1999,265 (1):189-193.
    [45]Sawaji Y, Sato T, Takeuchi A, et al. Anti-angiogenic action of hyperthermia by suppressing gene expression and production of tumour derived vascular endothelial growth factor in vivo and in vitro. Br J Cancer,2002,6:1597-1603.
    [46]Mehnert, J M; McCarthy, M M; Jilaveanu, L,et al. Quantitative expression of VEGF, VEGF-R1, VEGF-R2, and VEGF-R3 in melanoma tissue microarrays. Hum Pathol,2010,41(3):375-384.
    [47]Miyazono K. TGF-beta/Smadsignaling and its involvement in tumor progression [J]. Biol Pharm Bull,2000,23 (10):1125-1130.
    [48]Xiong B, Yuan H Y, Hu MB, et al. Transforming growth factor-β1 in invasion and metastasis in colorectal cancer [J]. World J Gast roenterology,2002,8 (4): 674.
    [49]Wakefield LM, Robert s AB. TGF-β signaling:positive and negative effect s on tumorigenesis[J]. Current Opinion in Genetics & Development,2002,12:224.
    [50]Robert s AB, Wakefield LM. The two faces of transforming growth factor β in carcinogenesis[J]. PNAS,2003,100 (15):8,621.
    [51]俞清翔.转化生长因子β与肿瘤转移的研究进展[J].世界华人消化杂志,2006,14(25):538-541.
    [52]Dalal BI, Keown PA, Greenberg AH. Immunocytochemical localization of secreted and to lymph node metastases of human mammary carcinoma[J]. Am J Pathal,1993,143:381-389.
    [53]McCune BK, M ullin BR, Flanders KC, et al. Localization of transforming growth factor-beta isotypes in lesions of the human breast[J]. Hum Pathol,1992, 23:13-20.
    [54]Derynck R, Feng XH. TGF-β receptor signaling[J]. Biochim Biophys Acta,1997, 1333 (1):105-150.
    [55]Bacon AL, Farrington SM, Dunlop MG, Mutation frequency in coding and non-coding repeat sequences in mismatch repair deficient cells derived from normal human tissue.Oncogene.2001,20 (51):7464-7471.
    [56]Liotta LA. Tumor invasion and metastases role of the extracellular matrix; Rhoads memorial award lecture [J]. Cancer Res.1986,46(1):1-7.
    [57]蒋新农,周柔丽.肿瘤细胞粘附、迁移与转移的相关性[J].生物化学与生物物理进展,1998,25(5):404-407.
    [58]Friese, M.A., Wischhusen, J., Wick,, et al. RNA interference targeting transforming growth factor-beta enhances NKG2D-mediated antiglioma immune response, inhibits glioma cell migration and invasiveness, and abrogates tumorigenicity in vivo[J]. Cancer Res,2004,64,7596-7603.
    [59]Akhurst, R.J. TGF-beta antagonists:why suppress a tumor suppressor? [J] J. Clin. Invest,2002,109,1533-1536.
    [60]Lahn, M., Kloeker, S., and Berry, B.S. TGF-beta inhibitors for the treatment of cancer [J]. Expert. Opin. Investig. Drugs,2005.14,629-643.
    [61]Mourskaia, A.A., Northey, J.J., and Siegel, P.M. Targeting aberrant TGF-beta signaling in pre-clinical models of cancer. Anticancer Agents Med. Chem.2007,7, 504-514.
    [62]Saunier, E.F., and Akhurst, R.J. TGF beta inhibition for cancer therapy[J]. Curr. Cancer Drug Targets,2006,6,565-578.
    [63]Albino, A.P., Davis, B.M., and Nanus, D.M.. Induction,of growth factor RNA expression in human malignant melanoma:markers of transformation[J]. Cancer Res,1991,51,4815-4820.
    [64]Krasagakis, K., Garbe, C., Schrier, P.I., and Orfanos, C.E. Paracrine and autocrine regulation of human melanocyte andmelanoma cell growth by transforming growth factor beta in vitro[J].Anticancer Res,1994,14,2565-2571.
    [65]Rodeck, U., Melber, K., Kath, R., Menssen, H.D., Varello, M., Atkinson,B., and Herlyn, M. Constitutive expression of multiple growth factor genes by melanoma
    cells but not normal melanocytes[J]. J. Invest. Dermatol,1991,97,20-26.
    [66]Rodeck, U., Bossler, A., Graeven, U., Fox, F.E., Nowell, P.C.,Knabbe, C., and Kari, C.. Transforming growth factor betaproduction and responsiveness in normal human melanocytes and melanoma cells[J]. Cancer Res,1994,54, 575-581.
    [67]Krasagakis, K, Kruger-Krasagakes, S, Fimmel, S,et al. Desensitization of melanoma cells to autocrine TGF-beta isoforms[J]. J. Cell. Physiol,1999,178, 179-187.
    [68]Rodeck, U, Nishiyama, T, and Mauviel, A. Independent regulation of growth and Smad-mediated transcription by transforming growth factor beta in human melanoma cells. Cancer Res,1999,-59,547-550.
    [69]Rodeck U, Nishiyama T, Mauviel A. Independent regulation of growth and Smad4-mediated transcription by transforming growth faetor-β in human melanoma cells[J]. Cancer Research,1999,159(3):547-550.
    [70]Dernck,R.&Zhang, Y.E.Smad-depengdent and Smad-independent pathways in TGF-B family signaling[J].Nature,2003,425 (6958):577-584.
    [71]Dennler S, Prunier C, Ferrand N,et al.c-Jun inhibits transform-ing growth factor beta-mediated transcription by repressing Smad3 transcriptional activity[J].J Biol Chem,2000,275(37):28858-28865.
    [72]Goffin F,Frankenne F,Beliard A,et al.Human endometrial epithelial cells modulate the activation of gelatinase A by stromal cell[J].Gynecol Obstet 2002,53(2): 105-111.
    [73]Yudate T,Isaka K,Kosugi Y,et al.Analysis of the mechanism of trophoblast [J]. Nippon Sanka Fujinka Gakkai Zasshi,1996,48(3):191-198.
    [74]Shimizu S,Nishikawa Y, Kuroda K,et al. Involvement of transforming growth factor betal in autocrine enhancement of gelatinase B secretion by murine metastatic colon carcinoma cells[J]. Cancer Res,1996,56:3366-3370.
    [75]Miyazono K, Suzuki H, Imamura T. Regulation of TGF-β signaling and it s roles in progression of tumors. CancerSci,2003,94 (3):230.
    [76]Avila MA, Berasain C, Sangro B, et al. New therapies for hepatocellular carcinoma [J]. Oncogene,2006,25 (27):3866.
    [77]Lee JC, Chow NH, Wang ST, et al. Prognosis value of vascular endothelial growth factor expression in colorectal cancer patients[J]. Eur J Cancer 2000,36: 748.
    [78]Benckert C, Jonas S, Cramer T, et al. Transforming growth factor beta 1 stimulates vascular endot helial growth factor gene transcription in human cholangiocellular carcinoma cells [J].Cancer Res,2003,; 63 (5):1083.
    [79]王瑾,任艳玲.转化生长因子-β在恶性肿瘤中的研究现状与进展[J].辽宁医学杂志,2004,18(4):205-207.
    [80]朱亚青,陈澍周,陈玉泉,等.TGF-β1,和TβRI在胆囊癌发病及预后中的作用[J].中国普外基础与临床杂志,2007,14(4):448.
    [81]Mahmoud R.Hussein. Transforming growth factor-b and malignant melanoma: molecular mechanisms.J Cutaneous Pathology[J].2005,32:389-395.
    [82]Uta B. H, Roland H, Eva-B, et al. Role of matrix metalloproteinases in melanoma cell invasion[J].2005,87:307-314.
    [83]Johanna N, PiaV, Meri-Sisko V, et al. High serum levels of matrix-metallo proteinase-9 and matrix-metallo proteinase-1 are associated with rapid progression in patientswith metastatic melanoma[J]. Imaging, Diagnosis, Prognosis,2005,11(14):5158-5166.
    [84]Laurent R, Sylvie P, William H, et al. Transforming growth factor-1 inhibits tumor growth in a mouse melanoma model by down-regulating the plasminogen activation system[J].Experimental Cell Research,2003,291:1-10.
    [85]Vanessa GS, Claudia W,Richard M, Melanoma biology and new targeted therapy, NATURE,2007,445(22):851-857.
    [86]Peterten D, Caroline ShH,New insights into TGF-b-Smad signaling[J]. Trends in Biochemical Sciences,2004,29(5):265-273.
    [87]Houghton, A.N., and Polsky, D. Focus on melanoma[J]. Cancer Cell,2002,2, 275-278.
    [88]Kim, C.J., Reintgen, D.S., and Balch, C.M. The new melanomastaging system[J]. Cancer Control,2002,9,9-15.
    [89]Hilger I, Hiergeist R, Hergt R, et al. Thermal ablation of tumors using magnetic nanoparticles:an in vivo feasibility study [J]. Invest Radiol,2002,37(10): 580-586
    [90]Jordan A, Scholz R, Maier-Hauff K, et al. The effect of thermotherapy using magnetic nanoparticles on rat malignant glioma[J]. J Neurooncol,2006, 78(1):7-14.
    [91]Kawai N, Ito A, Nakahara Y, et al. Anticancer effect of hyperthermia on prostate cancer mediated by magnetite cationic liposomes and immune-response induction
    in transplanted syngeneic rats[J]. Prostate,2005,64(4):373-381.
    [92]Ingrid H, Elke D, Werner L, et al. Developments for the minimally invasive treatment of tumours by targeted magnetic heating[J]. Journal of Physics: Condensed Matter,2006,18:2951-2958.
    [93]Johannsen M, Jordan A, Scholz R, et al. Evaluation of magnetic fluid hyperthermia in a standard rat model of prostate cance[J]. J Endourol,2004,18(5):495-500.
    [94]唐劲天.《肿瘤磁感应治疗》.2009,人民卫生出版社,148-149.
    [95]Dennis LK. Analysis of the melanoma epidemic, both apparent and real:date from the 1973 through 1994 surveillance, epidemiology, and end results program registry [J].Arch Dermatol,1999,135(3):275.
    [96]Stone A, Cooper J, Koening KL, et al. A comparison of survival rates for treatment of melanoma metastatic to the brain [J].Cancer Invest,2004,22(4):492.
    [97]Tsao H, Atkins MB, Sober AJ. Management of cutaneous melanoma[J].N Engl J Med,2004,351(10):998.
    [98]Hajime S, Kazutaka M, Aki I,et al.Self-regulating hyperthermia induced using thermosensitive ferromagnetic material with a low Curie temperature [J]. Cancer sci,2008,99(4):805-509.
    [99]Ito A, Kobayashi T, Honda H. Heat immunotherapy with heat shock protein expression by hyperthermia using magnetite nanoparticles[J]. Ann. Cancer Res. Therap.2007,15(2):27-34.
    [100]Jordan A, Scholz R, Maier-Hauff K, et al. The effect of thermotherapy using magnetic nanoparticles on rat malignant glioma [J]. J Neurooncol,2006,78(1): 7-14.
    [101]Matsumine A, Kusuzaki K, Matsubara T, et al. Novel hyperthermia for metastatic bone tumors with magnetic materials by generating an alternating electromagnetic field [J]. Clin Exp Metastasis,2007,24(3):191-200.
    [102]Johannsen M, Gneveckow U, Taymoorian K, et al. Morbidity and quality of life during thermotherapy using magnetic nanoparticles in locally recurrent prostate cancer:results of a prospective phase I trial [J]. Int J Hyperthermia,2007, 23(3):315-323.
    [103]Gilchrist RK, Shorey WD, Hanselman RC, et al. Effects of electromagnetic heating on internal viscera:a preliminary to the treatment of human tumors [J]. Ann Surg,1965,161:890-896.
    [104]Shinkai M, Yanase M, Honda H, et al. Intracellular hyperthermia for cancer using magnetite cationic liposomes:in vitro study [J]. Jpn J Cancer Res,1996, 87(11):1179-1183.
    [105]Jordan A, Scholz R, Maier-Hauff K, et al. Presentation of a new magnetic field therapy system for the treatment of human solic tumors with magnetic fluid hyperthermia [J]. J Magn Magn Mate,2001,225(1-2):118-126.
    [106]Jordan A, Scholz R, Wust P, et al. Effects of magnetic fluid hyperthermia (MFH) on C3H mammary carcinoma in vivo [J]. Int J Hyperthermia,1997,13(6): 587-605.
    [107]Johannsen M, Thiesen B, Jordan A. Magnetic fluid hyperthermia (MFH) reduces prostate cancer growth in the orthotopic Dunning R3327 rat model [J]. Prostate,2005,64(3):283-292.
    [108]Johannsen M, Gneveckow U, Taymoorian K, et al. Morbidity and quality of life during thermotherapy using magnetic nanoparticles in locally recurrent prostate cancer:results of a prospective phase I trial [J]. Int J Hyperthermia,2007, 23(3):315-323.
    [109]Hilger I, Hiergeist R, Hergt R,et al.Thermal ablation of tumors using magnetic nanoparticles:An in vivo feasibility study [J].Invest Radiol, 2002,37(1):580-586.
    [110]Brusentsova N, Kuznetsovb V, Brusentsovab T, et al. Magnetisation of ferrifluids and effects of intracellular deposition of ferrite nanoparticles [J]. Journal of Magnetism and Magnetic Materials.2004,272 (3):2350-2351.
    [111]Matsumine A, Kusuzaki K, Matsubara T, et al. Novel hyperthermia for metastatic bone tumors with magnetic materials by generating an alternating electromagnetic field [J]. Clin Exp Metastasis,2007,24(3):191-200.
    [112]Bettaieb A, Averill-Bates DA. Thermotolerance induced at a mild temperature of 40 degrees C protects cells against heat shock-induced apoptosis [J]. J Cell Physiol.2005,205(1):47-57
    [113]Maier-Hauff K, Rothe R, Scholz R, et al. Intracranial thermotherapy using magnetic nanoparticles combined with external beam radiotherapy:Results of a feasibility study on patients with glioblastoma multiforme [J]. J Neurooncol, 2007,81(4):53-60.
    [114]Johannsen M, Gneveckow U, Eckelt L, et al. Clinical hyperthermia of prostate cancer using magnetic nanoparticles:presentation of a new interstitial
    technique [J]. Int J Hyperthermia.2005,21(7):637-647.
    [115]管敏强.近交系动物遗传检测[J].青海畜牧兽医杂志,2006,36(5):48.
    [116]潘海涛,杨述华,刘勇,等.可移植性鼠骨肉瘤肿瘤模型的建立[J].中华医学杂志,2005,29(6):471.
    [117]Shinkai M, Yanase M, Suzuki M, et al. Intracellular hyperthermia for cancer using magnetite cationic liposomes [J]. Journal of Magnetism and Magnetic Materials,1999,194(1-3):176-184.
    [118]Hildebrandt B, Wust P, Ahlers O, et al. The cellular and molecular basis of hyperthermia[J]. Crit Rev Oncol Hematol.2002,43(1):33-56.
    [119]唐劲天.《肿瘤磁感应热疗》.2009,人民卫生出版社,164.
    [120]Hussein MR.Transforming growth factor-β and malignant melanoma:
    molecular mechanisms[J].J Cutan Pathol 2005;32:389-395.
    [121]Thrall DE, Prescott DM, Samulski TV,et al. Radiation plus local hyperthermia versus radiation plus the combination of local and whole-body hyperthermia in canine sarcomas[J]. Int J Radiat Oncol Biol Phys.1996, 34(5):1087-1096.
    [122]Nathanson SD, Cerra SD, Hetzel FW,et al. Changes associated with metastasis in B16-F1 melanoma cells surviving heat Archives Sur.1990;125(2):216-219.
    [123]Matsumine A, Kusuzaki K, Matsubara T, et al. Novel hyperthermia for metastatic bone tumors with magnetic materials by generating an alternating electromagnetic field [J]. Clin Exp Metastasis,2007,24(3):191-200
    [124]Johannsen M, Gneveckow U, Taymoorian K, et al. Morbidity and quality of life during thermotherapy using magnetic nanoparticles in locally recurrent prostate cancer:results of a prospective phase I trial [J]. Int J Hyperthermia,2007, 23(3):315-323
    [125]Maier-Hauff K, Rothe R, Scholz R, et al. Intracranial thermotherapy using magnetic nanoparticles combined with external beam radiotherapy:Results of a feasibility study on patients with glioblastoma multiforme [J]. J Neurooncol, 2007,81(4):53-60
    [126]Moroz P, Jones SK, Gray BN, et al. Magnetic mediated hyperthermia: current status and future directions [J]. Int J Hyperthermia,2002,18:267-284
    [1]Kbayashi D,W atanabe N, Yamauchi N, et al. Heatinduced apoptosis via caspase-3 acivation in tumour cells carrying mutant p53 [J]. Int J Hyperthermia,
    2000,16 (6):471-480.
    [2]Nikfarjam M, Muralidharan V, Malcontenti-Wilson C, et al The apoptotic response of liver metastases to focal hyperthermic injury[J]. Anticancer Res,2005,25(2B):1413-1419.
    [3]Yasumoto J, Kirita T, Takahashi A, et al. Apoptosis-related gene expression after hyperthermia in human tongue squamous cell carcinoma cells harboring wild-type or mutated-type p53[J]. Cancer Lett,2004,204 (1):41-51.
    [4]Fukami T, Nakasu S, Baba K, et al. Hyperthermia induces translocation of apoptosis-inducing factor (AIF) and apoptosis in human glioma cell lines[J]. J Neurooncol,2004,70(3):319-331.
    [5]Vertrees RA, Das GC, Coscio AM, et al. A mechanism of hyperthermia induced apoptosis in ras-transformed lung cells[J]. Mol Carcinog,2005,44(2):111-121.
    [6]Borkamo ED, Fluge O, Mella O, et al. Hyperthermia improves the antitumour effect of metronomic cyclophosphamide in a rat transplantable brain tumour. Radiother Oncol 2008;86(3):435-442.
    [7]Nagashima K, Takagi R, Hoshina H. Effect of local hyperthermia on metastases in oral squamous cell carcinoma. Int J Oral Maxillofac Surg 2002;31(1):84-89.
    [8]吴敬波,陈成钦.鼻咽癌原发灶热疗对颈淋巴结转移灶的影响.中国肿瘤,2004.3(4):252-254.
    [9]Tohnai I, Hayashi Y, Mitsudo K, Shigetomi T, Ueda M, Ishigaki T. Prognostic evaluation of preoperative thermochemoradiotherapy for N(3) cervical lymph node metastases of oral cancer. Oncology 2002;62(3):234-240.
    [10]Hsu JY,Wakelee HA. Monoclonal Antibodies Targeting Vascular Endothelial Growth Factor Current Status and Future Challenges in Cancer Therapy.Biodrugs,2009,23(5):289-304.
    [11]He ZY, Chen ZY, Qiu CP, et al. Cloning expressing and tumor suppression of human endostatin [J]. A cta B iochem icalB iophysica Sinica,2000,32 (4):333-336.
    [12]Masood, R, Kundra, A, Zhu, ST, et al. Malignant mesothelioma growth inhibition by agents that target the VEGF and VEGF-C autocrine loops. Int J Ca.2003, 104(5):603-610.
    [13]Chen BG, Zhou MJ, Lisa X. Study of vascular endothelial cell morphology during hyperthermia. Journal of Thermal Biology,2005,30:111-117.
    [14]Kun Li, Shi-Qiang Shen,,1 and Cheng-Long Xiong, Microvessel Damage May Play an Important Role in Tumoricidal Effect for Murine H22 Hepatoma Cells with Hyperthermia In Vivo Journal of Surgical Research,2008,145:97-104.
    [15]Folkman J, Shing Y. M. Angiogenesis. J Biol Chem,1992,267(16):10931-10934
    [16]贾思远,罗向东,齐洁.热应激对血管内皮细胞增殖的影响及其机制初探.创伤外科杂志,2003,5(3):211-213
    [17]Papoutsi M,Sleeman JP, Wilting J.Interaction of rat tumor cells with blood vessels and lymphatics of the avian chorioallantoic membrane [J]. Microsc Res Tech,2001,55(2):100-107.
    [18]Karpanen T.Egeblad M.Karkkainen MJ Vascular endothelial growth factor C promotes tumor lymphangiogenesis and intralymphatic tumor growth.Ca Res.2001,61(5):1786-1790.
    [19]Hung CJ, Ginzinger DG, Zarnegar R, et al. Expression of vascular endothelial growth factor-C in benign and malignant thyroid tumors [J]. J Clin Endocrinol Metab,2003,88(8):3694-3699.
    [20]Koyama Y, Kaneko K, Akazawa K, et al. Vascular endothelial growth factor-C and vascular endothelial growth factor-d messenger RNA expression in breast cancer:association with lymph node metastasis [J]. Clin Breast Cancer,2003, 4(5):354-360.
    [21]Onogawa S, Kitadai Y, Tanaka S, et al. Expression of VEGF-C and VEGF-D at the invasive edge correlates with lymph node metastasis and prognosis of patients with colorectal carcinoma. Cancer Sci,2004,95(1):32-39.
    [22]Jennbacken K, Vallbo C, Wang W, et al. Expression of vascular endothelial growth factor C (VEGF-C) and VEGF receptor-3 in human prostate cancer is associated with regional lymph node metastasis.Prostate,2005,65(2):110-116.
    [23]Sawaji Y, Sato T, Takeuchi A, et al. Anti-angiogenic action of hyperthermia by supp ressing gene exp ression and production of tumour derived vascular endothelial growth factor in vivo and in vitro. Br J Cancer,2002,6:1597-1603.
    [24]Baek SY, Kimb SR, Baeb MK, et al. Trichostatin A increases the thermosensitivity of human glioblastoma A172 cells. Neuroscience Letters,2006, 393(3):230-234.
    [25]Gnant MF, Turner EM, Alexander HR Jr. Effects of hyperthermia and tumour necrosis factor on inflammatory cytokine secretion and procoagulant activity in endothelial cells. Cytokine,2000,12(4):339-347.
    [26]Liang XH, Zhou H, Liu X, He YW, et al. Effect of local hyperthermia on
    lymphangiogenic factors VEGF-C and-D in a nude mouse xenograft model of tongue squamous cell carcinoma Oral Onc.2010,46(2):111-115.
    [27]Fang J,Shing Y, Wiederschain D, et al.Matrix metalloproteinase-2 is required for the switch to the angiogenic phenotype in a tumor model [J]. Proc Natl Acad Sci USA,2000,97:3884-3889.
    [28]Kaneko T, Koano H, Baba M, et al. Urokinasetyp plaminogen activator expression correlates with tumor angiogenesis and poor outcome in gastric cancer[J]. Cancer Sci,2003,94 (1):43-49.
    [29]Sato T, Sawaji Y, Matsui N, et al. Heat shock supp reassesmembrane typematrixmet alloproteinase production and progelatinase A activation in human fibrosarcoma HT1080 cells and there by inhibits cellular invasion[J]. Biochem Biophys Res Commun,1999,265 (1):189-93.
    [30]Sawaji Y, Sato T, SeikiM, et al. Heat shock-mediated transient increase in intracellular 3',5'-cyclin AMP results in tumor specific suppression of membrane type matrix metalloproteinase production and progelatinase A activation [J]. Clin Exp Metastasis,2000,18 (2):131-138.
    [31]Pouya Pakneshan, Moshe Szyfl and Shafaat A.Rabbani2Methylation and inhibition of expression of uPA by the RAS oncogene:divergence of growth control and invasion in breast cancer cells. Carcinogenesis.2005,26(3):557-564.
    [32]梁新华、肖贵州、毛祖彝等,加热对人舌癌Tca8113细胞尿激酶型纤溶酶原激活物表达的影响.华西口腔医学杂志.2003,21(2):150-152.
    [33]Fukao H, Ichikawa T. Effect of hyperthermia on the viability and the fibrinolytic potential of human cancer cell lines [J]. Clin Chim Acta,2000,296 (1-2): 17-33.
    [34]Roca C, Primo L,Valdembri D, et al. Hyperthermia inhibits angiogenesis by a plasminogen activator inhibitor 1-dependent mechanism. Cancer Res.2003,63: 1500-1507.
    [35]Duenne A A. Werher J A. Functional antomy of lymphatic vessels under the aspect of tumor invasion [J]. Recent Results Cancer Res,2000,157 (1):78-79.
    [36]Liang H, Li JW, Shi YR, et al. Change in Ecadherin, alpha-, beta-and gamma-catenin expression after hyperthermia of a human colon carcinoma cell line in vitro. ChinMed J,2004,84:1299-1303.
    [37]Nathanson SD, Cerra SD, Hetzel FW,et al. Changes associated with metastasis in B16-F1 melanoma cells surviving heat Archives Sur.1990;125(2):216-219.
    [38]Mrowietz U. Advances in systemic theropy for psoriasis[J].Clin Exp Dermatol, 2001,26(4):362-367.
    [39]Schueller G, Stift A, Friedl J, et al. Hyperthermia improves cellular immune response to human hepatocellular carcinoma subsequent to co-culture with tumor lysate pulsed dendritic cells[J].Int J Oncol,2003,22(6):1397-1402.
    [40]Atanackovic D, Pollok K, Faltz C, et al. Patients with solid tumors treated with high-temperature whole body hyperthermia show a redistribution of naive/memory T-cell subtypes[J]. Am J Physiol Regul Integr Comp Physiol,2006, 290(3):585-594.
    [41]Kappel M, Stadeager C, Tvede N, et al. Effects of in vivo hyperthermia on natural killer cell activity, in vitro proliferative responses and blood mononuclear cell sub-populations [J]. Clin Exp Immunol,1991,84(1):175.
    [42]Thrall DE, Prescott DM, Samulski TV,et al. Radiation plus local hyperthermia versus radiation plus the combination of local and whole-body hyperthermia in canine sarcomas. Int J Radiat Oncol Biol Phys.1996,34(5):1087-96.
    [43]Binder RJ, Srivastava PK. Peptides chaperoned by heat-shock protein are a necessary and sufficient source of antigen in the crosspriming of CD8+ T cells. Nature Immunology,2005,6:593-599.
    [44]Schueller G, Paolini P, Friedl J, Stift A, Dubsky P, Bachleitner-Hofmann T, Jakesz R, Gnant M Heat treatment of hepatocellular carcinoma cells:Increased levels of heat shock proteins 70 and 90 correlate with cellular necrosis.Anticancer Res.2001,21(1A):295-300
    [45]Calderwood SK, Theriault JR, Gong J. How is the immune response affected by hyperthermia and heat shock proteins?[J]. Int J Hyperthermia,2005, 21(8):713-716.
    [46]Wang SL,Guo LC,Dong L,et al TGF-beta 1 signal pathway may contribute to rhabdomyosarcoma development by inhibiting differentiation.Cancer Sci, 2010,101 (5):1108-1116.
    [47]RobertsAB, Wakefield LM. The two faces of transforming growth factor-beta in carcinogenesis[J]. Proc Nati Acad Sci,2003,100 (15):8621-8023.
    [48]Xiong B, Yuan HY, Hu MB, et al. Transforming growth factor-beta I in invasion and metastasis in colorectal cancer [J]. World J Gastroenterology,2002,8 (4): 674.
    [49]赵齐羽,蒋天安,敖建阳.超声引导射频消融对肝癌患者免疫功能影响的初 步研究.实用肿瘤杂志.2007,22(04):356-359:
    [50]王月香,董宝伟,于晓玲等.超声引导微波凝固治疗肝癌前后血清转化生长因子β1的变化及意义.肿瘤防治研究.2004,5(15):287-289
    [51]Morton DL, Hsueh EC, Essner R, et al. Prolonged survival of patients receiving active immunotherapy with Canvaxin therapeutic polyvalent vaccine after complete resection of melanoma metastatic to regional lymph nodes [J]. Ann Surg, 2002,236(4):438-448.
    [52]Mescher MF, Curtsinger JM, Agarwal P, et al. Signals required for programming effector and memory development by CD8+ T cells [J]. Immunol Rev,2006, 211(9):81-92.
    [53]Korpal M,Kang Y.Targeting the transforming growth factor-beta signalling pathway in metastatic cancer.Eur J Cancer.2010,46(7):1232-40.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700