延安地区盒_8和山_2段低渗透气藏储层特征及主控因素研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究区上古生界天然气勘探程度相对较低,对低渗透储层特征研究不够深入。本文通过先进的测试分析,从微观孔隙结构着手,深刻认识储层特征,在此基础上,对储层进行综合评价,划分出低孔、低渗背景上的优质储层,并从构造作用、沉积作用以及成岩作用综合分析的角度,对其主控因素进行探讨,取得了以下认识:
     1.研究区盒8段储层孔隙类型以岩屑溶孔和晶间孔为主,喉道类型主要为片状和管束状喉道,由于喉道较小,孔隙连通性较差,伊利石、高岭石等粘土矿物含量较高,造成该层段束缚水饱和度高,平均为48.9%,可动流体饱和度低,仅为14.5%。山2段储层孔隙类型以粒间孔、溶孔为主,喉道以片状、管束状和点状喉道为主,由于喉道较大,孔隙连通性较好,粘土矿物中伊利石含量较少,流体在其中渗流容易,所以该层段样品的束缚水饱和度较低,可动流体饱和度高,分别为29.4%和94.2%。在物性上表现为山2段整体好于盒8段。
     2.盒8、山2段目前处于中成岩B期,具有煤系地层的成岩特点,压实作用、压溶作用和硅质胶结作用发育,压实作用和胶结作用分别使储层损失了20%和17%的孔隙度。溶蚀作用使储层增加了3.2%的面孔率,有利的改善了储层物性,是优质储层发育的主要因素之一。
     3.优质储层受构造作用、沉积作用和成岩作用共同控制。由于水下分流主河道砂厚较大,水动力较强,石英含量高,压实作用和碳酸盐胶结作用相对较弱,溶蚀作用强烈,造成储层孔隙空间以连通性较好的溶孔—粒间孔孔隙组合为主,喉道较大,孔隙结构相对有利,物性较好,并且在差异压实作用下,一般处于鼻状隆起的相对高部位,含气饱和度较高。因此水下分流河道微相发育,溶蚀作用强烈,处于鼻状隆起高部位的储层一般为优质储层。相反,水下天然堤和水下分流河道边部砂体较薄,水动力弱,石英含量较低,杂基和塑性岩屑颗粒含量较高,在差异压实作用下,一般处于鼻状隆起的较低部位,成岩过程中压实作用强烈、碳酸盐岩胶结作用发育,溶蚀作用相对较弱,造成储层中连通性较差的晶间孔、粒内溶孔较发育,含气饱和度较低,该类储层一般物性较差。
Because the Neopaleozoic gas degree of exploration is low in the region of interest, so the characteristics of low permeability reservoir are not deep enough. The thesis makes a thorough research, focusing on reservoir's microscopic pore structure, based upon various analytical and measurement methods, including the techniques of casting section, SEM, XRD, cathodeluminescence, grading analysis, high pressure mercury penetration, relative permeability, rate-controlled mercury penetration and NMR. On these bases, we make a comprehensive evaluation of the reservoir; the favorable reservoir is divided from the low porosity and low permeability reservoir. And from the comprehensive angles of tectonism, deposition and diagenesis, we analyze the dominated factors of favorable reservoir. At last we get some conclusions as follows:
     1. The main pore types of the P2X8 reservoir in the region of interest are dissolved pores and intercrystal pores. The main throat types are lamellar throat and tube-shaped throat. Because the throat is small, the pore connectivity is poor, the contents of illite, kaolinite and other clay mineral are relatively high, causing the reservoir's bound water saturation is high with an average of 48.9%, movable fluid saturation is low, only 14.5%.The main pore types of the P1S2 reservoir in the region of interest are primary pores and dissolved pores. The main throat types are lamellar throat tube-shaped throat and dotted throat. Since the large throat, better pore connectivity, less illite content of clay minerals, the reservoir's bound water saturation is low, and movable fluid saturation is high, respectively 29.4% and 94.2%.
     2. P2X8&P1S2 are currently in mid B diagenetic stage. Target zone have coal strata of diagenetic features, such as strong compaction, pressolution and kiesel cementation. Compaction and cementation made the reservoir respectively lose 20% and 17% porosity. Dissolution made the reservoir increase 3.2% face porosity. So it's one of the major factors, which can improve the reservoir's physical property.
     3. Favorable reservoir is controlled mainly by tectonization, sedimentation and diagenesis. Favorable reservoir is general in the place, where develop underwater distributary channel microfacies, compaction and carbonate cementation are relatively weak, dissolution is strong, and it is in the relatively high position of nose. Because in this place the sand thickness is larger, hydrodynamic is strong and quartz content is high, dissolution is strong, resulting in larger throat and better pore connectivity, so the gas saturation and physical property are relatively high in the reservoir. On the contrary, the place where develop the microfacies of underwater natural levee or the edge of the underwater distributary channel, sand body is thin, water power is weak, quartz content is low, matrix and plastic debris particles are high, compaction and carbonate cementation are strong, and dissolution is relatively weak, resulting in smaller throat and worse pore connectivity, while it is usually in the lower parts of structural nose, as a result, the physical property of the reservoir is poor.
引文
[1]邱中建,方辉.对我国油气资源可持续发展的一些看法[J].石油学报,2005,26(2):1-5.
    [2]崔光明.中国油气工业可持续发展的思路[J].当代石油石化,2004,112(10):1-7.
    [3]李道品.低渗透砂岩油田开发[M].北京:石油工业出版社,1997:14-30.
    [4]王道富.鄂尔多斯盆地特低渗透油田开发[M].北京:石油工业出版社,2007
    [5]任纪舜.中国油气勘探和开发战略.见:中国石油论坛—21世纪中国石油天然气资源战略研讨会论文.石油工业出版社,2000.
    [6]李德生.重新认识鄂尔多斯盆地油气地质学[J].石油勘探与开发,2004,31(6):1-7.
    [7]赵文智,汪泽成,陈孟晋,等.鄂尔多斯盆地上古生界天然气优质储层形成机理探讨[J].地质学报,2005,79(6):833
    [8]胡宗全.鄂尔多斯盆地上古生界砂岩储层方解石胶结物特征[J].石油学报,2003,24(4):40-43.
    [9]Sun W, Qu Z, Tang G. Visual study of water injection in low permeable sandstone[J].Journal of Canada Petroleum Technology,2006,11(45):21-26.
    [10]宁宁,陈孟晋,刘锐娥.鄂尔多斯盆地东部上古生界石英砂岩储层成岩及孔隙演化[J].天然气地球科学,2007,18(3):334-338
    [11]张文昭.鄂尔多斯盆地大油气田形成的主要地质规律[J].中国上油气,1999,13(6):391-395.
    [12]黄第藩,杨俊杰.鄂尔多斯盆地中部气田气源判识和天然气成因类型[J].天然气工业,1996,6(6):1-5.
    [13]戴金星.中国气藏(田)的若干特征[J].石油勘探与开发,1997,24(2):6-11.
    [14]宋岩,赵文智,夏新宇,等.论我国天然气勘探方向的转移[J].天然气工业,2000,20(2):3-7.
    [15]杨华,张军,王飞雁,等.鄂尔多斯盆地古生界含气系统特征[J].天然气工业,2000,20(6):7-11.
    [16]李文厚,魏红红,马振芳,等.苏里格庙气田碎屑岩储集层特征与天然气富集规律[J].石油与天然气地质,2002,23(4):387-396.
    [17]张金亮,常象春,张金功.鄂尔多斯盆地上古生界深盆气藏研究[J].石油勘探与开发,2000,27(4):30-36.
    [18]付金华,魏新善,任军峰.伊陕斜坡上古生界大面积岩性气藏分布与成因[J].石油勘探与开发,2008,35(6):664-667,691.
    [19]席胜利,王怀厂,秦伯平.鄂尔多斯盆地北部山西组、下石盒子组物源分析[J].天然气工业,2002;22(2):21-24
    [20]何义中,陈洪德,张锦泉.鄂尔多斯盆地中部石炭二叠系两类三角洲沉积机理探讨[J].石油与天然气地质,2001,22(1):68-71.
    [21]李克明.鄂尔多斯盆地北部晚古生代的深盆气气藏[J].石油与天然气地质,2002,23(2)190-193.
    [22]刘新社,席胜利,付金华,等.鄂尔多斯盆地上古生界天然气生成[J].天然气工业,2000,20(6):19-23.
    [23]赵林,夏新宇,戴金星.鄂尔多斯盆地上古生界天然气的运移与聚集[J].地质地球化学,2000,28(3):48-53.
    [24]李良,袁志祥,惠宽洋,等.鄂尔多斯盆地北部上古生界天然气聚集规律[J].石油与天然气地质,2000,21(3):268-271.
    [25]付金华,王怀厂,魏新善.榆林大型气田石英砂岩储集层特征及成因[J].石油勘探与开发,2005,32(1):30-32.
    [26]李士祥,胡明毅,李霞,等.鄂尔多斯盆地榆林气田山西组山2段砂岩成岩作用及孔隙演化[J].海相油气地质,2005,10(2):31-36.
    [27]陈孟晋,汪泽成,郭彦如,等.2006.鄂尔多斯盆地南部晚古生代沉积特征与天然气勘探潜力[J].石油勘探与开发,33(1):1-5
    [28]席胜利,刘新社.鄂尔多斯盆地天然气资源现状与发展前景[M].石油工业出版社,2006.
    [29]付金华,段晓文,席胜利.鄂尔多斯盆地上古生界气藏特征[J].天然气工业,2000,20(6):16-19.
    [30]季汉成,杨潇.鄂尔多斯盆地东部山西组山2段储层孔隙类型及成因分析[J].高校地质学报,2008,14(2):181-190.
    [31]季汉成,翁庆平,杨潇.鄂尔多斯盆地安塞-神木地区山西组成岩与沉积耦合关系[J].石油勘探与开发,2009,36(6):709-717.
    [32]韩申庭,杨华,王大兴,等.鄂尔多斯盆地榆林区山西组砂岩气藏岩性地震勘探[J].天然气工业,1998;18(5):1O-13.
    [33]陈冬霞,王兴志,李凌,等.鄂尔多斯盆地佳县—子洲地区上古生界储层特征[J].古地理学报,2002,4(3):93-100.
    [34]刘小洪,罗静兰,张三,等.榆林-神木地区上古生界盒8段及山2段气层的成岩作用和成岩相[J].石油与天然气地质,2006,27(2):200-208.
    [35]罗蛰潭,王允诚.油气储集层的孔隙结构[M].北京:科学出版社,1986:62-80.
    [36]陈立官,王柏钧,李鸿智.结构优度-估价储油层孔隙结构的首要参数[J].石油与天然气地质,1980,1(1):69-74.
    [37]黄述旺,蔡毅,魏萍,等.储层微观孔隙结构特征空间展布研究方法[J].石油学报,1994,15,增刊:76-81.
    [38]蔡忠.储集层孔隙结构与驱油效率关系研究[J].石油勘探与开发,2000,27(6):45-46.
    [39]李存贵,徐守余.长期注水开发油藏的孔隙结构变化规律[J].石油勘探与开发,2003,30(2):94-96.
    [40]马明福,李薇,刘亚村.苏丹Melut盆地北部油田储集层孔隙结构特征分析[J].石油勘探与开发,200532(6):121-124.
    [41]Pittman,E.D.,Duschatko,R.W.,Use of Pore Casts and Scanning Electron Microscope to Study Pore Geometry[J], Petrology,1970,40(4):1153-1158.
    [42]应凤祥,杨式升,张敏,等.激光扫描共聚焦显微镜研究储层孔隙结构[J].沉积学 报,2002,20(1):75-79.
    [43]张文达,朱盘良,梁舒.砂岩压汞毛细管压力曲线评价储层的新参数及地质意义[J].石油实验地质,1994,16(4):384-388.
    [44]王金勋,杨普华,刘庆杰,等.应用恒速压汞实验数据计算相对渗透率曲线[J].石油大学学报(自然科学版),2003,27(4):66-69.
    [45]于俊波,郭殿军,王新强.基于恒速压汞技术的低渗透储层物性特征[J].大庆石油学院学报,2006,30(2):22-25.
    [46]杨正明,张英芝,郝明强.低渗透油田储层综合评价方法[J].石油学报,2006,27(2):64-67.
    [47]王为民,郭和坤,孙佃庆,等.用核磁共振成像技术研究聚合物驱油过程[J].石油学报,1997,18(4):54-60.
    [48]王忠东,肖立志,刘宴堂.核磁共振弛豫信号多指数反演新方法及其应用[J].中国科学(D辑),2003,33(4):323-332.
    [49]刘堂宴,王绍民,傅容珊,等.核磁共振谱的岩石孔喉结构分析[J].石油地球物理勘探,2003,38(3):328-336.
    [50]苗盛,张发强,李铁军,等.核磁共振成像技术在油气运移路径观察与分析中的应用[J].石油学报,2004,25(3):44-47.
    [51]肖立志,刘堂宴.傅容珊,等.利用核磁共振测井评价储层的捕集能力[J].石油学报,2004,25(4):38-41.
    [52]周波,侯平,王为民,等.核磁共振成像技术分析油运移过程中含油饱和度[J].石油勘探与开发,2005,32(6):78-81.
    [53]何雨丹,毛志强,肖立志,等.核磁共振几分布评价岩石孔径分布的改进方法[J].地球物理学报,2005,48(2):373-378.
    [54]陈冬霞,庞雄奇,姜振学,等.利用核磁共振物理模拟实验研究岩性油气藏成藏机理[J].地质学报,2006,80(3):432-438.
    [55]孙卫,史成恩,赵惊蛰,等.X-CT扫描成像技术在特低渗透储层微观孔隙结构及渗流机理研究中的应用—以西峰油田庄19井区长82储层为例[J].地质学报,2006,80(5):775-781.
    [56]施晓乐,盛强,李玉彬,等.对人造模型水驱油模拟实验的CT扫描跟踪技术[J].CT理论与应用研究,2003,12(2):26-29.
    [57]A Katz,A Thompson. Factal Sandstone Pores:Implications for Conductivity and Pore Formation. Physical Review Letters [J].1985,54(12):1325-1328.
    [58]刘中云.临南油田储集层孔隙结构模型与剩余油分布研究[J].石油勘探与开发,2000,27(6):47-49.
    [59]李振泉,候健,曹绪龙,等.储层微观参数对剩余油分布影响的微观模拟研究[J].石油学报,2005,26(6):69-73.
    [60]周灿灿,刘堂晏,马在田,等.应用球管模型评价岩石孔隙结构[J].石油学报,2006,27(1):92~96.
    [61]胡雪涛,李允.随机网络模拟研究微观剩余油分布[J].石油学报,2000,21(7):46-53.
    [62]张龙海,周灿灿,刘国强,等.孔隙结构对低孔低渗储集层电性及测井解释评价的影响[J].石油勘探与开发,2006,33(6):671-677.
    [63]毛志强,高楚桥.孔隙结构与含油岩石电阻率性质理论模拟研究[J].石油勘探与开发,2000,27(2):87-93.
    [64]黄延章.低渗透油层渗流机理[M].北京:石油工业出版社,1998:76-79.
    [65]沈平平.油水在多孔介质中的运动理论和实践[M].北京:石油工业出版社,2000:17-18.
    [66]Louis Cuiec,Oil recovery by imbibition in low_permability chalk[J].SPE Formation Evalution,1994,9(3):289-294.
    [67]曲志浩,孔令荣.低渗透油层微观水驱油特征[J].西北大学学报,2002,32(4):329-334.
    [68]王凤琴,曲志浩,孔令荣.利用微观模型研究乳状液驱油机理[J].石油勘探与开发,2006,33(2):221-224.
    [69]李登伟,张烈辉,周克明,等.可视化微观孔隙模型中气水两相渗流机理[J].中国石油大学学报,2008,32(3):80-83.
    [70]孙卫,曲志浩,李劲峰.安塞特低渗透油田见水后的水驱油机理及开发效果分析[J].石油实验地质,1999,21(3):256-230.
    [71]孙卫,何娟.姬塬延安组储层水驱油效率及影响因素[J].石油与天然气地质,1999,20(1):26-29.
    [72]Sun W, Qu Z, Tang G. Characterization of water injection in low permeability rock using sandstone micro-models[J].Journal of Petroleum Technology,2004,56(5):71-72.
    [73]Sohrabi M. V isualisation of oil recovery by water alternating gas(WAG) injection using high pressure micromodels-oil-wet & mixed-wet systems [C].SPE,2000,63000.
    [74]朱维耀,鞠岩,赵明,等.低渗透裂缝性砂岩油藏多孔介质渗吸机理研究[J].石油学报,2002,23(6):56-60
    [75]郭平,徐永高,陈召佑,等.对低渗气藏渗流机理实验研究的新认识[J].天然气工业,2007,27(7):86-88.
    [76]蒋凌志,顾家裕,郭彬程.中国含油气盆地碎屑岩低渗透储层的特征及形成机理[J].沉积学报,2004,22(1):13-18.
    [77]姚光庆,孙尚如.煤系粗粒低渗储层自生粘土矿物特征及其对储层特性的影响[J].石油与天然气地质,2003,24(1):65-69.
    [78]郑浚茂,应凤祥.煤系地层(酸性水介质)的砂岩储层特征及成岩模式[J].石油学报,1997,18(4):19-24.
    [79]Shanmugam G.. Significance of secondary porosity in interpreting sand-stone composition [J]. AAPG.1985,v69(3):378-384.
    [80]David W. Houseknecht. Assessing the relative importance of compaction processes and cementation to reduction of porosity in sandstones[J]. The American Association of Petroleum Geologists Bulletin.1987,71(6):633-642.
    [81]罗平,裘怿楠,贾爱林.中国油气储层地质研究面临的挑战和发展方向[J].沉积学报,2003,21(1):142-147.
    [82]李会军,吴泰然,吴波,等.中国优质碎屑岩深层储层控制因素综述[J].地质科技情报,2004,23(4):76-82.
    [83]杨晓萍,赵文智,邹才能,等.低渗透储层成因机理及优质储层形成与分布[J].石油学报,2007,28(4):57-62.
    [84]曾大乾,李淑贞.中国低渗透砂岩储层类型及地质特征[J].石油学报,1994,15(1):38-46.
    [85]杨俊杰.鄂尔多斯盆地构造演化与油气分布规律[M].北京:石油工业出版社,2002.
    [86]何自新,费安琦,王同和.鄂尔多斯盆地演化与油气[M].北京:石油工业出版社,2003.
    [87]赵重远,刘池洋,等.华北克拉通沉积盆地形成与演化及其油气赋存[M].西安,西北大学出版社,1990.
    [88]冯增昭.沉积岩石学[M].北京:石油工业出版社.
    [89]赵澄林,朱筱敏.沉积岩石学[M].北京:石油工业出版社2001.
    [90]田在艺,张庆春.中国含油气盆地岩相古地理与油气,北京:地质出版社,1997.
    [91]魏红红,彭惠群,李静群,等.鄂尔多斯盆地中部石炭—二叠系沉积相带与砂体展布[J].沉积学报,1999,17(3):403-408.
    [92]汪正江,陈洪德,张锦泉.鄂尔多斯晚古生代沉积体系演化与煤成气藏[J].沉积与特提斯地质,2002,22(2):25-32.
    [93]郑浚茂,庞明编著.碎屑储集岩的成岩作用研究[M].武汉:中国地质大学出版社,1989.
    [94]刘宝珺,张锦泉.沉积成岩作用[M].科学出版社,1992.
    [95]David W. Houseknecht. Assessing the relative importance of compaction processes and cementation to reduction of porosity in sandstones[J]. The American Association of Petroleum Geologists Bulletin.1987,71(6):633-642.
    [96]朱维耀,刘学伟,胡永乐,等.凝析气液变相态微观渗流机理研究[J].天然气地球科学,2006,17(3):292-295.
    [97]朱华银,周娟,万玉金.多孔介质中气水渗流的微观机理研究[J].石油实验地质,2004,26(6):571-573.
    [98]Bentsen R. C. Effect of momentum transfer between fluid phases on effective mobility [J].J Pet Sci Eng,1998,21(1/2):27-42.
    [99]严文德,孙雷,程绪彬,等.低渗透气藏特殊渗流机理的产能评价分析[J].天然气工业,2007,27(11):76-78.
    [100]Voloitin Y, Looyestijn W J, Slijkerman W, et al.A practical approach to obtain primary drainage capillary pressure curves from NMR core and log data [J]. Petrophysics,2001,v42(4):334-343
    [101]刘锐娥.鄂尔多斯盆地北部上古生界碎屑岩储层形成机理及主控因素研究[D].西北大学博士
    论文,2004.
    [102]曹剑,张义杰,胡文,等.油气储层自生高岭石发育特点及其对物性的影响[J].矿物学报,2005,25(4):367-373.
    [103]庞军刚,李文厚,赵靖舟,等.子洲地区山西组及盒8段有利砂体成因探讨[J].西北大学学报(自然科学版),2007,37(4):637-641.
    [104]赵林,夏新宇,戴金星.鄂尔多斯盆地上古生界天然气富集的主要控制因素[J].石油实验地质,2000,22(2):136-139
    [105]吴胜和,熊琦华编著.油气储层地质学[M].北京:石油工业出版社,1998.
    [106]付金华.鄂尔多斯盆地上古生界天然气成藏条件及富集规律[D].西北大学博士学位论文,2004.
    [107]罗静兰,S. Sorad,(?)世可,等.河流湖泊三角洲砂岩成岩作用的重建及其对储层物性演化的影响-以延长油区侏罗系-上三叠统砂岩为例[J].中国科学(D辑).
    [108]胡江柰,张哨楠,李德敏.鄂尔多斯盆地北部下石盒子组-山西组成岩作用与储层的关系[J].成都理工学院学报,2001(4),169-173.
    [109]惠宽洋,张哨楠,李德敏,等.鄂尔多斯盆地北部下石盒子组-山西组储层岩石学和成岩作用[J].成都理工学院学报,2002(6),272-278.
    [110]罗静兰,刘小洪,林潼,等.成岩作用与油气侵位对鄂尔多斯盆地延长组砂岩储层物性的影响[J].地质学报,2006,80(5):664-673.
    [111]Schmidt,V., McDonald,D.A., Texture and Recognition of Secondary Porosity in Sandstone:in P.A.Scholle and P.R.Schluger:Aspects of Diagenesis-Symposia:Soc Econ Paleontologists and Mineralogists Spec[R]. Pub,26,1979.
    [112]Shanmugam G.. Significance of secondary porosity in interpreting sand-stone composition [J]. AAPG.1985,v69(3):378-384.
    [113]代金友,张一伟,熊琦华,等.成岩作用对储集层物性贡献比率研究[J].石油勘探与开发,2003,30(4):54-56.
    [114]应凤祥,罗平,何东博等著.中国含油气盆地碎屑岩储集层成岩作用与成岩数值模拟[M].石油工业出版社,2004.
    [115]孙卫,杨希濮,高辉.溶孔-粒间孔组合对超低渗透储层物性的影响[J].西北大学学报(自然科学版),2009,39(3):507-509.
    [116]姚光庆,孙尚如.煤系粗粒低渗储层自生粘土矿物特征及其对储层特性的影响[J].石油与天然气地质,2003,24(1):65-69.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700