颗粒污泥内苯酚降解真菌的筛选及其特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
酚类化合物是原型质高毒类物质,具有三致效应,对一切生命个体都有明显的毒害作用。作为一种常见的工业污染物,苯酚广泛存在于造纸、炼油、炼焦、农药、化工、医药合成等行业的工业废水中,未经处理的含酚废水对人类生存环境造成了严重的威胁。生物法是一种成本低廉、二次污染较小的工业废水处理方法,在含酚工业废水处理中正由传统混合微生物处理技术向纯培养微生物处理技术转型的阶段。
     在课题组前期研究工作中发现,好氧颗粒污泥对于模拟苯酚废水具有较好的降解特性,为研究其苯酚降解机理进而强化其苯酚降解效能,本文采用分离纯化技术从好氧颗粒污泥中筛选分离得到了两株高活力苯酚降解菌,经23Sr DNA测序鉴定,菌株为热带假丝酵母(Candida tropicalis)属。研究结果表明:菌株A1和A3均有比较高的苯酚耐受能力,在以苯酚为唯一碳源的培养条件下能够耐受1 750 mg/L和2 000 mg/L的苯酚;同时也均有高效的苯酚降解率,在接菌量为3%,温度为30℃、pH值为6.85、装液量为100 mL /250 mL、恒温振荡速度120 r/min的最佳降酚工艺条件下,A1可使初始浓度为1 000 mg/L的苯酚24 h降解率达到95%以上,而A3可达到100%的降解率。葡萄糖对微生物降解苯酚具有协同作用和底物竞争关系,投加量≤1.0 g/L;以硝酸铵为外加氮源,经济有效;虽然配制的模拟废水中本来已含有相当量的无机微量元素,但去除培养基中的微量元素液对苯酚降解亦有较大的影响,这说明微量元素对于微生物来说是必不可少的。
     同时,在保证充分的溶解氧的情况下,进行热带假丝酵母降解苯酚的本征动力学研究,通过试验数据拟合得到了该菌株的Haldane菌体生长动力学方程参数为:热带假丝酵母A1菌株——最大比生长速率μX, max=0. 409h~(-1),苯酚半饱和常数K_S=41.37mg/L,苯酚抑制常数K_i= 387.41mg/L;其相应的苯酚降解动力学参数为:生长相关系数A =0.4387,非生长相关系数, B =0.0003h ~(-1);热带假丝酵母A3菌株——最大比生长速率μX, max= 0. 418h~(-1),苯酚半饱和常数K_S=74.69mg/L,苯酚抑制常数K_i=432.38mg/L;其相应的苯酚降解动力学参数为:生长相关系数A=0.4872,非生长相关系数B=0.0031h~(-1)。从而得出该菌株有良好的工程应用价值。
Phenol is present in the wastewater of many industries, such as paper making, petroleum refining, coking, pesticide, medicine synthesis and chemical engineering, et al. The phenol-containing wastewater without being treated has caused a serious threat to our environment. Among the common ways of phenol removal treatments, the biological methods are always preferable because of its lower cost and less possibility of a secondary pollution. Presently, the biological treatment technology is undergoing a transition from mixed-culture treatment to pure-culture treatment.
     In this paper, two kinds of the highly-active phenol degrading bacterial strains were isolated from the aerobic granular sludge through a traditional microorganism breeding technology, and identified as Candida tropicalis according to the 23Sr DNA sequence analysis. While phenol is presented as the sole carbon source, the two bacterial strains (A1 and A3), which were selected to be the most effective ones, could endure a phenol concentration up to 1 750 mg/L and 2 000 mg/L, respectively. With the inoculum amount 3%,temperature 30℃,pH 6.85,liquid volume in flask 100 mL /250 mL and rate of shaking incubator 120 r/min, the degradation rate of the phenol solution (1 000 mg/L) achieved by A1 and A3 after 24 h could be as high as 95% and 100%, respectively.
     The kinetics of cell growth of Candida tropicalis at dissolved oxygen condition were investigated. Haldane’s equation was adopted to describe the kinetics at 30℃and pH=6.85: Candida tropicalis A1——μX, max= 0. 409h~(-1), K_S=41.37mg/L, K_i=387.41mg/L.Phenol consumption kinetics was associated to the cell growth kinetics as: A=0.4387, B=0.0003h~(-1); Candida tropicalis A3——μX, max=0. 418h~(-1), K_S=74.69mg/L, K_i=432.38mg/L. Phenol consumption kinetics was associated to the cell growth kinetics as: A=0.4872, B =0.0031h~(-1). These showed its high good feasibility and engineering value.
引文
[1] Ana L,Wevar O,Elizabeth A. Overexpression of a basic peroxidase in transgenic tomato (Lycopersicon esculentum Mill. cv. Pera) hairy roots increases phytoremediation of phenol[J]. Plant Science,2005,169:1102-1111.
    [2] Wagner M,Nicell JA. Peroxidase-catalyzed removal of phenols from a petroleum refinery wastewater[J]. Water Science Technology,2001,43 (2): 253-260.
    [3] Makarenko A A,Bezverbnaya I P,Kosheleva I A,et al.. Development of biosensors for phenol determination from bacteria found in petroleum fields of West Siberia,Appl. Biochem. Micro+,2002,38(1):23-27.
    [4]狄军贞.苯酚降酚菌处理含酚废水的试验研究[D].沈阳:辽宁工程技术大学,2003:33-37.
    [5] Ha S-R,Vinitnantharat S,Ozaki H. Bioregeneration by mixed microorganisms of granular activated carbon loaded with a mixture of phenols[J]. Biotechnology Letters,2000,22(13): 1093-1096.
    [6] Santos V L,Linardi V R. Biodegradation of phenol by a filamentous fungi isolated from industrial effluents- identification and degradation potential[J]. Process Biochemistry,2004,39(8): 1001-1006.
    [7]汪晋三,黄新华,程国佩.水化学与水污染[M].广州:中山大学出版社,1990: 367-370.
    [8]张芳西等.含酚废水的处理与利用[M].北京:北京化学工业出版社,1983: 1-10.
    [9] Klibanov A M,Man-Tu T,Scott K P. Peroxidase catalyzed removal of phenols from coal-conversion wastewater[J]. Science,1983,221:259-260.
    [10] Alper N,Beste Y. Modelling of phenol removal in a batch reactor[J]. Process Biochem.,2005,40:1233-1239.
    [11] Amor L,Eiroa M,Kennes C. Phenol biodegradation and its effect on the nitrification process[J]. Water Research,2005,39:2915-2920.
    [12] Li X Y,Cui Y H,Feng Y J,et al.. Reaction pathways and mechanisms of the electrochemical degradation of phenol on different electrodes[J]. Water Research,2005,39:1972-1981.
    [13] Melo J S,Kholi S,Patwardhan A W. Effect of oxygen transfer limitations in phenol biodegradation[J]. Process Biochem.,2005,40:625-628.
    [14] Mohammad H , Entezari C , Pétrier. A. Combination of ultrasound and oxidative enzyme:sono-enzyme degradation of phenols in a mixture[J]. Ultrason. Sonochem.,2005,12:283-288.
    [15] Pazarlioǒlu N K,Telefoncu A. Biodegradation of phenol by Pseudomonas putida immobilized on activated pumice particles[J]. Process Bioche.,2005,40:1807-1814.
    [16]金相灿,程振华,徐南妮等.有机化合物污染化学[M].北京:清华大学出版社,1999: 250-265.
    [17]黄蓓佳,张兰英,王少平.低温条件下1,2,4-三氯苯降解菌的筛选及降解特性[J].环境科学研究,2008,21(5): 19-22.
    [18] Lante A,Crapisi A,Krastanov A. Biodegradation of phenols by laccase immobilised in a membrane reactor[J]. Process Biochem.,2000,36:51-58.
    [19] Christoskova S T,Stoyanova M. Degradation of phenolic waste waters over Ni-oxide[J]. Water Research,2001,35(8):2073-2077.
    [20] WHO. Phenol,Environmental Health Criteria-EHC 161,World Health Organization,Geneva,1994.
    [21]姚华群.液相色谱法测定工业废水中苯酚[J].分析与测试,1998,12:240-242.
    [22] Kibret M,Somitsch W,Robra K H. Characterization of a phenol degrading mixed population by enzyme assay[J]. Water Research,2000,4(4):1127-1134.
    [23] Chung T P,Tseng H Y,Juang R S. Mass transfer effect and intermediate detection for phenol degradation in immobilized Pseudomonas putida systems,Process Biochem.,2003,38:1497-1507.
    [24]杜浩,危起伟,刘鉴毅等.苯酚、Cu2+、亚硝酸盐和总氨氮对中华鲟稚鱼的急性毒性[J].大连水产学院学报,2007,22(2): 119.
    [25]翟建宏,陈家长,胡更东等.苯酚胁迫下罗非鱼组织中过氧化氢酶与谷胱甘肽-S-转移酶的动态变化[J].生态环境,2006,15(4): 688-689.
    [26]陈旭.苯酚对蛋白核小球藻及原生动物群落的毒性效应[J].工业卫生与职业病,2004,30(1): 35-37.
    [27]陆光华,袁星,赵元慧.苯酚/苯胺及其衍生物对斜生山列藻的急性毒性及QSAR研究[J].环境化学,2000,19(3): 227.
    [28]陈传平,张庭廷,何梅等.苯胺、苯酚对淡水藻类生长的影响[J].应用生态学报,2007,18(1): 220.
    [29]陈玲,赵建夫.环境监测[M].化学工业出版社,2004:97-113.
    [30] Davide V,Claudio M,Valter M,et al.. Degradation of phenol and benzoic acid in the presence of a TiO2-based heterogeneous photocatalyst[J]. Appl. Catal. B-Environ.,2005,58:79-88.
    [31] Gimeno O,María C,Fernando J,et al.. Phenol and substituted phenols AOPs remediation[J]. J. Hazard. Mater.,2005,119:99-108.
    [32] Ai Z H,Yang P,Lu X H. Degradation of 4-Chlorophenol by microwave irradiation enhanced advanced oxidation processes[J]. Chemosphere,2005,60:824-827.
    [33] Chamarro E,Marco A,Esplugas S. Use of fenton reagent to improve organic chemical biodegradability[J]. Water Research,2001,35(4):1047-1051.
    [34] Bercie G,Pintar A,Levee J. Adsorption of phenol from activated carbon by hot water regeneration: desorption isotherms[J]. Ind. Eng. Chem. Res.,1996,35:4619-4626.
    [35] Ge Y,Jin H. Recovery process for phenolic compounds from coal-derived oils by ions of soluble metal salts[J]. Fuel,1996,75:1681-1687.
    [36] Li Z,Wu M H,Jiao Z. Extraction of phenol from wastewater by N-octanoylpyrrolidine[J]. Hazard. Mater.,2004,B114:111-114.
    [37] Cimino G,Cappello R M,Caristi C. Characterization of carbons from olive cake by sorption of wastewater pollutants[J]. Chemosphere,2005,61:947~955
    [38] Frederico C F,Ludmila P,Andrew B,et al.. Pilot scale application of the Membrane Aromatic Recovery System (MARS) for recovery of phenol from resin production condensates[J]. Membr. Sci.,2005,257:120-133.
    [39] Wu F C,Tseng R L,Juang R S. Preparation of highly microporous carbons from fir wood by KOH activation for adsorption of dyes and phenols from water[J]. Sep. Purif. Technol.,2005,47:10-19.
    [40]樊丽华,梁英华.焦化废水治理技术进展[J].环境科学与技术,2002,25(6): 40-42.
    [41]关海滨.高效苯酚降解菌的选育及降酚性能研究[学位论文],沈阳,沈阳药科大学,2007:6-7.
    [42] Christoskova ST,StoyanovaM. Degradation of Phenolic Waste waters over Ni-oxide[J]. Water Research,2001,35(8):2073-2077.
    [43] camel V,Bermond A. The use of ozone and associated oxidation processes in drinking water treatment[J]. Water Research,1998,32(11):3208-3222.
    [44]钟理等.废水中甲苯的臭氧氧化动力学研究[J].环境科学研究,2000,13(2):20-22.
    [45] Brumley C M,Haritos V S,Ahokas J T,et al.. The effects of exposure duration and feeding status on fish bile metabolites: implications for biomonitoring[J]. Ecotox. Environ. Safe.,1998,39:147-153.
    [46] Ara?a J,Tello R,Doíguez J M,et al.. Highly concentrated phenolic wastewater treatment by the Photo-Fenton reaction, mechanism study by FTIR-ATR[J]. chemosphere,2001,44(5):1017-1023.
    [47] Carriazo J,Guélou E,Barrault J,et al.. Catalytic wet peroxide oxidation of phenol by pillared clays containing Al–Ce–Fe[J]. Water Research,2005,39:3891-3899.
    [48] Li L H,Zhang P Y,Zhu W P. Comparison of O3-BAC, UV/O3-BAC and TiO2/UV/O3-BAC processes for removing organic pollutants in secondary effluents[J]. Photochem. Photobiol. A-Chem.,2005,171:145-151.
    [49] Mascolo G,Lopez A,James H,et al.. By-products formation during degradation of isoproturon in aqueous solution II: Chlorination[J]. Water Research,2001,35:1705-1713.
    [50] Richardson S D,Simmons J E,Rice G. Disinfection byproducts: the next generation[J]. Environmental Science Technology,2002,36:1198A-1220A.
    [51] Santiago E,Jaime G,Sandra C,et al.. Comparison of different advanced oxidation processes for phenol degradation[J]. Water Research,2002,36:1034-1042.
    [52]林春绵等.超临界水氧化法降解葡萄糖的研究[J].化学反应工程与工艺,2001,17(l):79-83.
    [53]孔繁翔等.环境生物学[M].北京:高等教育出版社,2001:56-28.
    [54]李军杨,秀山等.微生物与水处理工程[M].北京:化学工业出版社,2002:16-20.
    [55]林春绵等.超临界水中苯酚的氧化分解[J].高效化学工程程学报,1998,12(l):86-89.
    [56] Harold Wright,James A Nicell. Characterization of soybean peroxidase for the treatment of aqueous phenols[J]. Bioresource Technology,1999,(70):69-79.
    [57] Lei L,Hu X,Yue P L. Improved wet oxidation for the treatment of dyeing wastewater concentrate from membrane separation process[J]. Water Research,1998,32:2753-2759.
    [58] Lei L,Hu X,Chen G,et al.. Wet Air Oxidation of Desizing Wastewater from the Textile Industry [J]. Industrial & Engineering Chemistry Research,2000,39(8):2896-2901.
    [59]杨国栋等.光催化含酚废水的研究[J].农业环境保护,1999,18(10):19-21.
    [60] Lei L,Hu X,Chu H P,et al.. Catalytic wet air oxidation of dyeing and printing wastewater[J]. Water Science Technology,1997,35:311-319.
    [61] Lei L,Chen G,Hu X,et al.. Homogeneous catalytic wet air oxidation for the treatment of textile wastewaters[J]. Water Environmental Research,2000,72:147-151.
    [62]余宗学.利用Fenion试剂预处理间二硝基苯生产废水[J].环境科学与防治,2002,24(8):282-284.
    [63]张乃东等.强化UV/ Fenion法降解水中苯酚的研究[J].环境污染防治技术,2002,3(2):20-22.
    [64]周明华,吴祖成.含酚模拟废水的电催化降解[J].化工学报,2002,53(11):40-44.
    [65]张铭,魏炜等.含酚工业废水处理的探讨[J].环境保护科学,1999,25(2):6-7.
    [66] Lei L,Hu X,Yue P L,et al.. Oxidative degradation of polyvinyl alcohol by the photochemically enhanced Fenton reaction[J]. Photochem. Photobiol. B:Biol.,1998,116:159-166.
    [67] Lei L,Chu H P,Hu X,et al.. Preparation of heterogeneous photocatalyst (TiO2/Alumina) by metallo-organic chemical vapor deposition[J]. Ind. Eng. Chem. Res.,1999,38:3381-3385.
    [68] Bux F,Akkinson B,Kasan K. Zinc biosorption by waste activated and digested sludges[J]. WaterScience Technology,1999,39(10-11):127-130.
    [69] Zumriye A,Derya A,Elif R,et al.. Simultaneous biosorption of phenol and nickel from binary mixtures onto dried aerobic activated sludge[J]. Process Biochem.,1999,35:301-308.
    [70] Wang C C,Lee C M,Lu C J,et al.. Biodegradation of 2,4,6-trichlorophenol in the presence of primary substrate by immobilized pure culture bacteria[J]. Chemosphere,2000,41:1873-1879.
    [71] Kim J H,Oh K K,Lee S T,et al.. Biodegradation of phenol and chlorophenols with defined mixed culture in shake-flasks and a packed bed reactor[J]. Proc. Biochem.,2002,37:1367-1373.
    [72] Bruno F,Curini R,Corcia A Di,et al.. Determination of surfactants and some of their metabolites in untreated and anaerobically digested sewage sludge by subcritical water extraction followed by liquid chromatography-mass spectrometry[J]. Environmental Science Technology , 2000 ,36(2):4156-4161.
    [73] Pinto R T P,Lintomen L,Luz Jr L F L,et al.. Strategies for recovering phenol from wastewater: thermodynamic evaluation and environmental concerns[J]. Fluid Phase Equilib. , 2005 ,228-229:447-457.
    [74]朱艳清.活性污泥法处理含酚废水[J].一重技术,2004,1:122-123.
    [75] Onysko K A. Unsteady-state behaviour of an immobilized-cell fluidized-bed bioreactor for phenol biodegradation[J]. The University of Waterloo,Ontario,Canada,1999,UMI.1-4.
    [76] Hirata A,Noguchi M,Takeuchi N,et al.. Kinetics of biological treatment of phenolic wastewater in three-phase fluidized bed containing biofilm and suspended[J]. Water Science Technology,1998,38:205-212.
    [77]于萍等.高浓度含酚废水处理的新工艺[J].工业水处理,2002,22(9):5-7.
    [78]乌锡康.有机化工废水治理技术[M].北京:化学工业出版社,1998:88-92.
    [79] Harold Wrlght,James A Nicell. Characterization of soybean peroxides for the treatment of aqueous phenols[J]. Bioresource Technology,1999,4(70): 69-79.
    [80]张铭等.含酚工业废水处理的探讨[J].现代化工,2002,22(2): 6-7.
    [81] Kalin M,Neujahr H Y,Weissnahr R N. Phenol hydroxylase from Trichosporon cutaneum,gene cloning,sequence analysis and function expression in Esche-tichia coli[J]. Bacterial,1992,174(2):7112-7120.
    [82] Shingler V F C H,Ranklin M,Suda D Lroyd,Agdasarian M. Molecular analysis of a pla-smidedcoded phenol hydrolase of Pseudomonas sp. strain CF600[J]. Gen Microbial,1989,135:1083-1098.
    [83] Kim Y,Ayoubi P,Harker A R. stitutive expression of the cloned phenolhydroxyla segenes fromAlcaligenes eutrophus JMP 134 and concomitant trichloroethylene oxidation[J].Environ Microbiol,1996,62(9):3227-3233.
    [84]吴培诚.琼氏不动杆菌菌株GXP04的苯酚降解特性[J].广西农业生物科学,2003,22(4):293-296.
    [85]张改荣.降低焦化生产废水中硫、氰途径的探讨[J].西山科技,2002,S1:7.
    [86] Brasquet C,Subrenat E,et al. Removal of Phenol Compounds from Aqueous Solution by Activated Carbon Cloths[J]. Water Science Technology,1999,39(10-11):201-205.
    [87] Bandyopadhyay K,Das D,Maiti B R. Kinetics of Phenol degradation using pseudomonas putida MTCC 1194[J]. Bioprocess Engineering,1998,18(21):373-377.
    [88] Fiona M D,Kirchner U,Michael P B,et al. Phenol / cresol degradation by thermophilic Bacillus thermoglucosidasius A7: cloning and sequence analysis of five genes involved in the Pathway[J],Gene,2002,256(21):12-21.
    [89] Wang S J,Loh K C. Modeling the role of metabolic intermediates in kinetics of phenol biodegradation[J]. Enzyme Microb. Tech.,1999,25:177-184.
    [90] Koutny M,Ruzicka J,Chlachula J. Screening for phenol-degrading bacteria in the pristine soils of south Siberia[J]. Appl. Soil Ecol.,2003,23(1):79-83.
    [91] Santos V L,Linardi V R. Biodegradation of phenol by a filamentous fungi isolated from industrial effluents-identification and degradation potential[J]. Process Biochem.,2004,39:1001-1006.
    [92] FialováA,Boschke E,Bley T. Rapid monitoring of the biodegradation of phenol-like compounds by the yeast Candida maltosa using BOD measurements[J]. Int. Biodeterior. Biodegrad.,2004,54(1):69-76.
    [93]吴培诚.琼氏不动杆菌菌株GXP04的苯酚降解特性[J].广西农业生物科学,2003,22(4):293-296.
    [94]徐玉泉.醋酸钙不动杆菌PHEA-2的16SrDNA测序及其苯酚降解特性研究[J].高技术通讯,2000,10(3):12-14.
    [95]杨光,向阳.一株苯酚高效降解菌的分离及其分解能力初步研究[J].氨基酸和生物资源,2003,25(4):3-6.
    [96]陈明,张维,徐玉泉.醋酸钙不动杆菌PHEA-2对苯酚的降解特性研究[J].中国环境科学,2001,21(3):226-229.
    [97]周治,杨柳燕.高效降解苯酚酵母菌筛选及其降解特性研究[J].南京大学学报(自然科学),2001,37(6):724-729.
    [98]龚斌,刘津,赵斌.一株高效苯酚降解菌的分离、鉴定及降解特性的研究[J].环境科学学报,2006,37(6):2008-2012.
    [99]杨素亮,姜岩,闻建平.一株高效苯酚降解菌的分离鉴定及动力学研究[J].化学工业与工程,2006,23(4):287-290.
    [100] Yan J,Wen J P,Bai J. Biodegradation of phenol at high initial concentration by Alcaligenes faecalis[J]. J Hazard Mater,2007,147:672-676.
    [101] Chandrakant KarlgaL Phenol degradation by imrnobilized cells of Arthrobacter citreus[J]. Biodegradation,2006,17(13):47-55.
    [102] Artur Eduardo R B,David H M,Antonio Ross,et al. Salt-tolerant Phenol-degrading microorganisms isolated from Amazonian soil samples[J]. Arch Microbiol,2008, 174(14):346-352.
    [103]李江,白涛,饶军等.苯酚高效降解菌的筛选和降解特性研究[J].微生物学通报,2007,34(3):492-495.
    [104]刘桂萍,刘长风,全桂静.一株苯酚降解菌的分离及降解特性[J].化工进展,2008,27(2):279-284.
    [105] Hill G A,Robinson C W. Substrate inhibition kinetics: phenol degradation by Pseudomonas putida[J]. Biotechnol. Bioeng.,1975,17:1599-1615.
    [106] Wang K W,Baltzis B C,Lewandowski G A. Kinetics of phenol biodegradation in the presence of glucose[J]. Biotechnol. Bioeng.,1996,51:87-94.
    [107] Pawlowsky U,Howell J A. Mixed culture biooxidation of phenol I. Determination of kinetic parameters[J]. Biotechnol. Bioeng.,1973,15:889-896.
    [108] D’Adamo P D,Rozich A F,Gaudy A F Jr. Analysis of growth data with inhibitory carbon sources[J]. Biotechnol. Bioeng.,1984,26:397-402.
    [109] Gallego A,Fortunato M S,Foglia J,et al.. Biodegradation and detoxification of phenolic compounds by pure and mixed indigenous cultures in aerobic reactors[J]. Int. Biodeter. Biodegr.,2003,52(4):261-267.
    [110] Neujahr H Y,Varga J M. Degradation of phenols by intact cells and cell-free preparations of Trichosporon cutaneum[J]. Eur. J. Biochem.,1970,13:37-44.
    [111] Neujahr H Y,Gaal A. Enzymology of the beta-ketoadipate pathway in Trichosporon cutaneum[J]. Eur. J. Biochem.,1973,35:386-400.
    [112] Neujahr H Y,Lindsjo S,Varga J M. Oxidation of phenols by cells and cell-free enzymes from Candida tropicalis[J]. Antonie Van Leeuwenhoek.,1974,40(2):209-216.
    [113] Neidle E.L.,Omston J.N. Cloning and expression of Acinetobacter calcoaceticus catechol l,2-dioxygenase structural gene eatA in Escherichia coli[J].J.Baeteriol,1986,168:815-820.
    [114] Leonard D,Lindley N D. Growth of Ralstonia entropha on inhibitoy concentrations of Phenol: diminished growth can be attributed to hydrophobic perturbation of Phenol hydroxylase activity[J]. Enzyme Microb Tech,1999,25:271-277.
    [115] Kibret M,Somitsch W,Robra K H. Characterization of a phenol degrading mixed population by enzyme assay[J]. Water Research,2000,34(4):1127-1134.
    [116] Watanabe K,Yamamoto S,Hino S. Population dynamics of phenol-degrading bacteria in activated sludge determined by gyr-targeted quantitative PCR,Appl..[J] Environ. Microbiol,1998,64:1203-1209.
    [117]孙艳,李京,谭立扬.一种耐酚菌种及其固定化细胞降解含酚废水性能的比较研究,环境科学研究,1999,12(l):1-4.
    [118] Wang K W,Baltzis B C,Lewandowski G A,Kinetics of Phenol biodegradation in the presence of glucose 1.31. Biotechnology and Bioengineering,1996,51:87-94
    [119]佟丽萍,唐霞,朱宝花等.含酚废水处理方法的选择[J].工业水处理,1998,18(5): 36-37.
    [120]邱凌峰,吴芳芳,姚尧.苯酚降解菌TX1的分离鉴定及其降解特性[J].上海环境科学,2010,29(1): 35-40.
    [121] Jeong J J,Kim J H,Kim C-K,et a1. 3- and 4-alkylphenol degradation pathway in Pseudomonas sp. strain KL28: genetic organization of the lap gene cluster and substrate specificities of phenol hydroxylase and catechol 2,3-dioxygenase[J]. Microbiology,2003,149(11): 3265-3277.
    [122] Teramoto M,Ohnishi K,Harayama S,et a1. An AraC/XylS family member at a high level in a hierarchy of regulators for phenol-metabolizing enzymes in Comamonas testosteroni R5[J]. Journal of Bacteriology,2002,184(14): 3941-3946.
    [123] Tsirogianni I,Aivaliotis M,Karas M,et a1. Mass spectrometric mapping of the enzymes involved in the phenol degradation of an indigenous soil pseudomonad[J]. Biochimica et Biophysica acta,2004,1700(1): 117-123.
    [124] Mangrulkar P A,Kamble S P,Meshram J,et al. Adsorption of phenol and o-chlorophenol by mesoporous MCM-41[J]. Journal of hazardous materials,2008,160(2-3): 414-421.
    [125] Chung T P,Wu C Y,Juang R S. Improved dynamic analysis on cell growth with substrate inhibition using two-phase models[J]. Biochem. Eng. J.,2005,25:209-217.
    [126]钱存柔,黄仪秀.微生物学试验教程[M].北京:北京大学出版社,1999:64-71.
    [127]国家环保局《水和废水监测分析方法》编委会.水和废水监测分析方法[M].北京:中国环境科学出版社,,1997:408-410.
    [128] Aiail, Ohishi H T, Chang M Y,et al.. Microbiology[M]. New York: Water ScienceTechnology,2000,20-23.
    [129]周群英,高廷耀.环境工程微生物学[M].北京:高等教育出版社,2002:45-47.
    [130]许庆清,周作明.微生物降解苯酚废水的特性研究[J].环境科学与管理,2006,31(4): 136-138.
    [131] Sa C S A,Boaventura R A R. Biodegradation of phenol by Pseudomonas putida DSM 548 in a trickling bed reactor[J]. Biochemical Engineering Journal, 2001, 9(3): 211-219.
    [132] Lallai A,Mura G. Kinetics of growth for mixed cultures of microorganisms growing on phenol[J]. The Chemical Engineering Journal,1989,41(3): 55-60.
    [133] Chung T-P,Tseng H-Y,Juang R-S. Mass transfer effect and intermediate detection for phenol degradation in immobilized Pseudomonas putida systems[J]. Process Biochemistry,2003,38(10): 1497-1507.
    [134] Ucun H,Yildiz E,Nuhoglu A. Phenol biodegradation in a batch jet loop bioreactor (JLB): Kinetics study and pH variation[J]. Bioresource Technology,2010,101(9): 2965-2971.
    [135] Monteiro A M G,Boaventura R A R,Rodrigues A E. Phenol biodegradation by Pseudomonas putida DSM 548 in a batch reactor[J]. Biochemical Engineering Journal,2000,6(1): 45-49.
    [136]邢其毅.基础有机化学[M].北京:高等教育出版社,1993:23-27.
    [137] Onysko K A,Budman H M,Robinson C W. Effect of temperature on the inhibition kinetics of phenol biodegradation by pseudomonas putida Q5[J]. Biotechnology and Bioengineering,2000,70(3): 291-299.
    [138] Haby PA,Crowley D E. Biodegradation of 3-chlorobenzoate as affected by rhizodeposition and selected carbon substrates[J]. Journal Environment Quality,1996,25(2): 304-310.
    [139]杨素亮,姜岩,闻建平.一株高效苯酚降解菌的分离鉴定及动力学研究[J].化学工业与工程,2006,23(4):287-290.
    [140] A’LVARO A M,MONTEIRO G. Phenol biodegradation by Pseudomonas putida DSM 548 in a batch reactor[J]. Biochemical Engineering Journal,2000,6:45-49.
    [141] HALDANE J B S. Enzymes[M]. Cambrige,MA:MIT Press,1965:84.
    [142] Andrews J F. A mathematical model for continuous culture of microorganisms utilizing inhibitory substrates[J]. Biotechnol.Bioeng.,1968,10:707-723.
    [143] Monteiro ? A M G,Boaventura R A R,Rodrigues A E. Phenol biodegradation by Pseudomonas putida DSM 548 in a batch reactor[J]. Biochem.Eng.J.,2000,6:45-49.
    [144]马溪平,艾娇,徐成斌等.耐低温苯酚降解菌的降解动力学研究[J].环境保护科学,2009,35(5):18-21.
    [145] OLIVERM,HAO J,MICHAEL H. Kinetics of phenol and chlorophenol utilization by Achinetobacter species[J]. Chemosphere,2002,46: 797-807.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700