抗水解PVA纳米纤维毡的制备及其过滤性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,静电纺丝已成为制备超细和纳米纤维及其制品的一种重要方法。纳米纤维毡即采用非织造布作为接收基布,将静电纺纤维喷覆在其表面制备得到。与传统方法制得的纤维毡相比,纳米纤维毡具有重量轻、比表面积大和阻隔性好等众多优点,在过滤、保温、防护等方面有着广泛的应用前景。PVA有优良的物理性能、生物降解性能、在干态下有很好的机械性能,而且价格便宜,原料易得,是静电纺纳米纤维的主要用料,但因其分子中含有大量的羟基,亲水性强,耐水性能较差限制了它的应用。因此,需要对PVA进行改性,实现PVA纳米纤维毡的抗水解性能,从而拓宽静电纺PVA制品的用途特别是过滤方面的应用。
     PVA耐水改性方法大致分为物理改性和化学改性。本文从减少PVA分子中的羟基数目出发,主要研究利用其他试剂对PVA进行耐水改性的化学方法。
     研究初期,本文选择了尿素、草酸、马来酸以及戊二醛等试剂分别对PVA水溶液进行了耐水改性的探索。结果显示,尿素对PVA改性后,静电纺丝效果较好,但抗水解效果较差,而草酸和马来酸对PVA的酯化改性溶液,不能进行正常的静电纺丝,戊二醛可与PVA溶液直接发生缩醛化反应,反应过程难以控制,PVA凝胶化现象严重,不能用于静电纺丝。
     其次,基于其它研究报告,本文采用戊二醛(GA,25%水溶液)、丙酮和少量盐酸配制成不同GA浓度的改性溶液,采用直接浸渍方法交联PVA纳米纤维毡,研究了不同浓度改性液在不同的改性:时间下对PVA纳米纤维毡直观性能的影响,并对其表面形态和结构性能进行了研究,结果表明,改性后的纳米纤维毡有良好的抗水解性:能,并指出改性溶液的GA浓度对PVA纳米纤维毡性能有较大影响,而改性时间影响不大。
     在成功制备抗水解PVA纳米纤维毡的基础上,本文采用GA(50%水溶液)配制了12种不同浓度的改性液,首次通过直观感官表征和抗水解性能测试结合,系统地研究了不同浓度的GA改性液对两种醇解度PVA纳米纤维毡的改性效果,结果显示,GA浓度在3%-15%范围内时,两种醇解度PVA纳米纤维膜的改性效果均较好。重点对改性效果较好的纳米纤维毡利用SEM和FTIR进行了表征,同时也对其力学,热稳定性以及结晶度变化等进行了分析。
     最后,研究了5%GA改性PVA纳米纤维毡的过滤性能,结果表明,基布的平均孔径在112μm左右,铺上PVA纳米纤维膜的平均孔径最大仅为3.37μm,且非织造基布的孔径分布离散度比纳米纤维毡的孔径分布离散度大,说明了纳米纤维膜的附着有效的降低了基体材料的孔径尺寸。水通量和截留率的分析得知,抗水解PVA纳米纤维毡具有较高的水通量和截留率,过滤性能较好。另外,作为本文的延伸,创新性的采用无水乙醇取代丙酮作为改性溶剂,对PVA纳米纤维毡进行耐水改性,可在实现其较好抗水解效果的同时,创造一个相对良好的改性实验环境。
Recently, Electrospinning has become an important method in fabricating of nanofibrous structures. Non-woven fabrics are used as substrates to receive polymer nanofibers, and in this process nanofiber mats are formed. Compared to traditional nonwoven fiber mat, nanofibrous mats have many advantages, such as light weight, high specific surface area and good protection, so that nanofibrous mats have extensive application prospects in the filtration, thermal insulation, protection and so on. PVA is the main electrospun material with excellent physical properties, biodegradability, good mechanical properties in the dry state, and many other advantages such as low price and easy to get, etc. However, PVA has a poor water resistance result from a large number of hydroxyl groups in molecules which limits its application. So, PVA was modified to achieve water-resistant PVA nanofiber mats, which can broaden the application of PVA nanofiber mats especially the application of filters.
     Methods of improving the water resistance of PVA can be divided into physical modification and chemical modification. In this paper, the method of chemically modified by other agents was studied.
     Urea, oxalic acid(OA), maleic acid(MA), and glutaraldehyde(GA) were chosen to modified PVA solution firstly.The results showed that the spinnability of PVA modified by urea was good but the prepared mat was water-soluble; the spinnability of PVA modified by OA or MA was bad which can not be used in electrospinning; PVA can be reacted with GA directly but the gelation make electrospinning impossibility.
     Then, the PVA nanofiber mats were prepared by electrospinning and immersed in a given concentration of GA(25% aqueous solution)and trace HCl in acetone solution.The effect on water resistance of PVA was discussed by selected different concentrations of modified solution under different modification time, then characterized by Scanning Electron Micrograph (SEM) and Fourier Transform Infrared (FTIR) spectrometry. The resulting crosslinked PVA substrates showed excellent water resistance,and the variation of time had little effect on the crosslinking reaction while the concentration of GA had greater impact.
     On the base of successful preparation of water-resistant PVA nanofiber mats,in this study, 12 different concentrations of GA (50% aqueous solution)in acetone solution were employed to modify 88% PVA and 95% PVA nanofiber mats,the modified effect were studied systemic by the integration of visual sensory evaluation and water durability measurements firstly. The results showed that the modified effect of two different PVA nanofiber membrane were good. SEM and FTIR were employed to characterize the better nanofiber mats, as well as the mechanical, thermal stability and crystallinity changes were analyzed.
     The filtration performance of 5% GA modified PVA nanofiber mats was studied, and results showed that the average pore size of nonwoven substrate was about 112μm, while the largest average pore size of PVA nanofiber membrane was only 3.37μm, and the pore size distribution of nanofiber membrane was more concentrated, indicating that the attachment of nanofiber membrane effectively reduce the pore size of substrate material. The water-resistant PVA nanofiber mats exhibited a high flux rate and an good rejection rate. In addition, Ethanol as solvent, different concentrations of GA modified solution were prepared, and the modified results showed a good effect and a better experimental environment.
引文
[1]李山山,何素文,胡祖明等.静电纺丝的研究进展[J].合成纤维工业,2009,32(4):44-45.
    [2]迟蕾,姚永毅等.静电纺丝方法制备纳米纤维的最新进展[J].纺织科技进展,2004,(5):4-5.
    [3]佟艳斌.静电纺丝技术研究及纳米纤维的应用前景[J].内蒙古民族大学学报,2008,14(4):18-19.
    [4]陈雄洛,康卫民.静电纺纳米非织造材料及其应用[J].化纤与纺织技术,2009,(1):25-31.
    [5]YANG D Y, et al. Fabrication of aligned fibrous arrays by magnetic electrospinning [J]. Adv. Mater.2007,19 (21):3702-3706.
    [6]Greiner A. Functionalized nanofiber by electrospinning[J]. Fiber Society. Symposium (Abstracts),2002,8:5-6.
    [7]Bunyan N, Chen I, Chen J, et al. Control of deposition & orientation of electrospun nanofiber[J]. Fiber Society.Symposium(Abstract),2002,16:36-37.
    [8]Jun Z, Bognrrzki M, Hou H, et al. Crucial parameters for electrospun polymer nanofibers[J]. Fiber Society.Symposium(Abstract),2002,27:84-87.
    [9]Fong H, Reneker D H. Electrospinning and the formation of nanofibers[J]. Structure Formation in Polymeric Fibers,2000,37:225-246.
    [10]付文丽,康为民等.静电纺纳米纤维的工艺原理、应用及发展前景[J].现代纺织技术,2009,(1):51-55.
    [11]李杰.静电纺丝法制备聚乙烯醇纳米纤维[J].舰船防化,2009(4):6-12.
    [12]左秀琴,马洁峰等.静电纺丝制备交联PVA纳米纤维[J].塑料,2005(6):1-6.
    [13]郭建.纳米纤维静电纺丝机——纳米蜘蛛[J].全球科技经济瞭望,2005(2):64.
    [14]王德诚.静电纺丝的技术进展[J].合成纤维工业,2009(32):43-44.
    [15]于建香,师奇松,张淑敏,等.纳米空气净化材料[J].北京石油化工学院学报,2004,12(1):31-33.
    [16]Liu T.Q. Preparation of a novelmicro/nanotubes via electrospun fiber as a template[J]. MaterSci&Technol,2004,20(5):613-616.
    [17]师奇松,于建香等.静电纺丝技术及其应用[J].化学世界,2005(5):313-317.
    [18]常敏,李从举.静电纺纳米纤维的应用[J].合成纤维工业,2007,30(4):50-55.
    [19]Bergshoef M. M., G. J. Vancso. Transparent nanocomposites with ultrathin, electrospun nylon-4,6 fiber reinforcement [J]. Advanced Materials,1999,11 (16):1362-1365.
    [20]景遐斌,曾敬,陈学思,等.阿霉素的超细纤维剂型及其制备方法[P]:中国专利,CN1543972,2004.
    [21]Kenawy E R, Layman J M, Watkins J R, et al. Electrospinning of poly(ethylene-co-vinyl alcohol) fiber[J]. Biomaterials,2003,24:907-913.
    [22]Ding B, Kin J, Miyazaki Y, et al. Electrospun nanofibrous membranes coated quartz crystal microbalance as gas sensor for NH3 detection[J].Sensor Actuat, B:Chem,2004,101(3): 373-380.
    [23]魏绍东.聚乙烯醇的生产现状与展望[J].精细化工原料与中间体,2008(2):6-8.
    [24]刘元虎.聚乙烯醇工业技术进展及其展望[J].维纶通讯,2009:16-21.
    [25]Brian B, Thuy T, et al. Crosslinked poly(vinyl alcohol) membranes[J]. Progress in Polymer Science,2009,34:969-981.
    [26]张小博,戴亚堂.甲醛/尿素/TDI三元疏水改性聚乙烯醇的制备及影响因素[J].化工新型材料,2006,24(7):44-45.
    [27]马天信.甲苯二异氰酸醋对聚乙烯醇缩醛胶粘剂改性的研究[J].1996,18(3):9-10.
    [28]覃小红.交联PVA与未交联PVA纳米纤维膜的结构比较[J].国际纺织导报,2009,(3):3-5.
    [29]喻晓玲,靳向煜.设计纤维制品过滤材料的影响因素[J].过滤与分离,2005,15(3):36-38.
    [30]高晓艳,潘志娟.用作过滤材料的静电纺纳米纤维的研究现状[J].产业用纺织品,2007,210:6-8.
    [31]魏取福.非织造滤布过滤性能研究[J].纺织学报,2001,22(4):259-260.
    [32]郭秉臣,王瑞,张建鹏.非织造布液体过滤材料[J].非织造布,1994,3:21-23.
    [33]黄齐模,李熙,吴道正.纺织品过滤材料[M].北京:纺织工业出版社,1992,11.
    [34]Peter P.Tsai, Heidi Schreuder-Gibson, Phillip Gibson. Different electrostatic methods for making electret filters[J]. Journal of Electrostatics,2002,54(3-4):333-341.
    [35]常怀云,熊杰.静电纺纳米纤维用于过滤介质的研究现状[J].材料导报,2009,23(14):90-100.
    [36]Gopal R, Kaur S, Ramakrishna S, et al. Electrospun nanofibrous polysulfone membranes as pre-filters:Particulate removal[J]. J Membr Sci,2007,289(1-2):210.
    [37]Shin C, Chase G G, Reneker D H. Recycled expanded polystyrene nanofibers applied in filter media [J]. Colloids Surf A:Physicochem Eng Aspects,2005,62(1-3):211.
    [38]Shin C, Chase G G. Separation of liquid drops from air by glass fiber filters augmented with polystyrene nanofibers[J]. J Dispersion Sci Techn,2006,27(1):517.
    [39]Xuefen Wang, Dufei Fang, et al. High performance ultrafiltration composite membranes based on poly(vinyl alcohol) hydrogel coating on crosslinked nanofibrous poly(vinyl alcohol) scaffold[J]. Journal of Membrane Science 2006,(278):261-268.
    [40]Yoon K, Hsiao B S, Chu B, et al. High flux nanofiltration membranes based on interfacially polymerized polyamide barrier layer on polyacrylonitriie nanofibrous scaffolds[J]. J Membr Sci,2008,326:484.
    [41]Yoon K, Kim K, Chu B, et al. High flux ultrafiltration membranes based on electrospun nanofibrous PAN scaffolds and chitosan coating[J]. Polymer,2006,47:2434.
    [42]Qin X, Wang S. Filtration properties of electrospinning nanofibers[J]. J Appl Polym Sci, 2006,102(2):1285.
    [43]A. Thongphud, B. Paosawatyanyong, et al. Improvement of Hydrophobic Properties of the Electrospun PVA fabrics by SF6 Plasma Treatment[J]. Advanced Materials Research,2008,55-57:625-628.
    [44]Jun Zeng, Haoqing Hou, et al. Photo-Induced Solid-State Crosslinking of Electrospun Poly(vinyl alcohol) Fibers[J].Macromolecular Rapid Communication,2005,26:1557-1562.
    [45]Yurong Liu, Brian Bolger, et al. Water resistance of photocrosslinked polyvinyl alcohol based fibers[J]. Materials Letters,2009,63:419-421.
    [46]Sung Jun Lee, Se Geun Lee, et al. Improvement of the Water Resistance of Atactic Poly(vinyl alcohol) Nanowebs by a Heat Treatment, Journal of Applied Polymer Science,2007, 106:3430-3434.
    [47]覃小红,王善元等.朝上喷的多喷头静电纺丝机[P]:中国专利,CN201141056,2008.10.29.
    [48]盛野,王洪艳.改进聚乙烯醇基料耐水性的研究[J].化学世界,2001(12):633-634
    [49]Chun-En Tsai, Chi-Wen Lin, et al. A novel crosslinking strategy for preparing poly(vinyl alcohol)-based proton-conducting membranes with high sulfonation[J]. Journal of Power Sources 2010,195:2166-2173.
    [50]李保军,贺高红等.碱催化PVA酯化交联膜的制备[J].化学通报,2007,(4):317-320.
    [51]郭红霞,陈翠仙等.交联聚乙烯醇膜材料中水的状态及其分离特性[J].化学研究与应用,2005,17(2):194-196.
    [52]J. M. Gohil, A. Bhattacharya and P. Ray. Studies on the Cross-linking of Poly(Vinyl Alcohol)[J]. Journal of Polymer Research 2006 (13):161-169.
    [53]Choong-Kyun Yeom, Kew-Ho Lee. Pervaporation separation of water-acetic acid mixtures through poly(vinyl alcohol) membranes crosslinked with glutaraldehyde[J]. Journal of Membrane Science,1996 (109):257-265.
    [54]Katia C. S. Figueiredo, Tito L. M. Alves, Cristiano P. Borges. Poly(vinyl alcohol) Films Crosslinked by Glutaraldehyde Under Mild Conditions[J]. Journal of Applied Polymer Science,2009,111:3074-3080.
    [55]Xuefeng WANG, Xuming C H E N, et al. High Flux Filtration Medium Based on Nanofibrous Substrate with Hydrophilic Nanocomposite Coating[J]. Environ. Sci. Technol.2005,39: 7684-7691.
    [56]Xiao-Hong Qin, Shan-Yuan Wang. Electrospun Nanofibers from Crosslinked Poly(vinyl alcohol) and Its Filtration Efficiency[J]. Journal of Applied Polymer Science,2008, 109:951-956.
    [57]M.N. Hyder, R.Y.M. Huang, P. Chen. Correlation of physicochemical characteristics with pervaporation performance of poly(vinyl alcohol) membranes[J]. Journal of Membrane Science,2006,283:281-290.
    [58]Dongzhi Yang, Yanning Li, Jun Nie. Preparation of gelatin/PVA nanofibers and their potential application in controlled release of drugs[J]. Carbohydrate Polymers,2007,69:538-543.
    [59]M. B. Norbert, Ed. Encyclopedia of Polymer Science and Technology,1971,14:149.
    [60]J. H. Kim, E. J. Moon and C. K. Kim, J. Membr. Sci,2003,216:107.
    [61]王晓波,王思林等.聚乙烯醇缩乙醛酸树脂的研制[J].中国胶粘剂,2010,(4):36-40.
    [62]Ian C. McNeill,Musarrat H. Mohammed & W. J. Cole. A detailed analysis of the pyrolysis products from dioctyltin maleate and its mixture with PVC[J]. Polymer Degradation and Stability 1998,61:95-108.
    [63]Jae Hyeung Park,Mohammad Rezaul Karim, et al. Electrospinning fabrication and characterization of poly(vinyl alcohol)/montmorillonite/silver hybrid nanofibers for antibacterial applications[J]. Colloid Polym Sci,2010,288:115-121.
    [64]Yingshan Zhou, Jun Nie, et al. Electrospun Water-Soluble Carboxyethyl Chitosan/Poly(vinyl alcohol) Nanofibrous Membrane as Potential Wound Dressing for Skin Regeneration[J]. Biomacromolecules,2008,9:349-354.
    [65]丁一晋,张静,聂俊,杨冬芝.耐水性聚乙烯醇薄膜的制备及性能[J].塑料,2009,38(5):70-72.
    [66]戴有刚,左保齐.静电纺丝非织造过滤材料研究进展[J].产业用纺织品,2008,(7):1-4.
    [67]孙英.过滤织物在污水处理上的应用[J].非织造布,2002,10(2):33-34.
    [68]覃小红,王善元.静电纺纳米纤维的过滤机理及性能[J].东华大学学报(自然科学版),2007,33(1):54-56.
    [69]覃小红,李妮等.静电纺纳米纤维毡在新型高效过滤器上使用的优势和前景[J].产业用纺织品,2007,(4):31-33.
    [70]Yuzhong Zhang, Huiqin Li, et al. Preparation and characterization of modified polyvinyl alcohol ultrafiltration membranes [J]. Desalination,2006,192:214-223.
    [71]Ying Shang, Yuelian Peng. UF membrane of PVA modified with TDI[J]. Desalination, 2008,221:324-330.
    [72]施柳青,卞晓锴,陆晓峰.聚乙烯醇复合纳滤膜的性能研究[J].净水技术,2002,21(1):3.
    [73]卞晓锴施柳青等.聚乙烯醇复合膜的制备[J].膜科学与技术,2004,24(2):13-14.
    [74]李浩,陈健波等.用正交设计研究PVDF/PVC/PMMA共混中空纤维膜[J].2007,27(6):33-34.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700