常压等离子体对高性能纤维表面改性处理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文主要研究目的是利用自行设计常压等离子体设备,建立常压等离子体纤维连续处理系统;对常压等离子体进行放电特性分析及利用其对高性能纤维进行表面改性处理,改善纤维表面润湿性并对改性机理分析研究。
     首先,通过对等离子体的电学参数分析和发射光谱诊断,研究分析了在不同电源功率和气体组分条件下等离子体的状态。氩等离子体放电电流-电压特性曲线及放电图像表明,放电主要是由一些极细的放电丝组成,外观上接近于辉光放电,放电周期随着电源功率增大缩短,放电细丝开始逐渐集中,直至看到明显的丝状放电。利用放电的发射光谱数据,诊断了等离子体内的粒子状态以及计算了电子激发温度、密度及其随功率和气体组分变化情况。Ar等离子体中的粒子:OH(309nm),O(777nm),Ar(763nm)的发射光谱强度跟电源功率成正比关系。等离子体的电子激发温度及电子密度在同一电源功率下会发生突变,对等离子体的状态发生重大影响。
     本文还研究了利用常压DBD等离子体纤维连续处理系统对高性能PET纤维、Kevlar纤维及UHMWPE纤维进行了表明改性处理,并通过SEM和动态接触角等表面表征方法对改性结果进行了讨论。SEM结果表明,随着电源功率的增加,纤维表面刻蚀效果增强。但纤维的接触角并不和外加电源功率大小成比例关系。
     综上所述,本论文通过对常压DBD等离子体进行放电特性研究并将其和纤维改性结果结合分析,探讨等离子体纤维处理机理。
The objective of this study was to establish a continuous atmospheric pressure plasma treatment system through our own developed atmospheric pressure device. Discharge characteristics of atmospheric pressure plasma for analysis and use of its high performance fiber surface modification to improve wettability of fiber surface modification mechanism and analysis.
     To research the various plasma state under different applied power and gas composition, electrical and optical characterization of plasma have been analysis. Argon plasma discharge current-voltage characteristics and discharge images show that the discharge is mainly composed of a number of very fine filament discharge, appearance close to the glow discharge, the discharge cycle decreases with the increased applied power, discharge filaments began to focus on until became the obvious filamentary discharge. To show the particles state, electron excitation temperature and electron number density from plasma on applied power and variation of ratio of O2/Ar in the plasma, the optical emission spectrum and intensity of specific line were taken. The optical emission intensities is proportional with the power supply at wavelengths of 309 nm, 763nm and 777 nm, as representation of dominating species in discharge, correspond to OH, Ar and O, respectively.
     Electron excitation temperature and electron number density will dramatic change under certain applied power and have significant impact to the state of the plasma. Continuous atmospheric pressure plasma treatment system was employ to modification the high performance PET fiber, Kevlar fiber and UHMWPE fiber. The change of the surface properties after atmospheric pressure plasma treatment was studied and discussed by SEM and dynamic contact angle. SEM results showed that with the increase of power supply, fiber surface etching effect increased. But the contact angle of the fiber and the applied power supply power is not proportional to the size relationship.
     In summary, this study carried out by atmospheric pressure DBD plasma discharge characteristics, and fiber modification and the results of their combined analysis of plasma fiber treatment mechanism.
引文
[1]R. Shishoo, Plasma technologies for textiles. New York:Woodhead publishing Ltd.,2007.
    [2]G.M. Wu, et al, Oxygen plasma processing and improved interfacial adhesion in PBO fiber reinforced epoxy composites, Vacuum,2009,83:271-274.
    [3]Dandan L, Jian H, Yaoming Z, Surface modification of PBO fibers by argon plasma and argon plasma combined with coupling agents,Journal of Applied Polymer Science,2006,102:1428-1435.
    [4]Ping Chen, et al, Improvement of interfacial adhesion for plasma-treated aramid fiber-reinforced poly(phthalazinone ether sulfone ketone) composite and fiber surface aging effects. Surf. Interface Anal,2009,41:38-43.
    [5]Joung-Man Park, et al, Improvement of interfacial adhesion and nondestructive damage evaluation for plasma-treated PBO and Kevlar fibers/epoxy composites using micromechanical techniques and surface wettability. Journal of Colloid and Interface Science,2003,264:431-445.
    [6]CvelbarU., Pejovnik S., MozetieM., Zalar A. Inereased surface roughness by oxygen Plasma treatment of graphite/polymer composite. Applied Surface Seienee 2003,210(3-4):255-261.
    [7]Kuzuya M., Sawa T., Mouri M., Kondo S.I., Takai O, Plasma technique for the fabrication of a durable functional surface on organic polymers, Surfaee& Coatings. Technology,2003,169:587-591.
    [8]Yasuda H.K. Plasma Polymerization and Plasma Treatment. New York:John Wiley,1984.
    [9]R J Goldston and P H Rutherford, Introduction to plasma physics, London:The Institute of Physics,1988.
    [10]Michael A.Liberman,Allan J.Lichtenberg, Principles of plasma discharge and materials processing, New Jersey:John Wiley & Sons. Inc., Hoboken,2005.
    [11]徐学基,诸定昌,气体放电物理,上海:复旦大学出版社,1996。
    [12]I Radu, et al. Dielectric barrier discharges in atmospheric pressure helium in cylinder-plane geometry:experiments and model. J. Phys. D:Appl. Phys,2004.37: 449-462
    [13]Hao Li, et al, Air dielectric barrier discharges plasma surface treatment of three-dimensional braided carbon fiber reinforced epoxy composites, Surface & Coatings Technology,2009,203:1317-1321.
    [14]I Radu, et al, Dielectric barrier discharges in atmospheric pressure helium in cylinder-plane geometry:experiments and model. J. Phys. D:Appl. Phys, 2004, 37: 449-462.
    [15]Yuri P. Raizer, Gas discharge Physics, New York:Springer-Verlag,1991.
    [16]徐金洲,梁荣庆,任兆杏,程黎放,童惠,电源对介质阻挡放电(DBD)激发准分子(XeCl~*)辐射的影响,真空科学与技术,2002,22(5):338-344。
    [17]徐金洲,梁荣庆,任兆杏,程黎放,童惠君,气体对介质阻挡放电激发XeCl*辐射的影响.核聚变与等离子体物理,2003,23(4):243-248。
    [18]张芝涛,大气压窄间隙DBD等离子体源与应用基础,研究博士毕业论文,2003。
    [19]J Reece Roth, Industrial Plasma Engineering Volume 2:Applications to Nonthermal Plasma Processing, IOP Publishing Ltd 2001.
    [20]Riccardo d'Agostino, et al, Advanced Plasma Technology, KGaA, Weinheim: WILEY-VCH Verlag GmbH & Co.2008.
    [21]国家自然科学基金委员会编,等离子体物理学,北京:科学出版社,1994。
    [22]Hua-Chiang Wen, et al, Effects of ammonia plasma treatment on the surface characteristics of carbon fibers, Surface & Coatings Technology,2006,200:3166-3169.
    [23]Chun Lu, et al. Interfacial Adhesion of Plasma-Treated Carbon Fiber/Poly(phthalazinone ether sulfone ketone) Composite, Journal of Applied Polymer Science,2007,106:1733-1741.
    [24]Ping Chen, et al. Effects of oxygen plasma treatment power on surface properties of poly(p-phenylene benzobisoxazole) fibers. Applied Surface Science,2008,255: 3153-3158.
    [1]徐金洲,张菁,王德信,大气压等离子体处理纤维束或纤维线绳表面装置及方法:中国,专利号,200710042535.5,2008.01.02。
    [2]徐学基,诸定昌,气体放电物理,上海:复旦大学出版社,1996。
    [3]XU Jinzhou, et al, Characteristics of Coaxial Dielectric Barrier Discharge at an Atmospheric Pressure with a Swirling Gas Argon/Oxygen Mixture for the Surface Modification of Polyester Fiber Cord, Plasma Science and Technology,2010, Vol.12. No.5:601-607.
    [4]Shuhai Liu and Manfred Neiger, Excitation of dielectric barrier discharges by unipolar submicrosecond square pulses, J. Phys. D:Appl. Phys,2001,34:1632-1638.
    [5]J. L. Walsh and M. G. Kong,10 ns pulsed atmospheric air plasma for uniform treatment of polymeric surfaces, Applied Physics Letters,2007. vol.91: 251504-251504-3.
    [6]Kong M G and Deng X T, Frequency range of stable dielectric-barrier discharges in atmospheric He and N2, IEEE Trans. Plasma Sci.,2004, vol.32:1709-1715.
    [7]Jinzhou Xu, Ying Guo, Lei Xia and Jing Zhang, Discharge transitions between glow-like and filamentary in a xenon/lorine-filled barrier discharge lamp, Plasma Sources Sci. Technol,2007, vol.16:448-453.
    [8]Hans R. Griem, Principles of Plasma Spectroscopy, London:Cambridge university press,1997.
    [9]Magdalena Wlodarczyk, Wieslaw Zyrnicki, Spectroscopic characterization of low power argon microwaveinduced plasma with gaseous species produced from ethanol-water solutions in continuous hydride generation process, Spectrochimica Acta Part B,2003,58:511-522.
    [10]S Djurovic, et al. Line shape study of neutral argon lines in plasma of an atmospheric pressure wall stabilized argon arc, Plasma Sources Sci. Technol.,2002, 11:A95-A99.
    [11]M. Ivkovic, S, et al. Low electron density diagnostics:development of optical emission spectroscopic techniques and some applications to microwave induced plasmas, Spectrochimica Acta Part B,2004,59:591-605.
    [12]N.K. Joshi, Axial variation of electron number density in thermal plasma spray jets, Eur. Phys. J. D,2003,26:215-219.
    [1]Mach P, Huang C C. N guyenH T., Dramatic Effect of Single-Atom Replacement on the Surface Tension of Liquid-Crystal Compounds, Phys. Rev. Lett.,1998,80: 732-735.
    [2]廖乾初,场发射扫描电镜进展及其物理基础,电子显微学报,1998,17(3):311-318。
    [3]Fenglin Huang, Qufu Wei, Xueqian Wang, Wenzheng Xu, Dynamic contact angles and morphology of PP fibres treated with plasma, Polymer Testing, vol.,2006, 25:22-27.
    [4]Yoon Joong Hwang, Characterization of Atmospheric Pressure Plasma Interactions with Textile/Polymer Substrates, Doctoral dissertation,2003.
    [5]XU Jinzhou, et al., Characteristics of Coaxial Dielectric Barrier Discharge at an Atmospheric Pressure with a Swirling Gas Argon/Oxygen Mixture for the Surface Modification of Polyester Fiber Cord, Plasma Science and Technology,2010, Vol.12, No.5:601-607.
    [6]N. Inagaki, S. Tasaka and H. Kawai, Surface Modification of Aromatic Polyamide Film by Oxygen Plasma, Journal of Polymer Science Part A-Polymer Chemistry, 1995,33:2001-2011.
    [7]S. Wu, J. Xing, C. Zheng, G. Xu, G. Zheng and J. Xu, Plasma Modification of Aromatic Polyamide Reverse Osmosis Composite Membrane Surface, Journal of Applied Polymer Science,1997,64:1923-1926.
    [8]A. Hollander, R. Wilken and J. Behnisch, Subsurface Chemistry in the Plasma Treatment of Polymers, Surface and Coatings Technology,1999,116-119:788-791.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700