反相微乳液聚合制备AgCl/PMMA-F127有机—无机杂化膜及其在苯/环己烷体系的渗透汽化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文选用聚氧乙烯-聚氧丙烯-聚氧乙烯(PEO-PPO-PEO, F127)三嵌段共聚物作为表面活性剂,可聚合的甲基丙烯酸甲酯(MMA)为油相,通过反相微乳液及其聚合技术制备了包含纳米AgCl粒子的F127-PMMA(聚甲基丙烯酸甲酯)有机-无机杂化膜,用于苯/环己烷体系的渗透汽化分离,主要研究内容包括以下几个方面:
     1、F127/MMA/(H2O+NaCl)和F127/MMA/(H2O+AgNO3)微乳液体系最大增溶水量(ωmax)及其稳定性的研究
     通过电导率法考察了微乳液体系ωmax及其稳定性,结果发现:(1)以F127作为乳化剂形成的F127/MMA/(H2O+NaCl)和F127/MMA/(H2O+AgNO3)微乳液只能是反相微乳液,并且其可控范围较窄;(2)F127浓度对反相微乳液体系的ωmax影响不大;(3)水相中NaCl浓度对F127/MMA/(H2O+NaCl)反微乳液体系的ωmax影响不大,而水相中AgNO3浓度对F127/MMA/(H2O+AgNO3)反微乳液体系的ωmax有较大影响。
     2、反相微乳液体系中AgCl纳米粒子的结构调控及表征
     纳米AgCl粒子的形成和粒径的变化与反相微乳液体系的增溶水量ω、盐的浓度(Csalt)以及F127的浓度(CF127)有关。实验采用紫外-可见吸收(UV-vis)光谱、透射电镜(TEM)分析了纳米AgCl粒子在反相微乳液体系中的形成及粒径变化规律。(1)与小分子表面活性剂比较,以分子量较大的F127作表面活性剂时,纳米AgCl粒子的形成、生长和凝聚需要较长的时间,制得的纳米AgCl粒子的粒径均小于10 nm,粒径分布范围较窄。(2)随着微乳液体系中ω的增大,AgCl纳米粒子的平均粒径变大,粒子数目明显减少,但是当ω达到18以后,AgCl粒子的粒径略有下降,紫外可见光谱和TEM结果一致。(3)增加微乳液体系中的Csalt’有利于获得更多更小的纳米AgCl粒子。但是随着微乳液体系中的Csalt的进一步增加,在形成AgCl粒子的同时,也形成纳米Ag粒子。(4)随着微乳液体系中乳化剂的浓度增大,纳米AgCl粒子粒径和数目均增大。
     3、AgCl/PMMA-F127杂化膜的研制及其渗透汽化性能的研究
     利用微乳液聚合技术制备了AgCl/PMMA-F127均质膜和复合膜,采用扫描电镜(SEM)分析纳米AgCl粒子在杂化膜中的分布情况,分析结果显示:AgCl纳米粒子呈球状结构且均匀分散在杂化膜中,未出现明显的团聚现象,膜的致密性较好。复合膜对苯/环己烷体系的渗透汽化性能测试结果表明:当ω小于14时,随着微乳液体系中ω的增加,杂化膜的渗透通量和分离因子同时增大,当ω大于14时,杂化膜的分离因子开始减小;随着微乳液体系中Csalt和CF127的增加,杂化膜的分离因子表现出先增大后减小的趋势。
     论文研究表明,通过改变微乳液体系中ω、Csalt、CF127等因素可以调控生成的纳米AgCl粒子粒径和数量,从而改变AgCl/PMMA-F127杂化膜的结构形貌及渗透汽化分离性能。
AgCl nanoparticles were first synthesized in water-in-oil microemulsion using poly (ethylene oxide)-poly (propylene oxide)-poly (ethylene oxide) block copolymers (F127) as a surfactant and polymerizable methyl methacrylate (MMA) as oil phase. Then AgCl/PMMA-F127 inorganic-organic hybrid membranes were prepared by situ-polymerization. Pervaporation performances of hybrid membrane were tested for separation of benzene/cyclohexane mixtures. The research content in this paper included three sections.
     1. Study of the stability and the maximum water solubilization capacity (ωmax) of F127/MMA/(H2O+NaCl) and F127/MMA/(H2O+AgNO3) microemulsion
     The stability of microemulsion was analyzed via the measurement of conductivity. (1) F127/MMA/(H2O+NaCl) and F127/MMA/(H2O+AgNO3) microemulsion could only form reverse micriemulsion when F127 was used as surfactant. (2) The concentration of F127 had little effect on theωmax; (3) The concentration of NaCl influenced slightly on theωmax of F127/MMA/(H2O+NaCl) reverse microemulsion, whereas the concentration of AgNO3 had obviously impact on the F127/MMA/(H2O+AgNO3) reverse microemulsion.
     2. Characterization of the formation and morphology of AgCl nanoparticles in reverse microemulsion
     Several important factors affected the numbers and the size of AgCl nanoparticles in synetheis of AgCl nanoparticles via reverse microemulsion, such as molar ratio of water to surfactant (water solubilitation,ω), the concentration of salt and surfactant. The formation and morphology of AgCl nanoparticles were analyzed by ultraviolet-visible (UV-vis) spectrum and transmission electron microscopy (TEM). (1) The formation of AgCl nanoparticles in F127 microemulsion spent more time than those in microemulsion using AOT as surfactant. The sizes of all particles were less than 10 nm and its distribution was narrow. (2) The size of AgCl nanoparticles increased first withωincrease then decreased slightly after theωreached 18. The numbers of AgCl nanoparticles decreased withωincrease. (3) More AgCl nanoparticles with smaller size would be formed with increase of NaCl (AgNO3) concentration. However, there were Ag particles appeared simultaneously at high concentration of reactant salt, with the formation of AgCl nanoparticles. (4) The size and the numbers of AgCl nanoparticle increased as the F127 concentration increased.
     3. Study on AgCl/PMMA-F127 hybrid membranes for pervaporation of benzene/cyclohexane mixtures
     The AgCl/PMMA-F127 homogeneous membranes and composite membranes were prepared by microemulsion polymerization. (1) The structure of hybrid membrane were analyzed by scanning electron microscope (SEM), and the resultes indicated that the AgCl nanoparticles in spherical shape were well dispersedand and did not aggregated obviously in the hybrid membrane. The hybrid membrane was dense membrane. (2) The performance of composite membranes was tested by pervaporation experiment of benzene/cyclohexane mixtures. The flux and selectivity of the membrane increased and then decreased with the increase ofω. The flux and selectivity of the membranes first increased and then decreased with the increase of concentration of salt and F127.
     In conclusion, there were many important factors influences on the size and numbers of AgCl nanoparticles, incldingω, the concentration of salt and surfactant. Then the AgCl-PMMA/F127 membranes were regulated by changing of these factors.
引文
[1]L. Y. Deng, T. J. Kim, M. B. Hagg. Facilitated transport of C02 in novel PVAM/PVA blend membrane [J]. Journal of Membrane Science,2009,340:154-163.
    [2]X. Y. Tang, N. Weisbrod. Colloid-facilitated transport of lead in natural discrete fractures [J]. Environmental Pollution,2009,157:2266-2274.
    [3]J. H. Koha, S. W. Kang, J. T. Parka, et al. Synthesis of silver halide nanocomposites templated by amphiphilic graft copolymer and their use as olefin carrier for facilitated transport membranes [J]. Journal of Membrane Science,2009,339:49-56.
    [4]C. C. Wang, M. H. Cheng, C. Y. Chen, et al. Facilitated transport of molecular oxygen in cobalt-chelated copolymer membranes prepared by soap-free emulsion polymerization [J]. Journal of Membrane Science,2002,208:133-145.
    [5]M. Shoji, K. Oyaizu, H. Nishide. Facilitated oxygen transport through a Nation membrane containing cobaltporphyrin as a fixed oxygen carrier [J]. Polymer,2008,49:5659-5664.
    [6]Y. S. Park, J. K. Won, and Y. S. Kang. Preparation of poly (ethylene glycol) brushes on polysulfone membranes for olefin/paraffin separation [J].Langmuir,2000,16:9662-9665.
    [7]郑幸存,吴礼光,汪锰等.氯化银/聚甲基丙烯酸甲酯有机-无机杂化膜的研究[J].水处理中心.2007,33(5):25-27.
    [8]M. Shoji, K. Oyaizu, H. Nishide. Facilitated oxygen transport through a Nafion membrane containing cobaltporphyrin as a fixed oxygen carrier [J]. Polymer,2008,49:5659-5664.
    [9]J. A. Calzado, C. Palet, M. Valiente. Metal affinity liquid membrane:Facilitated transport of nitrite [J]. Analytica Chimica Acta,2000,403:101-115.
    [10]S. W. Kang, J. H. Kim, J. Won, et al. Enhancement of facilitated olefin transport by amino acid in silver-polymer complex membranes [J]. Chemical Communication,2003,9:768-769.
    [11]S. Bai, S. Sridhar, A. A. Khan. Metal-ion mediated separation of propylene from propane using PPO membranes [J], Journal of Membrane Science,1998,147:131-139.
    [12]D. G. Bessarabov, J. P. Theron, R. D. Sanderson. Novel application of membrane contactors:solubility measurements of 1-hexene in solvents containing silver ions for liquid olefin/paraffin separations [J]. Desalination,1998,115:279-284.
    [13]S. U. Hong, C. K. Kim, and Y. S. Kang. Measurement and analysis of propylene solubility in polymer electrolytes containing silver salts [J]. Macromolecules,2000,33:7918-7921.
    [14]S. Sunderrajan, B. D. Freeman, and C. K. Hall. Fourier transform infrared spectroscopic characterization of olefin complexation by silver salts in solution [J]. Industrial and Engineering Chemistry Research,1999,38:4051-4059.
    [15]Y. S. Kang, J. O. Won, B. S. Jung, et al. Solid state polymer electrolyte facilitated transport membranes containing surfactants, US Patent 2002/0162456A1.
    [16]J. H. Kim, B. R. Min, C. K. Kim, et al. Ionic interaction behavior and facilitated olefin transport in PVP:AgCF3SO3 electrolytes Effect of molecular weight [J]. Journal of Polymer Science Part B:Polymer Physics,2002,40:1813-1820.
    [17]J. D. Goddard, J. S. Schultz, S. R. Suchdeo. Facilitated transport viacarrier-mediated diffusion in membranes:Part Ⅱ. Mathematical aspects and analyses [J]. AIChE J.1974,20: 625-645.
    [18]J. H. Kim, J. Won, Y. S. Kang. FT-Raman studies on ionic interactions in π-Complexes of poly (hexamethylenevinylene) with silver salts [J]. Macromolecular Research,2006,14: 199-204.
    [19]R. C. Reid, J. M. Prausnitz, B. E. Poling. The properties of liquids and gases, McGraw Hill, New York,1987:154-156.
    [20]D. G. Bessarabov, R. D. Sanderson, E. P. Jacob. High-efficiency separation of an ethylene/ethane mixture by a large-scale liquid-membrane contactor containing flat-sheet nonporous polymeric gas-separation membranes and a selective flowing-liquid absorbent [J]. Industeial and Engeering Chemical Research.1995,34:1769-1778.
    [21]J. H. Kima, B. R. Minb, J. C. Won, et al. Anomalous temperature dependence of facilitated propylene transport in silver polymer electrolyte membranes [J]. Journal of Membrane Science,2003,227:197-206.
    [22]M. Teramoto, N. Takeuchi, T. Maki, et al. Gas separation by liquid membrane accompanied by permeation of membrane liquid through membrane physical transport [J]. Separation and Purification Technology,2001,24:101-112.
    [23]J. D. Way and R. D. Noble. Facilitated transport. In:W. S. Ho and K. K. Sirkar, Editors, Membrane Handbook [M], Van Nostrand Reinhold, New York,1992,833-866.
    [24]S. L. Matson, C. S. Herrick, W. J. Ward III. Progress on the Selective Removal of H2S from Gasified Coal Using an Immobilized Liquid Membrane [J]. Industeial and Engeering Chemical Research,1977,16:370-374.
    [25]D. T. Tsou, M. W. Blachman, J. C. David. Silver-Facilitated olefin/paraffin separation in a liquid membrane contactor system [J]. Industeial and Engeering Chemical Research,1994, 33:3209-3216.
    [26]S. L. Matson, J. Lopez, J. A. Quinn. Separation of gases with synthetic membranes [J]. Chemical Engineer Science,1983,38:503-524.
    [27]J. H. Kima, S. M. Parkb, J. Won, et al. Dependence of facilitated olefin transport on the thickness of silver polymer electrolyte membranes [J]. Journal of Membrane Science,2004, 236:209-212.
    [28]Y. S. Kang, J. M. Hong, J. Jang, et al. Analysis of facilitatedtransport in solid membranes with fixed site carriers.1. Single RC circuit model [J]. Journal of Membrane Science,1996, 109:149-157.
    [29]S. H. Kim, D. B. Kim, D. K. Choi, et al. Isoprene/pentane separation using facilitated transport membranes [J]. Journal of Membrane Science,2004,233:113-117.
    [30]吴礼光,沈江南,陈欢林,高从揩.Co2+固载PVA促进传递膜渗透汽化分离环己烯/环己烷的研究[J].石油化工,2003,32:882-884.
    [31]M. Teramoto, N. Takeuchi, T. Maki, et al. Ethylene/ethane separation by facilitated transport membrane accompanied by permeation of aqueous silver nitrate solution [J]. Separation and Purification Technology,2002,28:117-124.
    [32]H. S. Kim, Y. J. Kim, J. J. Kim, et al. Spectroscopic characterization of cellulose acetate polymer membranes containing Cu(1,3-butadiene)OTf as a facilitated olefin transport carrier [J]. Chemistry of Materials,2001,13:1720-1725.
    [33]B. Jose, J. H. Ryu, B. G. Lee, et al. Effect of phthalates on the stability and performance of AgBF4-PVP membranes for olefin/paraffin separation [J]. Chenmical Communication,2001, 2046-2047.
    [34]A. Morisato, Z. He, I. Pinnau, et al. Transport properties of PA12-PTMO/AgBF4 solid polymer electrolyte membranes for olefin/paraffin separation [J]. Desalination,2002,145: 347-351.
    [35]J. H. Ryu, H. Lee, Y. J. Kom, et al. Facilitated olefin transport by reversible olefin coordination to silver ions in a dry cellulose acetate membrane [J]. Chemstry A European Journal,2001,7:1525-1529.
    [36]J. H. Kim, J. Won, Y. S. Kang. π-Complexes of polystyrene with silver salts and their use as facilitated olefin transport membranes [J]. Journal of Polymer Science Part B:Polymer Physics,2004,42:2263-2269.
    [37]S. H. Duan, A. Ito, A. Ohkawa. Separation of propylene/propane mixture by a supported liquid membrane containing triethylene glycol and a silver salt [J]. Journal of Membrane Science,2003,215:53-60.
    [38]M. Azhin, T. Kaghazchi, M. Rahmani. A review on olefin/paraffin separation using reversible chemical complexation technology [J]. Journal of Industrial and Engineering Chemistry,2008,14:622-638.
    [39]S. Bai, S. Sridhar, A. A. Khan. Recovery of propylene from refinery off-gas using metal incorporated ethylcellulose membranes [J]. Journal of Membrane Science,2000,174:67-79.
    [40]M. Yoshino, S. Nakamura, H. Kita, K. Okamoto, et al. Olefin/paraffin separation performance of carbonized membranes derived from an asymmetric hollow fiber membrane of 6FDA/BPDA-DDBT copolyimide [J]. Journal of Membrane Science,2003,215:169-183.
    [41]I. P. Santos, L. M. L. Marzan. Synthesis of silver nanoprisms in DMF [J]. Nano Letters, 2002,2:903-905.
    [42]J. P. Garcia Villaluenga, A. T. Mohammadi. Review on the separation of benzene/cyclohexane mixtures by pervaporation processes [J]. Journal of Membrane Science, 2000,169:159-174.
    [43]D. L. Bryant, R. D. Noble, C. A. Koval. Facilitated transport separation of benzene and cyclohexane with poly (vinyl alcohol)-AgNO3 membranes [J]. Journal of Membrane Science, 1997,127:161-170.
    [44]S. T. Kao, F. J. Wang, S. J. Lue. Sorption, diffusion, and pervaporation of benzene/cyclohexane mixtures on silver-Nafion membranes [J]. Desalination,2002,149: 35-40.
    [45]L. G. Gracia, M. D. L. Castro. Integrated pervaporation:detection for the determination of fluoride in pharmaceutials [J]. Journal of Phaemaceutical and Bio medical Analysis,2000,22: 909-913.
    [46]M. Peng, M. V. S. Leland, X. Liu. Recent advances in VOCs removal from water by pervaporation [J]. Journal of Hazardous Materials,2003,98:69-90.
    [47]R. C. Binging, F. E. James. New separate by membrane permeation [J]. Petrol Refiner, 1958,37:214-215.
    [48]时钧,袁权,高从楷.膜技术手册[M].北京:化学工业出版社,2001.
    [49]P. Aptel, N. Challard, J. Cuny, et al. Application of the pervaporation process to separate azeotropic mixtures [J]. Jouranl of Membrane Science,1976,1:271-287.
    [50]陈俸荣,陈洪钫.在渗透蒸发过程中组分在渗透边膜表面处的浓度预测[J].膜科学与技术,1996,16(4):39-43.
    [51]S. C. George, S. Thomas. Transport phenomena through polymeric systems [J]. Progess in Polymer Science,2001,26:985-1017.
    [52]C. K. Yeom, R. Y. M. Huang. Modelling of the pervaporation separation of ethanollater mixtures through crosslinked poly (vinyl alcohol) membrane [J]. Journal of Membrane Science,1992,67:39-55.
    [53]R. Y. M. Huang, J. W. Rhim. Theoretical estimations of diffusion coefficients [J]. Journal of Applied Polymer Science,1990,41:535-546.
    [54]吕家帧,陆小华,周健等.化学工程中心的分子动力学模型[J].化工学报,1998,49(增刊):64-70.
    [55]Y. Tamai, H. Tanaka, K. Nakanishi. Molecular simulation of permeation of small penetrants through membranes.1. diffusion coefficients [J]. Macromolecules,1994,27: 4498-4508.
    [56]王学松.现代膜技术应用指南[M].北京:化学工业出版社,2005.
    [57]陈翠仙,韩宾兵,朗宁·威.渗透蒸发和蒸气渗透[M].北京:化学工业出版社,2004.
    [58]R. P. Bagwe, K. C. Khilar. Effects of intermicellar exchange rate and cations on the size of silver chloride nanoparticles formed in reverse micelles of AOT [J]. Langmuir,1997,13: 6432-6438.
    [59]王风贺,雷武,彭加斌等.AOT/异辛烷反相微乳液的增溶与电导性质研究[J].南京理工大学学报(自然科学版),2008,32:257-260.
    [60]侯长军,范小花,霍丹群等.CTAB反相微乳液的稳定条件与纳米WO3的制备[J].应用化学:2007,24:401-404.
    [61]P. Alexandridis, T. A. Hatton. Poly (ethylene oxide)-poly (propylene oxide)-poly (ethylene oxide) block copolymer surfactants in aqueous solutions and at interfaces: thermodynamics, structure, dynamics, and modeling [J]. Colloids and Surfaces A,1995,96: 1-46.
    [62]T. Nivaggioli, P. Alexandridis, T. A. Hatton. Fluorescence probe studies of pluronic copolymer solutions as a function of temperature [J]. Langmuir,1995,11:730-737.
    [63]Y. Kadam, U. Yerramilli, A. Bahadurb. Solubilization of poorly water-soluble drug carbamezapine in Pluronic? micelles:Effect of molecular characteristics, temperature and added salt on the solubilizing capacity [J]. Colloids and Surfaces B:Biointerfaces,2009,72: 141-147.
    [64]赵剑曦,郑欧,林翠英.温度对Pluronic嵌段共聚物胶束结构的影响[J].功能高分子学报,2000,13(2):177-181.
    [65]何从林,王伯初.W/O型微乳液相行为的分析[J].重庆大学学报.2003,26:52-54.
    [66]D. S. Mathew, R. S. Juang. An overview of the structure and magnetism of spinel ferrite nanoparticles and their synthesis in microemulsions [J]. Chemical Engineering Journal,2007, 129:51-65.
    [67]李东升,吕功煊,李树本.有机-无机纳米复合光电材料研究进展[J].感光科学与光化学,1999,17(4):364-378.
    [68]G. A. Ozin. Nanochemistry-synthesis in diminishing dimensions [J]. Advances Material, 1992,4:612-649.
    [69]张汝冰,刘宏英,李凤生.均匀沉淀法制备纳米TiO2及其在环保方面的应用[J].化工新型材料,1999,27(5):579-583.
    [70]李艳,张明侠,赵斌.纳米反应器的进展[J].高分子通报.2002,2:24-32.
    [71]S. M. Daliya, R. S. Juang. An overview of the structure and magnetism of spinel ferrite nanoparticles and their synthesis in microemulsions [J]. Chemical Engineering Journal,2007, 129:51-65.
    [72]W. Xu, K. S. Siew, Z. Gao, et al. Novel alternating comblike copolymer electrolytes with single lithium ionil conduction [J]. Chemistry of Materials,1998,10:1951-1957.
    [73]P. Lianos, J. K. Thomas. Cadmium sulfide of small dimensions produced in inverted micelles [J]. Chemical Physics Letters,1986,125:299-302.
    [74]J. B. Fan, J. Chen, Y. Liang. Oxidative refolding of reduced, denatured lysozyme in AOT reverse micelles [J]. Journal Colloid and Interface Science,2008,322:95-103.
    [75]X. D. Gao, J. Chorover. Adsorption of sodium dodecyl sulfate (SDS) at ZnSe and α-Fe2O3 surfaces combining infrared spectroscopy and batch uptake studies [J]. Journal Colloid and Interface Science,2010,348:167-176.
    [76]C. Petit, P. Lixon, M. P. Pileni. In situ synthesis of silver nanocluster in AOT reverse micelles [J]. The Journal of Physical Chemistry,1993,97:12974-12983.
    [77]Z. Q. Zhang, R. C. Patel, R. Kothari et al. Stable silver clusters and nanoparticles prepared in polyacrylate and inverse micellar solutions [J]. The Journal of Physical Chemistry,2000, 104 1176-1178.
    [78]潘海敏,杨伯伦,李国智,等.W/O微乳液技术与纳米粒子的控制合成[J].化学世界,2005,46:54-57.
    [79]M. P. Pileni. Nanosized particles made in colloidal assemblies [J]. Langmuir,1997,13: 3266-3276.
    [80]R. P. Bagwe, K. C. Khilar. Effects of intermicellar exchange rate on the formation of silver nanoparticles in reverse microemulsions of AOT [J]. Langmuir,2000,16:905-910.
    [81]M. P. Pileni. Reverse micelles as microreactors [J]. The Journal of Physical Chemistry, 1993,97:6961-6973.
    [82]J. H. Clint, I. R. Collins, J. A. Williams, et al. Synthesis and characterization of colloidal metal and semiconductor particles prepared in microemulsions [J]. Faraday Discuss,1993, 95:219-233.
    [83]M. P. Pileni. Reverse micelles as microreactors [J]. The Journal of Physical Chemistry, 1993,97:6961-6973.
    [84]张万忠,乔学亮,罗浪里等.AOT微乳体系中纳米银的可控合成及其紫外-见光谱研究[J].光谱学与光谱分析.2009,29:789-792.
    [85]Y. Suzuki, H. Nishide, E. Tsuchida. Membranes of the picket fence cobalt porphyrin complexed with poly (vinylimidazole and pyridine)s:selective optical response to oxygen [J]. Macromolecules,2000,33:2530-2534.
    [86]M. Shoji, K. Oyaizu, H. Nishide. Facilitated oxygen transport through a Nafion membrane containing cobaltporphyrin as a fixed oxygen carrier [J]. Polymer,2008,49:5659-5664.
    [87]N. Preethi, H. Shinohara, H. Nishide. Reversible oxygen-binding and facilitated oxygen transport in membranes of polyvinylimidazole complexed with cobalt-phthalocyanine [J]. Reactive and Functional Polymers,2006,66:851-855.
    [88]J. N. Shen, X. C. Zheng, H. M. Ruan, et al. Synthesis of AgCl/PMMA hybrid membranes and the sorption performance of cyclohexane/cyclohexene [J]. Journal of Membrane Science, 2007,304:118-124.
    [89]J. Chatt, L. A. Duncanson. Electrochemical redox behavior of series of manganese macrocyclic complexes [J]. Journal of the Chemical Society,1953,2939-2949.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700