聚丙烯酸超细纳米蛛网的制备及成形机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
静电纺丝即聚合物喷射静电拉伸纺丝法,与传统方法截然不同。首先将聚合物溶液或熔体带上几千至上万伏高压静电,带电的聚合物液滴在电场力的作用下在毛细管的Taylor锥顶点被加速。当电场力足够大时,聚合物液滴克服表面张力形成喷射细流。细流在喷射过程中溶剂蒸发或固化,最终落在接收装置上,形成类似非织造布状的纤维毡。静电纺制备的纤维具有较高的比表面积、较高的孔隙率,这使得静电纺纳米纤维在信息、能源、环境、生物医学、国家安全等领域都具有广泛的应用潜力。
     美国人Formhals早在1934年就提出了静电纺丝的概念,然而直到最近十年,随着纳米纤维的兴起,人们才给予静电纺丝极大的关注,做了较系统的理论和实验研究。目前,静电纺纤维的直径一般在100-500nm,只有纤维的直径降低到50nm以下时,材料所产生的纳米效应才最为显著。但是目前的静电纺技术还不能大量制备50nm以下的纤维,这很大程度限制了纳米纤维的应用。如何降低纤维直径和提高产量是静电纺发展遇到的最大挑战。各国研究者经过数十年的努力,通过深入研究静电纺工艺参数和原理试图大量制备50nm以下的纤维,但是收效甚微。
     本课题首先研究了静电纺的发展历史及现状,以及在静电纺过程中对纳米纤维产生影响的各种重要参数。本课题以聚丙烯酸(PAA)为主要原料,借助于FE-SEM为主要分析手段,首先分析了溶液体系对静电纺纳米蛛网形态和直径的影响。实验发现,以95%乙醇和去离子水共同作为溶剂进行纺丝时,随着乙醇的比重升高,纳米蛛网的数量增加。在此基础上,该课题还讨论了电纺参数,如电压、湿度、添加物、粘度和电导等对纳米蛛网的数量和形态的影响。最终获得了大量连接在普通静电纺纤维之间、平均直径小于50nm的、具有类似于蜘蛛网结构的纳米蛛网。
     本课题研究了纳米蛛网的形成过程,并借助高速摄像机对静电纺过程进行观察,获得了大量静电纺纳米蛛网的形成过程图。结合现有静电纺理论,得出静电纺过程中射流分裂成液滴是形成纳米蛛网的关键。
Electrospinning is exert voltage on polymer solution to got nanofiber which is different from traditional methods. At the beginning, the polymer solution or melt bring thousands of high voltage. The charged droplet in the capillary was accelerated under the force of electrostatic force. When the electric force is large enough, the droplet can overcome surface tension to formation of a thin stream. Due to solvent evaporation in the electric field, nanofibers what like non-woven mats were got in the receiver. Electrospun nanofibrous membranes with relatively high surface area and microporous structure can be applied in various potential applications such as information technology, energy, environment, biomedical, national security, etc.
     Early in 1934, Formhals proposed the concept of electrostatic spinning. Until the past decade with the rise of nanofibers, it was given great attention to electrospinning. Many researchers did theoretical and experimental studies systemicly on electrospinning. Currently, the diameter of electrospun fibers is generally between 100 nm and 500 nm. Only the diameter below 50nm, the performance of nanofibers can be significantly better than normal nanofiber. However, the fibers which diameter below 50 nm can not got easily by the current technology, which largely limits the application of nanofibers. How to reduce the fiber diameter and increase production is the biggest challenge in electrospinning. Through studying the process parameters and principles of electrospinning trying to prepare a large number of fibers which diameter below 50nm, but with little success.
     Firstly, the history and status of electrospinning were introduced in this paper, and which factors influence on the formation nano-membrane. In this topic, polyacrylic acid (PAA) is the main materials with some other auxiliary materials. And the system of electrostatic spinning solution was analyzed in forming nano-net and in reducing the diameter of nanofiber with the aid of FE-SEM. The 95% ethanol and deionized water were together as solvent for electrospinning. In this experiment, we found that with increasing the proportion of the ethanol in solvent, the number of nano-net was also increased. On this basis, some other electrospinning parameters were also discussed, such as voltage, humidity, additives, viscosity and electric conductivity. Through the experiment, we finally got numerous nano-nets that comprise interlinked ultrathin nanowires with diamerer below 50nm.
     In order to study the forming of nano-nets, we got the authentic process of electrospinning in forming nano-nets by high speed camera. With the existing electrospinning theory, it concluded that the electrostatic jet split into droplets is the key factors to form nano-nets in electrospinning.
引文
[1]朱屯,王福明,王习东等.国外纳米材料技术进展与应用[M].北京:化学工业出版社,2002.
    [2]Komoda T, Nishida I, Kimoto K. Beryllium single crystal as substrate for high resolution electron microscopy[J]. J Electron Microsc (Tokyo),1970,19(1): 105-106.
    [3]纪明辉,魏平原,孟庆飞.纳米纤维的制备及性能[J].高科技纤维与应用,2002,27(3):11-15.
    [4]林鸿溢.新的推动力—纳米技术最新进展[J],北京:中国青年出版社,2003.
    [5]王永芝,杨清彪,李耀先.纳米纤维的性质及应用进展[J].化学新型材料,2004,12(32):9-12.
    [6]付文丽,康为民,程博闻,李全祥.静电纺纳米纤维的工艺原理、应用及发展前景[J].2009年现代纺织技术第1期.
    [7]Lei L, You L H. Ultra-fine polyelectrolyte fibers from electrospinning of poly(acrylic acid)[J]. Polymer,2005,46:5133-5139.
    [8]Xiaohong L, Bin D, Jinyou L, Jianyong Y, Gang S. Enhanced Mechanical Properties of Superhydrophobic Microfibrous Polystyrene Mats via Polyamide 6 Nanofibers[J]. J. Phys. Chem. C,2009,113:20452-20457.
    [9]宋进疆,陈帮烈.静电纺纳米纤维非织造布及其应用前景[J].福建轻纺,2009,06(25):37-39.
    [10]Taylor G I. Proc. R Soc. Lond A[J].1964,280:383.
    [11]Dejuan L, Delamora J. J Colloid Interf Sci[J].1997,186:280.
    [12]Chen D, Pui D. Aerosol Sci Tech[J].1997,27:367.
    [13]Dosh, Reneker G H. Electrospinning Process and Application of Electrospun Fibers[J]. Journal of Electostatic,1995,35(2):151-160.
    [14]Kim J S, Reneker D H. Mechanical properties of composites using ultrafine electrospun fibers[J]. Polymer Composites,1999,20(1):124-131.
    [15]Chun L, Ping C, Jianfeng L, Yujun Z. Computer simulation of electrospinning. Part I. Effect of solvent in electrospinning[J]. Polymer,2006,47:915-921.
    [16]Ding B, Chunrong L, Yasuhiro M, Oriha K, Seimei S. Formation of novel 2D polymer nanowebs via electrospinning[J]. Nanotechology,2006,17:3685-3691.
    [17]Mit-uppatham C, Nithitanakul M, Supaphol P. Macromol Chem Phys,2004, 205(17):2327-2338.
    [18]Yan L, Zhengming H, Yan D. European Polymer Journal,2006,42:1696-1704.
    [19]Xinhua Z, Kwangsok K, Dufei F, Shaofeng R, Benjamin S H, Benjamin C, Polymer,2002,43:4403-4412.
    [20]Bumsu K, Hyun P, Sung-Hwan L, Wolfgang M. Materials Letters,2005,59: 829-832.
    [21]Supaphol P, Mit-Uppatham C, Nithitanakul M. J Polym Sci B Polym Phys 2005, 43(24):3699-712.
    [22]Xiaohong Q, Shanyuan W, Torres Sandra, David L. Materials Letters,2005,59: 3120-3105.
    [23]Won Keun S, Ji Ho Y, Taek Seung L, Won Ho P. Polymer,2004,45:2959-2966.
    [24]Nasser A M, Barakat A B, Muzafar A, Kanjwal, Faheem A, Sheikh, Hak Y K. Polymer,2009,50:4389-4396.
    [25]王鸿博,王银利,陈燕,高秋瑾,王曦,高卫东.静电纺工艺参数对含银PA6纳米纤维直径的影响[J].材料导报,2009,23(12):77-80.
    [26]Deitzel J M, Kleinmeyer J, Harris D, BeckTan N C. Polymer,2001,42:261-272.
    [27]Kilic A, Oruc F, Demir A. Effects of polarity on electrospinning process[J]. Textile Reseach Journal,2008,6(78):532-539.
    [28]Xinhua Z, Kwangsok K, Dufei F, Shaofeng R, Benjamin S H, Benjamin C, Polymer,2002,43:4403-4412.
    [29]Thompson C J, Chase G G, Yarin A L, Reneker D H. Polymer,2007,48: 6913-6922
    [30]Jarusuwannapoom T, Hongrojjanawiwat W, Jitjaicham S, Wannatong L, Nithitanakul M, Pattamaprom C. Effect of solvents on electro-spinnability of polystyrene solutions and morphological appearance of resulting electrospun polystyrene fibers[J]. European Polymer Journal,2005,41:409-421.
    [31]Chase G G, Reneker D H. Nanofibers in filter media[J]. Fluid/Particle Separation Journal,2004,16:105-107.
    [32]Cheryl C L, Stephen J S, Nancy G. T, Bruce Chase D, John F. R. Controlling Surface Morphology of Electrospun Polystyrene Fibers:Effect of Humidity and Molecular Weight in the Electrospinning Process[J]. Macromolecules,2004,37: 573-578.
    [33]Schreuder-Gibson H, Gibson P, Senecal K, et al. Protective textile materials based on electrospun nanofibers[J]. Journal of advanced Materials,2002,34(3): 44~55
    [34]Ding B, Kim C, Kim H, Seo M, Park S. Fiber. Polym.2004,5:105-109.
    [35]Yoon K, Kim K, Wang X F, et al. High flux ultra filtration membranes based on electrospun nanofibrous PAN scaffolds and chitosan coating[J]. Polymer,2006, 47(7):2434-2441.
    [36]Zeng J, Xu X Y, Chen X S, et al. Biodegradable electrospun fibers for drug delivery[J]. J Control Release,2003,92(3):227~231.
    [37]Kim K, Luu Y K, Chang C, et al. Incorperation and controlled release of a hydrophilic antibiotic using poly(lactide-co-glycolide)based electrospun nanofibrous scaffolds[J]. J Control Release,2004,98(1):47-56.
    [38]Powell H M, Mitra S, Kniss D A, et al. Electrospun tubular scaffolds for vascular tissue engineering[C]. Sydney, Transactions-7th World Biomaterials Congress, 2004.1677.
    [39]Riboldi S A, Sampaolesi M, Neuenschwander P, et al. Electrospun degradable polyester urethane membranes:Potential scaffolds for skeletal muscle tissue engineering[J]. Biomaterials,2005,26(22):4606~4615.
    [40]Dubson A, Bar E. Improved vascular prosthesis and method for production thereof[P]. US Pat Appl, US326559.2001
    [41]Chu B, Haiao Bn S, Hadjiargyrou, et al. Cell storage and delivery[P]. US Pat Appl, US 953114.2003
    [42]Fang X, Rneker D H. DNA fibers by electrospinning[J]. J Macro Sci,1997,36(2): 169~173.
    [43]Hohman M M, Shin M, Rutledge G, et al. Electrospinning and electrically forced juts[J]. Phys Fluids,2001,13(8):2201~2220.
    [44]Silva S Y, Rueda, LC, Marquez G A, Smith D, et al. Double blind, randomized, placebo controlled clinical trial for the treatment of diabetic foot ulcers, using a nitric oxide releasing patch:PATHON[J]. TRIALS,2007,26(8):
    [45]Teye-Mensah R, Tomer V, Kataphinan W, et al. Erbiar modified electrospun titania nanofibers for selective infrared emitters[J]. J Phys Condens Matt,2004, 16(41):7557~7564.
    [46]王策,李振宇,杨清彪等.电纺丝制备带有塑料绝缘皮的纳米级铜导线[P].中国,CN 45103.2004.
    [47]Walter Raleigh. Letter from MR.raleigh on the review of his work on idiopathic dysentery[J]. The Lancet,1844,41:576-580.
    [48]Wilson L T. "Cloze" readability scores as indices of individual differences in comprehension and aptitude[J]. Journal of Applied Psychology,1957,41(1): 19-26.
    [49]Taylor G I, Daniel R K. Free Flap-composite tissue transfer by vascular anastomosis[J]. Au Stralian and New Zealand Journal Of Surgery,1973,43(1): 1-3.
    [50]Daniel R K, Taylor G I. Dlistant transfer of an island flap by microvascular anastomoses-clinical technique[J]. Plastic and Reconstructive Surgery,1973, 52(2):111-117.
    [51]Formhals A. US. Patent Specification.1934-1975504.
    [52]Spivak A F, Dzenis Y A, Reneker D H. A model of steady state jet in the electrospinning proeess[J]. Mechanies Research Communications,2000,27(1): 37-42.
    [53]Reneker D H, Yarin A L, Fong H, et al. Bending Instability of Electrically Charged Liquid Jets of Polymer Solutions in Electrospinning[J]. Journal of Applied Physies,2000,87(9):4531-4547.
    [54]Shin Y M, Hohman M M, Brener M P, et al. Electrospinning:A Whipping Fluid Jet Generates Submicron Polymer Fibers[J]. Applied Physics Letters,2001,78(8): 1149-1151.
    [55]RENEKER D H, CHEN I. Nanometer diameter fiber of polymer produced by electrospinning [J]. Nanotechnology,1996 (7):2162223
    [56]R. Jaeger, H. Schonherr and G. J. Vancso, Macromolecules,1996,29,7634-7636.
    [57]Zeleny J. Phys. Rev.1914,3:69.
    [58]Lu P, Ding B. Application of electrospun fibers[J]. Recent Pat Nanotechnology, 2008,2(3):169-182.
    [59]常敏,李从举.静电纺纳米纤维的应用[J].合成纤维工业,2007,30(4):50-52.
    [60]Koombhongse S, et al. J. Polym. Sci. Pt. B-Polym. Phys.,2001,39:2598.
    [61]Kokubo H, et al. Nanotechnology,2007,18:165604.
    [62]Ding B, et al. Nanotechnology Research:New Nanostructures, Nanotubes and Nanofibers, Nova Science Publishers, New York (2008),131.
    [63]Dror Y, et al. Small,2007,3:1064.
    [64]郑承旺.丙烯酸共聚物分散的应用[J].丙烯酸化工与应用,2001:2-10.
    [65]王月珍.丙烯酸型印染增稠剂的合成[J].丙烯酸化工与应用,2000:2-21.
    [66]刘培生.稀有金属材料与工程,2006,35(2):25-28.
    [67]Brunauer S, Emmett P H, Teller E. Adsorption of gases in multi-molecular layers[J]. J.Am.Chem.Soc,1938,60:309-312.
    [68]陈金妹,张健.ASAP2020比表面积及空隙分析仪的使用[J].分析仪器,2009,3:61-64.
    [69]GB/T 19587-2004本标准非等效采用ISO 9277:1995《气体吸附BET法测量固态物质的比表面》
    [70]于伟东,储才元.纺织物理[M].上海:东华大学出版社,2002.
    [71]Pirjo H, Ali H. Parameter study of electrospinning of polyamide-6[J]. European Polymer Journal,2008,44:3067-3079.
    [72]Lin K, Chua K N, Christopherson G T, Lim S, Mao H Q. Polymer,2007,48: 6384-6394.
    [73]Doshi J, Reneker D H. J. Electros.,1995,35:151-160.
    [74]Deng R J, Liu Y, Ding Y M, Xi P C, Luo L, Yang W M. J. Appl. Polym. Sci., 2009,114:166-175.
    [75]Zheng M H, Zhang Y Z, Kotaki M, et al. A reviewonp on polymer nanofibers by electrospinning and their applications in nanocomposites[J]. Composites Science and Technology,2003,63(11):223-2253.
    [76]陶庭先,吴之传,汪学謇等.聚乙烯醇纤维及金属配合物的合成和表征[J].高分子学报,2006,3:387-390.
    [77]杨金华,刘白玲,聚乙烯醇与Cu2+的配位反应及其对生物降解性影响的研究[J].高分子材料科学与工程,1997,13(5):40-45.
    [78]Bumsu K, Hyun P, Sung-Hwan L, Wolfgang M S. Poly(acrylic acid) nanofibers by electrospinning[J]. Materials Letters,2005,59:829-832.
    [79]李妮,覃小红,王善元.溶液性质对静电纺纤维形态的影响[J].纺织学报,2008,29(4):1-4.
    [80]Ganan-Calvo M A. The surface charge in electrospraying:its nature and it universal scaling laws[J]. Journal of Aerosol Science,1999,30(7):863-872.
    [81]Casper D J, Sklyarov A, Hardcastle S, et al. Bonding of the iron Lewis acid-THF adduct CpFe(CO)(2)center dot THF to silica gel and its implication for cyclopropanation reactions[J]. Inorganica Chimica Acta,2006,359(10): 3129-3138.
    [82]Bognitzki, M; Becker, M; Graeser, M, et al. Preparation of sub-micrometer copper fibers via electrospinning[J]. Advanced Materials,2006,18(18): 2384-2386.
    [83]De V S, Van C T, Nelvig A, et al. The effect of temperature and humidity on electrospinning[J]. J Mater Sci,2009,44(5):1357-1362.
    [84]马建中,储芸等.表面活性剂在纳米材料领域中的应用[J].日用化学工业,2004,34(6):374-376.
    [85]Taka T, Laakso J, Levon K. Conductivity and structure of DBSA-protonated polyaniline[J]. Solid State Communications,1994,92(5):393-396.
    [86]毋伟,陈建峰等.聚合物接枝改性超细二氧化硅表面状况及形成机理[J].北京化工大学学报,2003,30(2):1-4.
    [87]Hong-Ryun J, Dong-Hyuk J, Wan-Jin L, Xiangwu Z, Richard K. Electrospun hydrophilic fumed silica/polyacrylonitrile nanofiber-based composite electrolyte membranes[J]. Electrochimica Acta,2009,54:3630-3637.
    [88]Yanhuai D, Ping Z, Yong J, Fu X, Jiuren Y, Yongde Z. Mechanical properties of nylon-6/SiO2 nanofibers prepared by electrospinning[J]. Materials Letters,2009, 63:34-36.
    [89]Raghavan P, Zhao X H, Kim J K, et al. Ionic conductivity and electrochemical properties of nanocomposite polymer electrolytes based on electrospun poly(vinylidene fluoride-co-hexafluoropropylene) with nano-sized ceramic fillers[J].2008,54(2):228-234.
    [90]Huang Z, Zhang Y, Kotaki M, Ramakrishna S. Compos. Sci. Technol,2003,63: 2223.
    [91]Morita M, Noborio H, Yoshimoto N, Ishikawa M. Solid State Ionics,2006,177: 715.
    [93]Reneker D H. Polymer Fibers Made by Electrospinning[A]. In:International Conference for Inauguration of SOTSEA[C]. South Korea,2002,10-12.
    [94]Taylor G I. Proc.R Soc.Lond A,1964,280:383.
    [95]王新威.电纺丝制备高聚物纳米纤维[D].东华大学,2003:64-65.
    [96]He J H, Wane Y Q. Allometric scaling for voltage and current in electrospinning[J]. Polymer,2004,45(19):6731-6734.
    [97]Shin Y M, Hohmna M M, Brenner M P, Rutledge G C, Polymer.2001,42:9955.
    [98]Shin M, Hohmna M M, Brenner M P, Rutledge G C. Applied Physies Letters, 2001,78(8):1149.
    [99]Moses M H, Miehael S, Gregoy R, Michael P B. Physies of fluids,2001,13(8): 2201.
    [100]Weiwei Z, Meifang Z, Wen Y, Hao Y, Yanmo C, Yu Z. Experimental Study on Relationship Between Jet Instability and Formation of Beaded Fibers During Electrospinning[J]. Polymer Engineering and Science,2005:704-709.
    [101]Schaffer E, Thurn-Albrecht T, Russell T P, Steiner U. Electrohydrodynamic instabilities in polymer films[J]. Europhys Lett,2001,53 (4):518-524.
    [102]金晗辉,王军锋,王泽等.静电喷雾研究应用综述[J].江苏理工大学学报,1999,20(3):16-19.
    [103]周浩生,冼福生等.荷电射流雾化研究[J].江苏理工大学学报,1995, 16(4):7.
    [104]胡春波,王坤,曾卓雄等.液滴破碎模糊计算研究[J].西北工业大学学报,2003,21(5):536-539.
    [105]罗惕乾,王晓英,郑捷庆,王贞涛,毛惠敏.气流中荷电液滴破碎数值模拟[J].排灌机械,2007,25(2).
    [106]曹建明.喷雾学[M].北京:机械工业出版社,2005:17-20.
    [107]Law S E. Agricultural electrostatic spray application:a eview of significant research and development during the 20 the century[J]. Journal of Electrostatics, 2001,51(2):25-42.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700