环保性静电纺醋酸纤维素的制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以二醋酸纤维素(CA)为原料,选取不同种类的单一溶剂或者多种溶剂的混合液,进行静电纺丝试验。经过初步的探索研究,找出了环保有效的溶剂体系,并成功地用静电纺丝方法制备了二醋酸纤维素纳米纤维。而后,进一步对不同溶剂体系下制备的纳米纤维的外观、细度、内部结构和性能进行了系统地分析,为二醋片静电纺纳米纤维应用的开发与研究等提供了试验依据。
     本文研究得到的两种有效的溶剂体系分别为:一是丙酮溶液,二是丙酮和二甲基乙酰胺(DMAC)以质量比为2:1的混合溶液。针对两种溶剂体系下制备的静电纺CA纳米纤维膜,分别运用扫描电子显微镜(SEM)观察其形貌和细度,分析制备工艺参数,主要是纺丝液的浓度、纺丝电压和接收距离,三者分别对纤维形态和细度的影响。研究得出的结论:1)各纺丝参数对两种溶剂体系下制得的纳米纤维细度的影响规律一致,即纤维的直径均随溶液浓度的增加而增大,随纺丝电压的增大而减小,随接收距离的增大而减小;2)以丙酮为溶剂和以混合溶液为溶剂时,制备纤维细度最小的工艺条件相同,均为纺丝液浓度为8%、纺丝电压25kV、纺丝间距25cm;3)三参数对纤维细度的影响强弱顺序均依次为溶液浓度、纺丝电压、接收距离。
     为进一步了解两种纳米纤维的内部结构的变化,以及纺丝加工参数对内部的影响,使用红外光谱和X射线衍射方法进行测试并分析。观察发现两种纤维大分子链上的-OH基团与-CH3数量均比原CA明显减少,-C-H与-C=C-键伸缩振动强度均有所减弱;两种静电纺纳米纤维的结晶度、晶粒尺寸相比原CA均有不同程度降低。以丙酮为溶剂时,不同纺丝参数下制得的纤维内部结构差异较小,其中溶液浓度的影响较显著。
     根据不同溶剂体系下纺得纤维内部结构的变化情况,进一步研究了其热性能方面的差异。总体来看,两纤维的热稳定性均比原二醋片有所减弱,其中结晶度小的纤维,即混合溶剂纺得纤维,其热稳定性相对差些。这一结论主要与纤维内部结构的差异有关。
     通过进一步观察扫描电镜图,对比分析了两种纤维的形态差异以及各自纺丝过程中的特殊现象,发现使用混合溶剂时,纺得纤维的细度较小,直径均匀度较好。这一现象,充分说明纤维的直径与形态很大程度上,与溶剂的挥发性有关。
     通过试验总结,得出较为理想的溶剂体系是质量比为2:1的丙酮和DMAC混合液。
Cellulose Acetate (CA), with different solvents, was used to do the trial experiments of producing nanofibers by electrospinning. After the preliminary researches, two relatively environmentally friendly solvent systems were found, and the CA electrospun nanofibers were successfully made. Then, the morphology, the diameters and the inner structures of electrospun fibers with different solvent systems as well as its thermal properties were analyzed theoretically. These basic studies can be the experimental references for further explorations about the concrete applications of CA nanofibers and the fiber mats.
     There were two proper and useful solvent systems found in this experiment, one was the single acetone solution; the other was the mixed solution of acetone and DMAC with the weight ratio 2:1. For the two solvent systems, the morphology and the diameter of the nanofibers electrospun with different processing parameters were observed through scanning electron microscopy (SEM), and then the relationships between the diameters and these parameters were analyzed systematically.
     The results of the research are as following. Fisrt, with the two solvent systems, the influencing phenomenon of all the processing parameters on the diameters of electrospun fibers were the same. The diameters would increase with increasing the concentration, would decrease while the voltage and the distance between the needle and the collecter raised, respectively. Second, the best combination of the three factors for either solvent system to produce the smallest fibers was that the concentration was 8%, the voltage was 25kV, and the distance was 25cm. Then, the influencing intensity of the concentration was the strongest, followed by the voltage and the last one was distance.
     In order to know well the changes happened in the inner structures of the electrospun fibers, and to analyze the influence of the three important factors on the inner structure, the Infrared Spectrum and the X-ray Diffraction were used. By analyzing the results of the Infrared Spectrum, the changes on the binding groups and the bonds were found in the two electrospun fibers, especially the quantity of the -OH and the -CH3 binding groups, the vibration intensity of the-C-H and the -C=C- bonds. Through the results of the X-ray Diffraction, comparing with the original acetate, the degrees of crystallinity and the crystallite sizes of the two eletrospun fibers decreased differently. With acetone as the only solvent, there were only a few differences among the CA fibers electrospun under different parameters in the inner structure, and the impact of the concentration was relatively distinct.
     According to the changes in the inner structures of the spun fibers and the CA, the differences in the property among them were researched. Generally speaking, the thermal properties of the fibers became worse than CA, the thermal property of the fibers electrospun from the mixed solvent system with lower crystallinity decreased more. These results had something to do with the changes in the inner structures.
     By observing and comparing the scanning pictures, the differences in morphology and the diameters between the two fibers, the special phenomena were found and then systematically analyzed. The conclusion was the diameters of fibers electrospun from the mixed solvent system were most the same and more even. To a great extent, this phenomenon was in relation to the volatility of the solvents.
     After all the experiments, the more useful and efficient solvent system was the mixed Acetone and DMAC with the weight ratio2:1.
引文
[1]梁立红.纳米材料特点及研究动态[J].吉林工学院学报,2000,21(3):30-33.
    [2]杨玉芬,陈清如.纳米材料的基本特征与纳米科技的发展[J].2002,8(3):22-27.
    [3]安林红,王跃.纳米纤维技术的开发及应用[J].当代石油石化,2002,10(1):41-45.
    [4]赵婷婷,张玉梅等.纳米纤维的技术进展[J].产业用纺织品,2003,21(10):38-42.
    [5]马晓军.静电纺丝制备纳米级纤维的研究[J].纤维复合材料,2005,(2):16-18.
    [6]Laurencin C.T., Ambrosio A.M.A., Borden M.D., Cooper J.A.. Tissue Engineering:Orthopedic Applications. Annual Review of Biomedical Engineering.1999, (1):19-46.
    [7]Peter P. Tsai,柯勤飞等.纳米纤维在非织造材料中应用的现状与未来[J].产业用纺织品,2005,(1):36-40.
    [8]Gibson P., Schreuder-Gibson H., Rivin D.. Transport Properties of Porous Membranes Based on Electrospun Nanofibers[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2001,187:469-481.
    [9]Ondarcuhu T., Joachim C.. Drawing a single nanofiber over hundreds of microns Europhys Let[J]. 1998,42(2):215-220.
    [10]张国莲,陈廷.纳米纤维的研究现状及其应用[J].纺织导报,2005,(1):12-18.
    [11]王兴雪,王海涛,钟伟等.静电纺丝纳米纤维的方法与应用现状[J].非织造布,2007,15(2):14-20.
    [12]覃小红,王善元.静电纺丝纳米纤维的工艺原理、现状及应用前景[J].高科技纤维与应用,2004,29(2):28-31.
    [13]杨恩龙,王善元,李妮,赵丛涛.静电纺丝技术及其研究发展[J].产业用纺织品,2007,(8):7-10.
    [14]鲍杨波.静电纺丝法制备纳米纤维的研究进展[J].中国纤检,2008,(01):52-53.
    [15]Formhals A., US patenet 1 975 504[P],1934.
    [16]Formhals A., US patenet 2 160 962[P],1934.
    [17]Formhals A., US patenet 2 323 025[P],1934.
    [18]Formhals A., US patenet 2 349 950[P],1934.
    [19]Simons H. L., US Pat 3 280 229[P],1966.
    [20]Srinivasan G, Reneker D.H.. Structure and morphology of small diameter electrospun aramid fibers[J]. Polymer International,1995,36(2):195-201.
    [21]Doshi J., Reneker D.H.. Electrospinning Process and Applications of Electrospun Fibers[J]. Journal of Electrostatics,1995,35(2-3):151-160.
    [22]Reneker D.H., Chun Iksoo. Nanometre diameter fibres of polymer, produced by electrospinning[J].Nanotechnology,1996,7(3):216-223.
    [23]Fong H., Chun I., Reneker D.H.. Beaded nanofibers formed during electrospinning[J]. Polymer, 1999,40(16):4585-4592.
    [24]Spivak A.F., Dzenis Y.A., Reneker D.H.. A model of steady state jet in the electrospinning process[J]. Mechanics Research Communications,2000,27(1):37-42.
    [25]Reneker D.H., Yarin A.L., Fong H., Koombhongse S.. Bending instability of electrically charged liquid jets of polymer solutions in electrospinning[J]. Journal of Applied Physics,2000,87(9): 4531-4547.
    [26]Deitzel J.M., Kleinmeyer J., Harris D., et al. The effect of processing variables on the morphology of electrospun nanofibers and textiles[J]. Polymer,2001,42(1):261-272.
    [27]Demir M.., Yilgor I., Yilgor E., Erman B.. Electrospinning of polyurethane fibers[J]. Polymer, 2002,43(11):3303-3309.
    [28]Pankaj G., Casey E., et al. Electrospinning of linear homopolymers of poly(methyl methacrylate):exploring relationships between fiber formation, viscosity, molecular weight and concentration in a good solvent[J]. Polymer,2005,46(13):4799-4810.
    [29]Jacobs V., Anandjiwala Rajesh D., Maaza M.. The Influence of Electrospinning Parameters on the Structural Morphology and Diameter of Electrospun Nanofibers[J]. Journal of Applied Polymer Science,2010,115(5):3130-3136.
    [30]Wang C., Zhang W., Huang Z.H., et al. Effect of concentration, voltage, take-over distance and diameter of pinhead on precursory poly(phenylene vinylene) electrospinning[J]. Pigment&Resin Technology,2006,35(5):278-283.
    [34]Thompson C.J., Chase G.G., Yarin A.L., Reneker, D.H. Effects of parameters on nanofiber diameter determined from electrospinning model[J]. Polymer,2007,48(23):6913-6922.
    [32]Tan S.H., Inai R., Kotaki M., et al. Systematic parameter study for ultra-fine fiber fabrication via electrospinning process[J]. Polymer,2005,46(16):6128-6134.
    [33]Son W.K., Youk J.H., Lee T.S., et al. The effects of solution properties and polyelectrolyte on electrospinning of ultrafine poly(ethylene oxide) fibers[J]. Polymer,2004,45(9):2959-2966.
    [34]Qin X.H., Wan Y.Q., He J.H., et al. Effect of LiCl on electrospinning of PAN polymer solution: theoretical analysis and experimental verification[J]. Polymer,2004,45(18):6409-6413.
    [35]李妮,覃小红,王善元.溶液性质对静电纺纤维形态的影响[J].纺织学报,2008,29(4):14.
    [36]杨恩龙,覃小红,王善元.氯化锂对静电纺聚丙烯晴纳米纤维结构的影响[J].纺织学报,2007,28(7):1-8.
    [37]Theron S.A., Zussman E., Yarin A.L.. Experimental investigation of the governing parameters in the electrospinning of polymer solutions[J]. Polymer,2004,45(6):3130-3136.
    [38]Sachiko S., Milind G., et al. Regeneration of Bombyx mori Silk by electrospinning -part 1: processing parameters and geometric properties [J]. Polymer,2003, (44):5721-5727.
    [39]Yang Y, Jia Z.D., et al. Experimental Investigation of the Governing Parameters in the Electrospinning of Polyethylene Oxide Solution[J]. IEEE Transactions on Dielectrics and Electrical Insulation,2006,13(3):580-585.
    [40]Heikkil P., Harlin A.. Parameter study of electrospinning of polyamide-6[J]. European Polymer Journal,2008,44(10):3067-3079.
    [41]De Vrieze S., Van Camp T., Nelvig A., et al. The effect of temperature and humidity on electrospinning[J]. Journal of Materials Science,2009,44 (5):1357-1362.
    [42]Tripatanasuwan S., Zhong Z.X., Reneker D.H.. Effect of evaporation and solidification of the charged jet in electrospinning of poly(ethylene oxide) aqueous solution[J]. Polymer,2007, 48(19):5742-5746.
    [43]Macossay J., Marruffo A., Rincon R., et al. Effect of needle diameter on nanofiber diameter and thermal properties of electrospun poly(methyl methacrylate)[J]. Polymers for Advanced Technologies,2007,18(3):180-183.
    [44]Tan S.H., Inai R., Kotaki M,. Ramakrishna S.. Systematic parameter study for ultra-fine fiber fabrication via electrospinning process[J]. Polymer,2005,46:6128-6134.
    [45]Han T., Reneker D.H., Yarin A.L.. Buckling of jets in electrospinning[J]. Polymer,2007,48(20): 6064-6076.
    [46]Qin X.H., Wang S.Y., Sandra T., et al. Effect of LiCl on the stability length of electrospinning jet by PAN polymer solution[J]. Materials Letters,2005,59 (24-25):3102-3105.
    [47]辛东坡,卢文芸,张健宗,周亮,覃小红.氯化锂对静电纺PVA溶液稳定段射流的影响[J]. 纺织学报,2009,30(9):1-4.
    [48]Huang Z.M., Zhang Y.Z., et al. A review on polymer nanofibers by electrospinning and their applications in nanocomposites[J]. Composites Science and Technology,2003,63(15): 2223-2253.
    [49]张锡玮,夏禾,徐纪刚等.静电纺丝法纺制纳米级聚丙烯腈纤维毡[J].塑料,2000,29(2):16-17.
    [50]Xie J.B., Hsieh Y.L.. Ultra-high surface fibrous membranes from electrospinning of natural proteins:Casein and lipase enzyme[J]. Journal of Materials Science,2003,38(10):2125-2133.
    [51]Kim S.H., Nam Y.S., Lee T.S., et al. Silk Fibroin Nanofiber. Electrospinning, Properties, and Structure[J]. Polymer Journal,2003,35(2):185-190.
    [52]王培伟,陈宗刚,王红声,莫秀梅等.静电纺壳聚糖/胶原蛋白复合纳米纤维的细胞相容性[J].中国组织工程研究与临床康复,2008,12(1):5-9.
    [53]Wu Y.F., Zhou Z.Y., Feng Y.Y., et al. Nanotechnology and Its Prospect[J]. Bulletin of Science and Technology,2003,19(1):42-46.
    [54]钟智丽,王训该.纳米纤维的应用前景[J].纺织学报,2006,27(1):107-110.
    [55]陈桉,朱宏伟等.平衡压力对碳纳米材料储氢的影响[J].清华大学学报:自然科学版,2002,42(5):659-661.
    [56]Gibson P., Schreuder H., et al. Transport properties of porous membranes based on eletrospun nanofibers. Colloids and Surface A:Physicochemical and Engineering Aspects,2001, (188): 469-481.
    [57]Doshi J.. Nanofiber-based nonwoven composites:properties and applications[J]. Nonwovens World,2001,4 (10):64-68.
    [58]覃小红,李妮,杨恩龙,高亚英,王善元.静电纺纳米纤维毡在新型高效过滤器上使用的优势与前景[J].产业纺织品,2007,(4):30-34.
    [59]覃小红,王善元.静电纺纳米纤维的过滤机理及性能[J].东华大学学报(自然科学版),2007,33(1):52-56.
    [60]辛东坡,覃小红,王善元.静电纺纳米纤维非织造布的热湿传递性能[J].东华大学学报(自然科学版),2009,35(2):148-152.
    [61]Hedi Schreuder-Gibson, Phillip Gibson, Kris Senecal, et al. Protectivetextile materials based on electrospun nanofibers. Journal of Advanced Materials.2002,34:44-55.
    [62]Schreuder-Gibson Heidi 1, Gibson Phillip. Protective textile materials based on electrospun nanofibers[J]. Journal of Advanced Materials,2002,34(3):44-55.
    [63]Kenawy E.R., Bowlin GL., Mansfield K., et al. Release of Tetracycline Hydrochloride from Electrospun Poly(ethylene2covinylacetate), Poly(lacticacid), and a Blend. Journal of Controlled Release.2002 81 57.
    [64]Sill Travis J., von Recum Horst A.. Electrospinning:Applications in drug delivery and tissue engineering[J]. Biomaterials,2008,29(13):1989-2006.
    [65]James Velema, David Kaplan. Biopolymer-based Biomaterials as Scaffolds for Tissue Engineering[J], Adv Biochem Engin/Biotechnol.2006,102:187-238.
    [66]Yoshimoto H., Shin Y. M., Terai H.. A biodegradable nanofiber scaffold by electrospinning and potential for bone tissue engineering. Biomaterials,2002,24(12):2077-2082.
    [67]C.Y. Xu, R. Inai, M.Kotaki. Aligned biodegradable nanofibrous structure:a potential scaffold for blood vessel engineering[J]. Biomaterials,2004, (25):877-886.
    [68]尹桂波.静电纺纳米纤维支架在组织工程中的应用进展[J].南通纺织职业技术学院学报(综合版),2007,7(2):15-18.
    [69]马孝田.醋酸纤维的制造[J].广东化纤,1994,(2):27-34.
    [70]马孝田,邹玉玲.醋酸纤维特性与其加工应用[J].广东化纤,1994,(4):42-48.
    [71]金立国.醋酸纤维工业的现状和产品开发[J].合成纤维,2002,31(5):19-20.
    [72]魏春学,杜增举,张会荣.醋酸纤维工业形势分析及发展建议[J].山东纺织经济,2002,(5):33-35.
    [73]王石磊,张建波,张林.醋酸纤维在纺织中的应用[J].染整技术,2009,31(9):7-10.
    [74]梅洁,陈家楠,欧义芳.醋酸纤维的现状与发展趋势[J].纤维素科学与技术,1999,7(4):56-62.
    [75]马俊志,葛红,穆晓梅.醋酸纤维工业的发展现状[J].上海纺织科技,2006,34(9):15-17.
    [76]门爽,王文俊,邵自强.均相与非均相法制备醋酸纤维素的性质比较[J].高分子材料科学与工程,2008,24(8):74-77.
    [77]刘登峰,付登洲,杨志远.醋酸纤维素均质膜的制备及性能研究[J].化工新型材料,2008,36(2):39-41.
    [78]李国祥,艾萍,周玲玲,袁黎明.醋酸纤维素膜的制备及对染料的分离研究[J].化学研究,2008,19(1):26-28.
    [79]李国祥,桑秋章,袁黎明.醋酸纤维素非对称膜的制备及对酚类污染物的分离研究[J].湖北民族学院学报(自然科学版),2007,25(4):438-441.
    [80]Piotr Kulpinski. Cellulose Nanofibers Prepared by the N-Methylmorpholine-N-oxide Method, Journal of Applied Polymer Science,2005,98(4):1855-1859.
    [81]Seong O.H., Ji H.Y., et al. Electrospinning of cellulose acetate nanofibers using a mixed solvent of acetic acid/water:Effects of solvent composition on the fiber diameter, Materials Letters,2008, 62(4-5):759-762.
    [82]Son W.K., Youk J.H, et al. Electrospinning of Ultrafine Cellulose Acetate Fibers:Studies of a New Solvent System and Deacetylation of Ultrafine Cellulose Acetate Fibers, Journal of Polymer Science:Part B:Polymer Physics,2004,42(1):5-11.
    [83]Santi Tungprapa, Tanarinthorn Puangparn, et al. Electrospun cellulose acetate fibers:effect of solvent system on morphology and fiber diameter, Cellulose,2007,14:563-575.
    [84]Liu H.Q., Hsieh Y. L.. Ultrafine Fibrous Cellulose Membranes from Electrospinning of Cellulose Acetate, Journal of Polymer Science:Part B:Polymer Physics,2002,40(18):2119-2129.
    [85]李增富.静电纺丝法制备醋酸纤维素纳米纤维[J].吉林化工学院学报,2008,25(4):19-22.
    [86]邱芯薇,潘志娟.天然高聚物的静电纺丝技术及应用[J].丝绸,2005,(11):39-43.
    [87]王新威,胡祖明,潘婉莲,刘兆峰.电纺丝制备高聚物纳米纤维[J].东华大学学报(自然科学版),2005,31(1):115-119.
    [88]肖长发.电子纺丝成形及纤维形态结构研究[J].高科技纤维与应用,2003,28(1):10-14.
    [89]何建新,唐予远,王善元.醋酸纤维素的结晶结构与热性能[J].纺织学报,2008,29(10):12-16.
    [90]邱芯薇,潘志娟,孙道权,张林春.静电纺丝素纤维的微细结构[J].纺织学报,2006,27(06):14.
    [91]Liu Haiqing, Hsieh You-Lo. Ultrafine fibrous cellulose membranes from electrospinning of cellulose acetate[J]. Journal of polymer Science, part B:Polymer Physics,2002,40(18): 2119-2129.
    [92]张静,王善元.二醋酯纤维的结构特性[J].东华大学学报(自然科学版),2005,31(03):94-96.
    [93]唐爱民,陈港,武书彬,杨治中.二醋酸纤维素丙酮溶液的流变性质研究[J].2001,9(3):11-18.
    [94]山下羲裕.静电纺丝制造纳米纤维的方法[J].合成纤维,2008,(2):50-52.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700