PEI/PVA纳米纤维膜及含纳米金复合纳米纤维的制备、表征及其应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米纤维材料作为新兴的纳米材料是纳米科学领域最前沿的研究领域,而高分子纳米纤维又是其中一个重要的研究方向之一,尤其是制备无机/有机高分子杂化材料因其具有的具备主体高分子和客体引入物双重性质更是得到了科学工作者广泛的关注,将在未来有着广泛的应用前景。因此,基于纳米纤维膜及含金属纳米颗粒复合纳米纤维膜材料的基本性能测试和研究成为目前开发复合纳米纤维材料最为迫切解决的问题之一。
     本文作者利用静电纺丝技术制备得到了含有丰富氨基的直径为490±83 nm的聚乙烯亚胺(polyethyleneimine, PEI)/聚乙烯醇(polyvinyl alcohol, PVA)纳米纤维,并以甲基蓝为模式污染物探讨了其在环境修复领域的应用。基于PEI/PVA纳米纤维膜为反应器制备了含直径为11.8±3.3 nm纳米金颗粒的复合纳米纤维膜,并对其热力学、机械性能及催化性能进行了测试和分析。主要工作包括以下4个部分:
     第一,水稳定性良好PEI/PVA纳米纤维膜的制备
     通过对影响静电纺丝工艺条件的因素如流速、电压、接收距离和浓度进行优化,通过扫描电镜观察得到了具有良好纤维形貌的纳米纤维。然后探讨了戊二醛溶液、热交联和戊二醛蒸汽交联等三种交联方法,筛选出可以制备良好纤维形貌的的戊二醛蒸汽交联方法。并用扫描电镜和傅里叶红外光谱表征其纤维物理化学性质的变化,并对交联前后纤维膜的机械性能做了测试。
     第二,水稳定性良好的PEI/PVA纳米纤维膜在环境修复中的应用
     以甲基蓝为模式污染物,研究PEI/PVA纳米纤维膜对甲基蓝的脱色效果。研究了PEI/PVA纳米纤维膜对甲基蓝的脱色效果,及PEI/PVA纳米纤维膜脱色的驱动力。并通过建立吸附等温线模型和吸附动力学方程纤维膜吸附甲基蓝的机理进行了初步的探讨。
     第三,含纳米金复合纳米纤维膜的制备
     以水稳定性良好的PEI/PVA纳米纤维膜为反应器。首先将纤维膜浸入氯金酸溶液中,使氯金酸根离子和PEI上的氨基通过静电相互作用结合到纤维膜上。然后通过原位还原的方法,制备得到含有纳米金颗粒直径为11.8±3.3 nm的复合纳米纤维膜。采用扫描电镜,透射电镜,X-射线能量分散谱,傅里叶红外光谱分析和热重分析等手段进行含纳米金复合纳米纤维的形貌、组分的表征。
     第四,含纳米金复合纤维膜催化性能测试
     将含金纳米纤维膜和含金流延膜在相同条件下进行催化性能的测试,研究表明:单位时间内含金纳米纤维的催化性能要远远高于含金流延膜。并且这种含金纳米复合纤维也展示出了良好可重复利用性和可回收性,3次催化实验仍然可以达到和第一次几乎完全一致的催化效果。另外,我们也对纤维膜的热力学性能进行了研究,在不同温度处理下,含金纤维膜形貌没有发生变化,纳米金也没有发生聚集。而且催化性能也和未做处理前保持一致,具有良好的热稳定性。
The research of nanofibers is one of the most forefront research fields in nano science and technology, and research of macromolecule polymer nanofiber materials are also a important direction. Especially, the preparation of inorganic/organic polymer hybrid nanomaterials with the dual characteristics of the host polymer and guest incorporated object are receiving immense interest, they have broad applications in the future. Therefore, the basic research of nanofibrous-based membranes and metal nanoparticle-incorporated nanofibrous membrane has become necessary.
     In this present article, the polyethyleneine (PEI)/polyvinyl alcohol (PVA) nanofibers with a diameter of 490±83 nm were prepared using electrospinning techniques. And we select methyl blue, a common dye in the print and textile industry, as a model dye to investigate the water-stable nanofibrous membranes for environmental remediation applications. Based on the PEI/PVA nanofibers as a nanoreactor, we also fabricated the gold nanoparticle (AuNP)-containing nanofibrous membranes using in-situ reduction method for catalysis applications. The main content of this thesis include four parts:
     In the first section, we fabricated PEI/PVA nanofibers by electrospinning PEI and PVA mixture solution. The influence of the processing parameters such as flow rate, collection distance, voltage, and the polymer concentration on the morphology of the nanofibers was systematically investigated. In addition, different crosslinking methods including glutaradehyde solution, heat treatment and glutaradehyde vapor were employed to render the PEI/PVA nanofibrous membranes water stable. The formed PEI/PVA nanofibers with a smooth and uniform morphology before and after crosslinking were characterized using scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, and mechanical property testing.
     In the second section, the water stable PEI/PVA nanofibrous membrane was used for environmental remediation applications. We select methyl blue as a model contaminant to investigate the decoloration efficiency of the water stable PEI/PVA nanofibrous membranes, and preliminarily investigate the driving forces of the nanofibrous membranes to methyl blue. And the adsorption kinetics models and isotherms equations were established.
     The third section describes the fabrication of AuNP-incorporated composite nanofibrous membranes. The AuNPs with a diameter of 11.8±3.3 nm were synthesized and immobilized into the electrospun PEI/PVA nanofibrous membranes through in-situ reduction of the AuCl4- ions complexed with the water-stable PEI/PVA nanofibrous membranes. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), Fourier transform infrared (FTIR) spectroscopy, and thermal gravimetric analysis (TGA) were utilized to characterize the morphology and composition of the AuNP-containing nanofibers.
     In the fourth section, AuNP-containing nanofibrous membranes were used for catalysis applications. We investigated the catalysis activity of AuNP-containing nanofibrous membranes and cast films under the same conditions, the catalytic activity of the formed AuNP-containing hybrid nanofibrous mats was evaluated via the transformation of 4-nitrophenol to 4-aminophenol. It is demonstrated that the catalysis activity of AuNP-containing nanofibrous membranes is higher than the cast film. And the formed AuNP-immobilized PEI/PVA nanofibrous membranes can be easily handled and reused for at least 3 times with similar catalytic performance. In addition, we also investigate the effect of temperature on the catalytic activity of the AuNP containing composite nanofibrous membranes. Results show that the morphology and catalytic performance of the AuNP containing composite nanofibrous membranes did not change, the AuNP do not show aggregation after heat treatment at different temperatures. The AuNP-containing composite nanofibrous membranes have satisfactory thermal stability at different temperatures (80℃-150℃)
引文
1. Formo, E., et al., Functionalization of electrospun TiO2 nanofibers with Pt nanoparticles and nanowires for catalytic applications. Nano Letters,2008.8(2):p.668-672.
    2. Reneker, D.H. and A.L. Yarin, Electrospinning jets and polymer nanofibers. Polymer,2008. 49(10):p.2387-2425.
    3. Yoon, K., B.S. Hsiao, and B. Chu, Functional nanofibers for environmental applications. Journal of Materials Chemistry,2008.18(44):p.5326-5334.
    4. Doshi, J. and D.H. Reneker, ELECTROSPINNING PROCESS AND APPLICATIONS OF ELECTROSPUN FIBERS. Journal of Electrostatics,1995.35(2-3):p.151-160.
    5. Li, W.J., et al., Electrospun nanofibrous structure:A novel scaffold for tissue engineering. Journal of Biomedical Materials Research,2002.60(4):p.613-621.
    6. Huang, Z.M., et al., A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Composites Science and Technology,2003.63(15):p.2223-2253.
    7. Greiner, A. and J.H. Wendorff, Electrospinning:A fascinating method for the preparation of ultrathin fibres. Angewandte Chemie-International Edition,2007.46(30):p.5670-5703.
    8. Pham, Q.P., U. Sharma, and A.G. Mikos, Electrospinning of polymeric nanofibers for tissue engineering applications:A review. Tissue Engineering,2006.12(5):p.1197-1211.
    9. Burger, C., B.S. Hsiao, and B. Chu, Nanofibrous materials and their applications. Annual Review of Materials Research,2006.36:p.333-368.
    10. Xiao, S.L., et al., Immobilization of zerovalent iron nanoparticles into electrospun polymer nanofibers:synthesis, characterization, and potential environmental applications. Journal of Physical Chemistry C,2009.113(42):p.18062-18068.
    11. Barnes, C.P., et al., Nanofiber technology:Designing the next generation of tissue engineering scaffolds. Advanced Drug Delivery Reviews,2007.59(14):p.1413-1433.
    12. Daniel, M.C. and D. Astruc, Gold nanoparticles:Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chemical Reviews,2004.104:p.293-346.
    13. Sun, Y.G. and Y.N. Xia, Shape-controlled synthesis of gold and silver nanoparticles. Science, 2002.298(5601):p.2176-2179.
    14. Lam, D.M.K. and B.W. Rossiter, Chromoskedasic paiting. Scientific American,1991.265(5): p.48-&.
    15. Nicewarner-Pena, S.R., et al., Submicrometer metallic barcodes. Science,2001.294(5540):p. 137-141.
    16. Lewis, R.V., Spider silk:Ancient ideas for new biomaterials. Chemical Reviews,2006.106(9): p.3762-3774.
    17. Shi, X.G., et al., Dendrimer-entrapped gold nanoparticles as a platform for cancer-cell targeting and Imaging. Small,2007.3:p.1245-1252.
    18. Maier, S.A., et al., Plasmonics-A route to nanoscale optical devices. Advanced Materials, 2001.13(19):p.1501-1505.
    19. Dai, J.H. and M.L. Bruening, Catalytic nanoparticles formed by reduction of metal ions in multilayered poly electrolyte films. Nano Letters,2002.2(5):p.497-501.
    20. Manna, A., et al., Synthesis of dendrimer-passivated noble metal nanoparticles in a polar medium:Comparison of size between silver and gold particles. Chemistry of Materials,2001. 13(5):p.1674-1681.
    21. Note, C., S. Kosmella, and J. Koetz, Poly(ethyleneimine) as reducing and stabilizing agent for the formation of gold nanoparticles in w/o microemulsions. Colloids and Surfaces a-Physicochemical and Engineering Aspects,2006.290(1-3):p.150-156.
    22. Khanna, P.K., et al., Synthesis and characterization of Ag/PVA nanocomposite by chemical reduction method. Materials Chemistry and Physics,2005.93(1):p.117-121.
    23. Dong, H., et al., Synthesis and assembly of metal nanoparticles on electrospun poly(4-vinylpyridine) fibers and poly(4-vinylpyridine) composite fibers. Chemistry of Materials,2006.18(8):p.2008-2011.
    24. Duan, Y.Y., et al., Preparation of antimicrobial poly(epsilon-caprolactone) electrospun nanofibers containing silver-loaded zirconium phosphate nanoparticles. Journal of Applied Polymer Science,2007.106(2):p.1208-1214.
    25. Muller, K., et al., Polyelectrolyte functionalization of electrospun fibers. Chemistry of Materials,2006.18(9):p.2397-2403.
    26. Formhals A. US patent 1,975,504,1934.
    27. Formhals A. US patent 2,160,962,1939.
    28. Formhals A. US patent,2,187,306,1940.
    29. Formhals A. US patent,2,323,025,1943.
    30. Formhals A. US patent,2,349,950,1944.
    31. Vonnegut, B. and R.L. Neubauer,j. colloid sci.,1952(7):p.616.
    32. Drozin, V.G., J. of Colloid Science 1955;10:158.
    33. Taylor, G.I., Dinsintegration of water drops in an edectric field.. Proc.Roy.Soc. London, Ser.A, 1964:p.280:383.
    34. Shi, X.Y., et al., Characterization of crystalline dendrimer-stabilized gold nanoparticles. Nanotechnology,2006.17(4):p.1072-1078.
    35. Taylor, G.I., The force exerted by an electric field on a long cylindrical conductor. Proc.Roy.Soc.London, Ser.A:p.1966,291:145.
    36. Taylor, G., Electrically Driven Jets.. Proc. R. Soc. London,Ser. A,1969:p.313:453.
    37. Simons HL. US patent 3,280,229,1966.
    38. Baumgarten, P.K., Electrostatic spinning of acrylic microfibers. J. COLLOID INTERF. SCI., 1971(36):p.71-79.
    39. Liu, F.J., et al., Effect of Processing Variables on the Morphology of Electrospun Poly[(lactic acid)-co-(glycolic acid)] Nanofibers. Macromo. Mater. and Eng.,2009.294(10):p.666-672.
    40. Yarin, A.L., S. Koombhongse, and D.H. Reneker, Taylor cone and jetting from liquid droplets in electrospinning of nanofibers. Journal of Applied Physics,2001.90(9):p.4836-4846.
    41. Fong, H., I. Chun, and D.H. Reneker, Beaded nanofibers formed during electrospinning. Polymer,1999.40(16):p.4585-4592.
    42. Deitzel, J.M., et al., The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer,2001.42(1):p.261-272.
    43. Casper, C.L., et al., Controlling surface morphology of electrospun polystyrene fibers:Effect of humidity and molecular weight in the electrospinning process. Macromolecules,2004. 37(2):p.573-578.
    44. Saquing, C.D., J.L. Manasco, and S.A. Khan, Electrospun Nanoparticle-Nanofiber Composites via a One-Step Synthesis. Small,2009.5(8):p.944-951.
    45. Yang, Q.B., et al., Preparation and characterization of a pan nanofibre containing Ag nanoparticles via electrospinning. Synthetic Metals,2003.137(1-3):p.973-974.
    46. Ko, F., et al., Electrospinning of continuons carbon nanotube-filled nanofiber yarns. Advanced Materials,2003.15(14):p.1161-+.
    47. Ayutsede, J., et al., Carbon nanotube reinforced Bombyx mori silk nanofibers by the electrospinning process. Biomacromolecules,2006.7(1):p.208-214.
    48. Dror, Y., et al., Carbon nanotubes embedded in oriented polymer nanofibers by electrospinning. Langmuir,2003.19(17):p.7012-7020.
    49. Salalha, W., et al., Single-walled carbon nanotubes embedded in oriented polymeric nanofibers by electrospinning. Langmuir,2004.20(22):p.9852-9855.
    50. Sen, R., et al., Preparation of single-walled carbon nanotube reinforced polystyrene and polyurethane nanofibers and membranes by electrospinning. Nano Letters,2004.4(3):p. 459-464.
    51. Kim, G.M., G.H. Michler, and P. Potschke, Deformation processes of ultrahigh porous multiwalled carbon nanotubes/polycarbonate composite fibers prepared by electrospinning. Polymer,2005.46:p.7346-7351.
    52. Yang, Y., et al., Electrospinning of carbon/CdS coaxial nanofibers with photoluminescence and conductive properties. Materials Science and Engineering B-Solid State Materials for Advanced Technology,2007.140(1-2):p.48-52.
    53. Melaiye, A., et al., Silver(Ⅰ)-imidazole cyclophane gem-diol complexes encapsulated by electrospun tecophilic nanofibers:Formation of nanosilver particles and antimicrobial activity. Journal of the American Chemical Society,2005.127(7):p.2285-2291.
    54. Chia, K.K., R.E. Cohen, and M.F. Rubner, Amine-Rich Poly electrolyte Multilayer Nanoreactors for in Situ Gold Nanoparticle Synthesis. Chemistry of Materials,2008.20(21): p.6756-6763.
    55. Dong, H. and J.P. Hinestroza, Metal Nanoparticles on Natural Cellulose Fibers:Electrostatic Assembly and In Situ Synthesis. Acs Applied Materials & Interfaces,2009.1(4):p.797-803.
    56. Son, W.K., J.H. Youk, and W.H. Park, Antimicrobial cellulose acetate nanofibers containing silver nanoparticles. Carbohydrate Polymers,2006.65(4):p.430-434.
    57. McCann, J.T., M. Marquez, and Y.N. Xia, Melt coaxial electrospinning:A versatile method for the encapsulation of solid materials and fabrication of phase change nanofibers. Nano Letters, 2006.6(12):p.2868-2872.
    58. Song, T., et al., Encapsulation of self-assembled FePt magnetic nanoparticles in PCL nanofibers by coaxial electrospinning. Chemical Physics Letters,2005.415(4-6):p.317-322.
    59. Gu, Y.X., D.R. Chen, and M.L. Jiao, Synthesis and electrochemical properties of nanostructured LiCoO2 fibers as cathode materials for lithium-ion batteries. Journal of Physical Chemistry B,2005.109(38):p.17901-17906.
    60. Li, D., J.T. McCann, and Y.N. Xia, Use of electrospinning to directly fabricate hollow nanofibers with functionalized inner and outer surfaces. Small,2005.1(1):p.83-86.
    61. Abidian, M.R., D.H. Kim, and D.C. Martin, Conducting-polymer nanotubes for controlled drug release. Advanced Materials,2006.18(4):p.405-+.
    62. Doh, S.J., et al., Development of photocatalytic TiO2 nanofibers by electrospinning and its application to degradation of dye pollutants. Journal of Hazardous Materials,2008.154(1-3): p.118-127.
    63. Liu, H.Q., et al., ZnO nanofiber and nanoparticle synthesized through electrospinning and their photocatalytic activity under visible light. Journal of the American Ceramic Society, 2008.91(4):p.1287-1291.
    64. Demir, M.M., et al., Palladium nanoparticles by electrospinning from poly(acrylonitrile-co-acrylic acid)-PdCl2 solutions. Relations between preparation conditions, particle size, and catalytic activity. Macromolecules,2004.37(5):p.1787-1792.
    65. Formo, E., et al., Direct oxidation of methanol on pt nanostructures supported on electrospun nanofibers of anatase. Journal of Physical Chemistry C,2008.112(27):p.9970-9975.
    66. Huang, Q.G., et al., Tunable Synthesis and Immobilization of Zero-Valent Iron Nanoparticles for Environmental Applications. Environmental Science & Technology,2008.42(23):p. 8884-8889.
    67. Li, Z.Y., et al., Highly sensitive and stable humidity nanosensors based on LiCl doped TiO2 electrospun nanofibers. Journal of the American Chemical Society,2008.130(15):p.5036-+.
    68. Qi, Q., T. Zhang, and L.J. Wang, Improved and excellent humidity sensitivities based on KCl-doped TiO2 electrospun nanofibers. Applied Physics Letters,2008.93(2).
    69. Cui, W.G., et al., Investigation of drug release and matrix degradation of electrospun poly(DL-lactide) fibers with paracetanol inoculation. Biomacromolecules,2006.7(5):p. 1623-1629.
    70. Rujitanaroj, P.O., N. Pimpha, and P. Supaphol, Wound-dressing materials with antibacterial activity from electrospun gelatin fiber mats containing silver nanoparticles. Polymer,2008. 49(21):p.4723-4732.
    71. Boland, E.D., et al., Tailoring tissue engineering scaffolds using electrostatic processing techniques:A study of poly(glycolic acid) electrospinning. Journal of Macromolecular Science-Pure and Applied Chemistry,2001.38(12):p.1231-1243.
    72. Hong, K.H., Preparation and properties of electrospun poly (vinyl alcohol)/silver fiber web as wound dressings. Polymer Engineering and Science,2007.47(1):p.43-49.
    73. Crini, G., Non-conventional low-cost adsorbents for dye removal:A review. Bioresour. Technol.,2006.97(9):p.1061-1085.
    74. Kannan, N. and M.M. Sundaram, Kinetics and mechanism of removal of methylene blue by adsorption on various carbons-a comparative study. Dyes Pigment.,2001.51(1):p.25-40.
    75. Derbyshire, F., et al., Carbon materials in environmental applications. Chem. Phys. Carbon., 2001.27:p.1-66.
    76. Ho, Y.S. and G. McKay, A kinetic study of dye sorption by biosorbent waste product pith. Resour. Conserv. Recycl.,1999.25(3-4):p.171-193.
    77. Haider, S. and S.Y. Park, Preparation of the electrospun chitosan nanofibers and their applications to the adsorption of Cu(Ⅱ) and Pb(Ⅱ) ions from an aqueous solution. J. Membr. Sci.,2009.328(1-2):p.90-96.
    78. Ma, Z.W., M. Kotaki, and S. Ramarkrishna, Surface modified nonwoven polysulphone (PSU) fiber mesh by electrospinning:A novel affinity membrane. J. Membr. Sci.,2006.272(1-2):p. 179-187.
    79. Xiao, S.l., et al., Poly electrolyte Multilayer-Assisted Immobilization of Zero-Valent Iron Nanoparticles onto Polymer Nanofibers for Potential Environmental Applications. ACS Appl. Mater. Interf.,2009.1(12):p.2848-2855.
    80. Wu, K.H., et al., Preparation and characterization of silver-modified poly(vinyl alcohol)/polyethyleneimine hybrids as a chemical and biological protective material. Polym. Degrad. Stabil.,2009.94(12):p.2170-2177.
    81. Khanam, N., et al., Electrospun linear polyethyleneimine scaffolds for cell growth. Acta Biomater.,2007.3:p.1050-1059.
    82. Ogris, M., et al., PEGylated DNA/transferrin-PEI complexes:reduced interaction with blood components, extended circulation in blood and potential for systemic gene delivery. Gene Ther.,1999.6(4):p.595-605.
    83. Shi, X.Y., M.W. Shen, and H. Mohwald, Poly electrolyte multilayer nanoreactors toward the synthesis of diverse nanostructured materials. Prog. Polym. Sci.,2004.29(10):p.987-1019.
    84. Wiseman, J.W., et al., A comparison of linear and branched polyethylenimine (PEI) with DCChol/DOPE liposomes for gene delivery to epithelial cells in vitro and in vivo. Gene Ther., 2003.10(19):p.1654-1662.
    85. Dong, C.H., et al., Preparation of PVA/PEI ultra-fine fibers and their composite membrane with PLA by electrospinning. Journal of Biomaterials Science-Polymer Edition,2006.17(6):p. 631-643.
    86. Rao, P.S., et al., Preparation and performance of poly(vinyl alcohol)/polyethyleneimine blend membranes for the dehydration of 1,4-dioxane by pervaporation:Comparison with glutaraldehyde cross-linked membranes. Separation and Purification Technology,2006(48):p. 244-254.
    87. Zhang, Y.Z., et al., Crosslinking of the electrospun gelatin nanofibers. Polymer,2006(47):p. 2911-2917.
    88. Huang, Z.M., et al., Electrospinning and mechanical characterization of gelatin nanofibers. Polymer,2004.45(15):p.5361-5368.
    89. He, Y., Z,;, et al., Removal of Cu2+ from aqueous solution by adsorption onto a novel activated nylon-based membrane. Bioresour. Technol.,2008(99):p.7954-7958.
    90. Ozacar, M. and S.I.A. S,engil, Adsorption of reactive dyes on calcined alunite from aqueous solutions J. Hazard. Mater.,2003(98):p.211-224.
    91. Hvolb(?)k, B., et al., Catalytic activity of Au nanoparticles. Nano Today,2007.2(4):p.14-18.
    92. Sun, X.P., S.J. Dong, and E.K. Wang, High-yield synthesis of large single-crystalline gold nanoplates through a polyamine process. Langmuir,2005.21(10):p.4710-4712.
    93. Daniel, M.C. and D. Astruc, Gold nanoparticles:Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev.,2004.104:p.293-346.
    94. Serp, P., M. Corrias, and P. Kalck, Carbon nanotubes and nanofibers in catalysis. Appl. Catal. A-Gen.,2003.253(2):p.337-358.
    95. Shi, X.Y., et al., Dendrimer-entrapped gold nanoparticles as a platform for cancer-cell targeting and Imaging. Small,2007.3:p.1245-1252.
    96. Shipway, A.N., E. Katz, and I. Willner, Nanoparticle arrays on surfaces for electronic, optical, and sensor applications. Chemphyschem,2000.1(1):p.18-52.
    97. Sun, S.H., et al., Controlled synthesis and assembly of FePt nanoparticles. J. Phys. Chem. B, 2003.107(23):p.5419-5425.
    98. Gittins, D.I. and F. Caruso, Tailoring the polyelectrolyte coating of metal nanoparticles. J. Phys. Chem. B,2001.105(29):p.6846-6852.
    99. Graff, A., M. Winterhalter, and W. Meier, Nanoreactors from polymer-stabilized liposomes. Langmuir,2001.17(3):p.919-923.
    100. Hayakawa, K., T. Yoshimura, and K. Esumi, Preparation of gold-dendrimer nanocomposites by laser irradiation and their catalytic reduction of 4-nitrophenol. Langmuir,2003.19(13):p. 5517-5521.
    101. Ingert, D. and M.P. Pileni, Limitations in producing nanocrystals using reverse micelles as nanoreactors. Adv. Funct. Mater.,2001.11(2):p.136-139.
    102. Lu, Y., et al., Thermosensitive core-shell microgel as a "nanoreactor" for catalytic active metal nanoparticles. J. Mater. Chem.,2009.19(23):p.3955-3961.
    103. Manziek, L., et al., Functionalized emulsion and suspension polymer particles:Nanoreactors for the synthesis of inorganic materials. Chem. Mat.,1998.10(10):p.3101-3108.
    104. Note, C., S. Kosmella, and J. Koetz, Poly(ethyleneimine) as reducing and stabilizing agent for the formation of gold nanoparticles in w/o microemulsions. Colloid Surf. A-Physicochem. Eng. Asp.,2006.290(1-3):p.150-156.
    105. Samuelson, L., et al., Nanoreactors for the enzymatic synthesis of conducting polyaniline. Synth. Met.,2001.119(1-3):p.271-272.
    106. Xing, Z.C., et al., In Vitro Assessment of Antibacterial Activity and Cytocompatibility of Silver-Containing PHBV Nanofibrous Scaffolds for Tissue Engineering. Biomacromolecules, 2010.11(5):p.1248-1253.
    107. Bond, G.C. and D.T. Thompson, Catalysis by gold. Catal. Rev.-Sci. Eng.,1999.41(3-4):p. 319-388.
    108. Hashmi, A.S.K. and G.J. Hutchings, Gold catalysis. Angew. Chem.-Int. Edit.,2006.45(47):p. 7896-7936.
    109. zhang, W.B., et al., Kinetics, degradation pathway and reaction mechanism of advanced oxidation of 4-nitrophenol in water by a UV/H2O2 process. J. Chem. Technol. Biotechnol., 2003.78:p.788-794.
    110. Dai, J.H. and M.L. Bruening, Catalytic nanoparticles formed by reduction of metal ions in multilayered poly electrolyte films. Nano Lett.,2002.2(5):p.497-501.
    111. Demir, M.M, et al., Glycidyl-methacrylate-based electrospun mats and catalytic silver nanoparticles. Macromol. Chem. Phys.,2008.209(5):p.508-515.
    112. Esumi, K., R. Isono, and T. Yoshimura, Preparation of PAMAM-and PPI-metal (silver, platinum, and palladium) nanocomposites and their catalytic activities for reduction of 4-nitrophenol. Langmuir,2004.20(1):p.237-243.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700