鹦鹉热嗜衣原体临床株的分离与鉴定及IFN-γ抗感染作用初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:优化鹦鹉热嗜衣原体(Chlamydophila psittaci,C.psittaci,Cps)临床株分离培养技术,建立C.psittaci感染小鼠的动物模型,为C.psittaci流行病学调查、临床诊断及致病性和致病机制研究奠定基础。初步探讨IFN-γ对C.psittaci A血清型菌株的抗感染作用,为进一步阐明机体抗衣原体免疫机制提供参考数据。
     方法:通过分子生物学技术,提取禽鸟肝肺组织DNA,PCR扩增特异性C.psittaci ompA基因,进一步酶切、测序鉴定。同时将PCR阳性标本肝组织匀浆液接种到单层敏感细胞株HeLa细胞或Vero细胞中培养,Giemsa和免疫荧光染色法鉴定衣原体包涵体。将临床株扩大培养后,用2×104、2×105、2×106 IFU三个剂量鼻饲攻击C57BL/6小鼠,分别于感染后5d和10d处死小鼠,取心、肝、脾、肺、肾进行苏木素-伊红染色(HE染色法)和免疫组织化学染色,显微镜观察受染小鼠各脏器病理变化。用不同浓度的rhIFN-γ(5ng/mL、25ng/mL、50ng/mL)作用于感染C. psittaci 6BC的HeLa细胞或Vero细胞48h,计数包涵体数目,并观察包涵体形态的改变。2×106 IFU C. psittaci 6BC鼻内感染C57BL/6小鼠,于感染前、后24h内腹腔注射rmIFN-γ10μg,观察小鼠食欲情况、活动状态、生存率等一般指标的变化,于感染后5d和10d,处死小鼠,取肝、肺组织进行HE和免疫组化染色比较IFN-γ处理组与对照组的肝、肺组织的病理变化;并取感染后5d的肺组织进行培养,计数各组包涵体数目。
     结果:
     1)应用PCR、酶切及测序的方法从100只禽鸟标本中检测到6株C.psittaci菌株(6%),并成功地在HeLa及Vero细胞中培养出3株(3%)。
     2)比较了C.psittaci在Vero细胞与HeLa细胞培养生长情况,结果显示Vero内的衣原体包涵体积大,结构致密,对衣原体感染引起的宿主细胞溶解耐受性较HeLa强,更适合用于C.psittaci的分离培养及体外研究。
     3)成功建立C.psittaci的鼠呼吸道感染模型。应用2×106、2×105、2×104 IFU经呼吸道感染C57BL/6小鼠,均可引起相应的急性临床及病理变化,且呈现明显的剂量依赖性,高浓度感染组小鼠的临床表现及病理变化均较低浓度感染组严重。各剂量组小鼠感染后2天体重明显下降,分别为4.33±1.03g、2.83±1.17 g、2.67±0.82 g,而PBS对照组体重下降仅为0.17±0.75 g。感染后10天,各剂量组生存率分别为0%、33.3%、100%,PBS对照组生存率为100%。
     4) IFN-γ在C.psittaci感染HeLa细胞的体外实验研究显示,IFN-γ具有明显的抗C.psittaci感染作用,呈剂量依赖性。5ng/mL、25ng/mL、50ng/mL rhIFN-γ处理组在C.psittaci 6BC感染48h后,包涵体数目明显低于对照组,各剂量rhIFN-γ处理组包涵体数分别为(23.8±5.1)×106,(10±3.58)×106,(8.0±2.22)×106),未处理组为(43.3±11.05)×106;且经rhIFN-γ处理的衣原体包涵体形状不规则,体积约为对照组1/4~1/5。
     5) C.psittaci感染的小鼠体内实验也显示,IFN-γ有明显的抗C.psittaci感染作用,可明显减轻小鼠急性临床表现及脏器病理变化,且rmIFN-γ处理组生存率明显高于未处理组,感染前、后24h内腹腔注射rmIFN-γ组及未处理组生存率分别为75%、43.75%、12.5%。
     结论:优化了C.psittaci临床株的分离培养技术,成功建立了C.psittaci感染小鼠的动物感染模型,并初步证明IFN-γ对宿主抗C.psittaci A血清型菌株具有明显的保护作用,且呈剂量依赖性。
Objective:
     To optimize the isolation and culture technique of Chlamydophila psittaci clinical strains and establish an animal model infected with C.psittaci, which can be applied to the clincal diagnosis of C.psittaci and epidemiological or pathogenetic study. To preliminary study whether IFN-γcan resist C.psittaci serovar A infection, providing experimental evidence for further illustrating the pathogenetic or immune mechanism of Chlamydia infection. .
     Methods:
     C.psittaci ompA gene was amplified from DNA extracted from bird livers or lungs by polymerase chain reactions (PCR). The PCR products were identified by enzymes cleavage or sequencing. For the PCR positive clinical samples, the liver tissues were homogenized and used to incubated with HeLa or Vero cell monolayers for 24 h in different dilutions,and chlamydia inclusion bodies were detected by immunofluorescence or Giemsa staining. Different dose of the clinical strains(2×104, 2×105, 2×106 IFUs) were used to attack C57BL/6 mice by intranasal injection,mice were sacrificed on day 5 or day 10 after infection, and the histopathology changes were analyzed by H&E and immunohistochemistry staining in different organs. To study the role of IFN-γ, C. psittaci 6BC-infected HeLa cells were treated with different concentrations of rhIFN-γ(5ng/mL, 25ng/mL, 50ng/mL). Forty-eight hours later, inclusion bodies were calculated and morphology was compared in different groups. For the in vivo experiment, C57BL/6 mice were inoculated intranasal with 2×106 IFU of live C. psittaci 6BC in 50μL SPG, and 10ug rmIFN-γor PBS were injected intraperitoneally at 24 hours prior or after infection. The body weight, activity and survival rate were recorded, and histopathology changes were analyzed by H&E and immunohistochemistry staining in mice livers and lungs after sacrificed. The lung tissues were homogenized, followed by sonication on ice, and the released organisms were titrated on Vero cell monolayers.
     Results:
     1) Six of one hundred clinical samples were positive by C.psittaci ompA gene amplification, and three were positive by cell culture.
     2) Vero cells showed stronger tolerance of cytolysis than HeLa cells. And chlamydia inclusion bodies were larger and more dense in Vero cells than in HeLa cells.
     3) C.psittaci infected mouse model was successfully established. After intranasally infected with 2×106, 2×105 or 2×104 IFUs of C.psittaci, corresponding clinical symptoms and pathology changes could be seen in all mice group in a dose-dependent manner. The body weight was decreased 4.33±1.03g, 2.83±1.17g, 2.67±0.82g respectively, but only decreased a little bit(0.17±0.75g) in control group. The survival rate was 0%, 33.3% or 100%, and no mice died in control group till day10 after infection.
     4) The in vitro experiment showed that IFN-γcould resist C.psittaci infection in a dose dependent manner. After incobulated 48h with the same amount of chlamydia and different dose (5ng/m, 25ng/mL, 50ng/mL) of rhIFN-γ, and the inclusion body numbers were significantly lower than those of control groups ((23.8±5.1)×106, (10±3.58)×106, (8.0±2.22)×106, (43.3±11.05)×106, respectively). The inclusion body was out-of-shape, and the size is only one fourth or one fifth of the control group.
     5) The results in the animal model of mouse infected with C.psittaci also showed that IFN-γcan resist C.psittaci infection and significantly alleviate the symptoms and pathology. And the survival rate was much higher than that of untreated group (75%, 43.75%, 12.5%, respectively) on day 10 after infection.
     Conclusion:
     The isolation and culture condition was optimized for C.psittaci clinical strains, and animal model of respiratory tract infection by C.psittaci was successfully established. IFN-γwas found to mediate strong protection against C.psittaci serovar A strain in a dose-dependent manner.
引文
[1] Andersen AA. Serotyping of Chlamydia psittaci isolates using serovar-specific monoclonal antibodies with the microimmunofluorescence test[J]. J Clin Microbiol, 1991,29(4):707-711.
    [2] Harkinezhad T, Geens T, Vanrompay D. Chlamydophila psittaci infections in birds: a review with emphasis on zoonotic consequences[J]. Vet Microbiol, 2009,135(1-2):68-77.
    [3] Beeckman DS, Vanrompay DC. Zoonotic Chlamydophila psittaci infections from a clinical perspective[J]. Clin Microbiol Infect, 2009,15(1):11-17.
    [4] Raso Tde F, Junior AB, Pinto AA. Evidence of Chlamydophila psittaci infection in captive Amazon parrots in Brazil[J]. J Zoo Wildl Med, 2002,33(2):118-121.
    [5] Dovc A, Dovc P, Kese D, et al. Long-term study of Chlamydophilosis in Slovenia[J]. Vet Res Commun, 2005,29 Suppl 1:23-36.
    [6] Heddema ER, van Hannen EJ, Duim B, et al. An outbreak of psittacosis due to Chlamydophila psittaci genotype A in a veterinary teaching hospital[J]. Journal of medical microbiology, 2006,55(Pt 11):1571-1575.
    [7] Longbottom D, Coulter LJ. Animal chlamydioses and zoonotic implications[J]. J Comp Pathol, 2003,128(4):217-244.
    [8] Chanudet E, Zhou Y, Bacon CM, et al. Chlamydia psittaci is variably associated with ocular adnexal MALT lymphoma in different geographical regions[J]. J Pathol, 2006,209(3):344-351.
    [9] Ferreri AJ, Guidoboni M, Ponzoni M, et al. Evidence for an association between Chlamydia psittaci and ocular adnexal lymphomas[J]. J Natl Cancer Inst, 2004,96(8):586-594.
    [10] Rosado MF, Byrne GE, Jr., Ding F, et al. Ocular adnexal lymphoma: a clinicopathologic study of a large cohort of patients with no evidence for an association with Chlamydia psittaci[J]. Blood, 2006,107(2):467-472.
    [11]Zhang GS, Winter JN, Variakojis D, et al. Lack of an association between Chlamydia psittaci and ocular adnexal lymphoma[J]. Leuk Lymphoma,2007,48(3):577-583.
    [12] Stefanovic A, Lossos IS. Extranodal marginal zone lymphoma of the ocular adnexa[J]. Blood, 2009,114(3):501-510.
    [13] Gosbell IB, Ross AD, Turner IB. Chlamydia psittaci infection and reinfection in a veterinarian[J]. Aust Vet J, 1999,77(8):511-513.
    [14]Haralambieva I, Iankov I, Petrov D, et al. Cross-reaction between the genus-specific lipopolysaccharide antigen of Chlamydia spp. and the lipopolysaccharides of Porphyromonas gingivalis, Escherichia coli O119 and Salmonella newington: implications for diagnosis[J]. Diagn Microbiol Infect Dis, 2001,41(3):99-106.
    [15] Everett KD, Bush RM, Andersen AA. Emended description of the order Chlamydiales, proposal of Parachlamydiaceae fam. nov. and Simkaniaceae fam. nov., each containing one monotypic genus, revised taxonomy of the family Chlamydiaceae, including a new genus and five new species, and standards for the identification of organisms[J]. Int J Syst Bacteriol, 1999,49 Pt 2:415-440.
    [16] Corsaro D, Greub G. Pathogenic potential of novel Chlamydiae and diagnostic approaches to infections due to these obligate intracellular bacteria[J]. Clin Microbiol Rev, 2006,19(2):283-297.
    [17] Hewinson RG, Griffiths PC, Bevan BJ, et al. Detection of Chlamydia psittaci DNA in avian clinical samples by polymerase chain reaction[J]. Vet Microbiol, 1997,54(2):155-166.
    [18] Laroucau K, Souriau A, Rodolakis A. Improved sensitivity of PCR for Chlamydophila using pmp genes[J]. Vet Microbiol, 2001,82(2):155-164.
    [19] Poppert S, Essig A, Marre R, et al. Detection and differentiation of chlamydiae by fluorescence in situ hybridization[J]. Appl Environ Microbiol, 2002,68(8):4081-4089.
    [20] Campbell LA, Kuo CC. Cultivation and laboratory maintenance of Chlamydia pneumoniae[J]. Curr Protoc Microbiol, 2009,Chapter 11:Unit11B 11.
    [21] Ortega N, Caro MR, Buendia AJ, et al. Role of polymorphonuclear neutrophils(PMNs) and NK cells in the protection conferred by different vaccines against Chlamydophila abortus infection[J]. Res Vet Sci, 2007,82(3):314-322.
    [22] Buendia AJ, Nicolas L, Ortega N, et al. Characterization of a murine model of intranasal infection suitable for testing vaccines against C. abortus[J]. Veterinary immunology and immunopathology, 2007,115(1-2):76-86.
    [23] Lyons JM, Morre SA, Airo-Brown LP, et al. Acquired homotypic and heterotypic immunity against oculogenital Chlamydia trachomatis serovars following female genital tract infection in mice[J]. BMC Infect Dis, 2005,5:105.
    [24] Rodriguez A, Rottenberg M, Tjarnlund A, et al. Immunoglobulin A and CD8 T-cell mucosal immune defenses protect against intranasal infection with Chlamydia pneumoniae[J]. Scandinavian journal of immunology, 2006,63(3):177-183.
    [25] Nelson DE, Virok DP, Wood H, et al. Chlamydial IFN-gamma immune evasion is linked to host infection tropism[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005,102(30):10658-10663.
    [26]Ossewaarde JM, de Vries A, Bestebroer T, et al. Application of a Mycoplasma group-specific PCR for monitoring decontamination of Mycoplasma-infected Chlamydia sp. strains[J]. Appl Environ Microbiol, 1996,62(2):328-331.
    [27] Naiki Y, Michelsen KS, Schroder NW, et al. MyD88 is pivotal for the early inflammatory response and subsequent bacterial clearance and survival in a mouse model of Chlamydia pneumoniae pneumonia[J]. The Journal of biological chemistry, 2005,280(32):29242-29249.
    [28] Pearson JE, Gustafson GA, Senne DA, et al. Isolation and identification of Chlamydia psittaci from pet birds[J]. J Am Vet Med Assoc, 1989,195(11):1564-1567.
    [29] Croy TR, Kuo CC, Wang SP. Comparative susceptibility of eleven mammalian cell lines to infection with trachoma organisms[J]. J Clin Microbiol, 1975,1(5):434-439.
    [30] Spears P, Storz J. Biotyping of Chlamydia psittaci based on inclusion morphologyand response to diethylaminoethyl-dextran and cycloheximide[J]. Infection and immunity, 1979,24(1):224-232.
    [31] Miyake T, Morishita T, Kobayashi S, et al. [Effects of DEAE-dextran, centrifugation, cycloheximide and their combination on infection and growth of Chlamydia psittaci bird isolates][J]. Kansenshogaku Zasshi, 1990,64(1):87-95.
    [32] He Q, Tsang LL, Ajonuma LC, et al. Abnormally up-regulated cystic fibrosis transmembrane conductance regulator expression and uterine fluid accumulation contribute to Chlamydia trachomatis-induced female infertility[J]. Fertil Steril,2010, 93(8):2608-2614.
    [33] Molina DM, Pal S, Kayala MA, et al. Identification of immunodominant antigens of Chlamydia trachomatis using proteome microarrays[J]. Vaccine,2010,28(17): 3014-3024.
    [34] Joyee AG, Uzonna J, Yang X. Invariant NKT cells preferentially modulate the function of CD8 alpha+ dendritic cell subset in inducing type 1 immunity against infection[J]. J Immunol,2010,184(4):2095-2106.
    [35] Kerr K, Wheelhouse N, Livingstone M, et al. Inflammatory cytokine responses in a pregnant mouse model of Chlamydophila abortus infection[J]. Vet Microbiol,2010.
    [36] Buendia AJ, Ortega N, Caro MR, et al. B Cells are essential for moderating the inflammatory response and controlling bacterial multiplication in a mouse model of vaccination against Chlamydophila abortus infection[J]. Infection and immunity, 2009,77(11):4868-4876.
    [37] Zhong GM, de la Maza LM. Activation of mouse peritoneal macrophages in vitro or in vivo by recombinant murine gamma interferon inhibits the growth of Chlamydia trachomatis serovar L1[J]. Infection and immunity, 1988,56(12): 3322-3325.
    [38] Zhong GM, Peterson EM, Czarniecki CW, et al. Recombinant murine gamma interferon inhibits Chlamydia trachomatis serovar L1 in vivo[J]. Infection and immunity, 1988,56(1):283-286.
    [39] Rottenberg ME, Gigliotti-Rothfuchs A, Wigzell H. The role of IFN-gamma in the outcome of chlamydial infection[J]. Current opinion in immunology, 2002,14(4): 444-451.
    [40] Ludwiczek S, Aigner E, Theurl I, et al. Cytokine-mediated regulation of iron transport in human monocytic cells[J]. Blood, 2003,101(10):4148-4154.
    [41]Paradkar PN, De Domenico I, Durchfort N, et al. Iron depletion limits intracellular bacterial growth in macrophages[J]. Blood, 2008,112(3):866-874.
    [42] Coers J, Bernstein-Hanley I, Grotsky D, et al. Chlamydia muridarum evades growth restriction by the IFN-gamma-inducible host resistance factor Irgb10[J]. J Immunol, 2008,180(9):6237-6245.
    [43]Zhong G, Fan T, Liu L. Chlamydia inhibits interferon gamma-inducible major histocompatibility complex class II expression by degradation of upstream stimulatory factor 1[J]. J Exp Med, 1999,189(12):1931-1938.
    [1] Roan NR, Starnbach MN. Immune-mediated control of Chlamydia infection [J]. Cell Microbiol, 2008, 10(1):9-19
    [2] Brunham RC, Rey-Ladino J. Immunology of Chlamydia infection: implications for a Chlamydia trachomatis vaccine[J]. Nat Rev Immunol , 2005, 5 (2):149-161
    [3] Jupelli M, Guentzel MN, Meier PA et al. Endogenous IFN-gamma production is induced and required for protective immunity against pulmonary chlamydial infection in neonatal mice[J]. J Immunol , 2008, 180 (6):4148-4155
    [4] Morrison RP, Caldwell HD. Immunity to murine chlamydial genital infection[J].Infect Immun, 2002, 70(6):2741-2751
    [5] Wira CR, Fahey JV, Sentman CL et al. Innate and adaptive immunity in female genital tract: cellular responses and interactions[J]. Immunol Rev,2005, 206:306-335
    [6] Puolakkainen M. Innate immunity and vaccines in chlamydial infection with special emphasis on Chlamydia pneumoniae[J]. FEMS Immunol Med Microbiol , 2009, 55 (2):167-177
    [7] Hafner L, Beagley K, Timms P. Chlamydia trachomatis infection: host immune responses and potential vaccines [J]. Mucosal Immunol ,2008, 1(2):116-130
    [8] Rottenberg ME, Gigliotti Rothfuchs A, Gigliotti D et al. Regulation and role of IFN-gamma in the innate resistance to infection with Chlamydia pneumoniae [J]. J Immunol, 2000,164 (9) :4812-4818
    [9] Tseng CT, Rank RG. Role of NK cells in early host response to chlamydial genital infection[J]. Infect Immun ,1998,66(12):5867-5875
    [10] Rottenberg ME, Gigliotti-Rothfuchs A, Wigzell H. The role of IFN-gamma in the outcome of chlamydial infection[J]. Curr Opin Immunol, 2002,14 (4):444-451
    [11] Joyee AG, Qiu H, Wang S et al. Distinct NKT cell subsets are induced by different Chlamydia species leading to differential adaptive immunity and host resistance to the infections[J]. J Immunol, 2007, 178 (2):1048-1058
    [12] Bilenki L, Wang S, Yang J et al. NK T cell activation promotes Chlamydia trachomatis infection in vivo[J]. J Immunol, 2005, 175 (5):3197-3206
    [13] Rothfuchs AG, Gigliotti D, Palmblad K et al. IFN-alpha beta-dependent, IFN-gamma secretion by bone marrow-derived macrophages controls an intracellular bacterial infection[J]. J Immunol, 2001,167 (11):6453-6461
    [14] Rothfuchs AG, Kreuger MR, Wigzell H, Rottenberg ME. Macrophages, CD4+ or CD8+ cells are each sufficient for protection against Chlamydia pneumoniae infection through their ability to secrete IFN-gamma[J]. J Immunol, 2004, 172(4):2407-2415
    [15] Roan NR, Gierahn TM, Higgins DE, Starnbach MN. Monitoring the T cell response to genital tract infection[J]. Proc Natl Acad Sci U S A, 2006, 103(32):12069-12074.
    [16] Dong-Ji Z, Yang X, Shen C et al. Priming with Chlamydia trachomatis major outer membrane protein (MOMP) DNA followed by MOMP ISCOM boosting enhances protection and is associated with increased immunoglobulin A and Th1 cellular immune responses[J]. Infect Immun, 2000, 68(6):3074-3078
    [17] Svanholm C, Bandholtz L, Castanos-Velez E et al. Protective DNA immunization against Chlamydia pneumoniae[J]. Scand J Immunol, 2000,51 (4):345-353
    [18] Nelson DE, Virok DP, Wood H et al. Chlamydial IFN-gamma immune evasion is linked to host infection tropism[J]. Proc Natl Acad Sci U S A, 2005,102 (30):10658-10663
    [19] Murthy AK, Chambers JP, Meier PA et al. Intranasal vaccination with a secreted chlamydial protein enhances resolution of genital Chlamydia muridarum infection, protects against oviduct pathology, and is highly dependent upon endogenous gamma interferon production[J]. Infect Immun,2007, 75(2):666-676
    [20] Li W, Murthy AK, Guentzel MN et al. Antigen-specific CD4+ T cells produce sufficient IFN-gamma to mediate robust protective immunity against genital Chlamydia muridarum infection[J]. J Immuno,l 2008,180 (5):3375-3382
    [21] Wizel B, Nystrom-Asklin J, Cortes C, Tvinnereim A. Role of CD8(+)T cells in the host response to Chlamydia[J]. Microbes Infect ,2008,10(14-15):1420-1430
    [22] Starnbach MN, Loomis WP, Ovendale P et al. An inclusion membrane protein from Chlamydia trachomatis enters the MHC class I pathway and stimulates a CD8+ T cell response[J]. J Immunol, 2003,171 (9):4742-4749
    [23] Gervassi AL, Grabstein KH, Probst P et al. Human CD8+ T cells recognize the 60-kDa cysteine-rich outer membrane protein from Chlamydia trachomatis[J]. J Immunol, 2004,173(11):6905-6913
    [24] Tvinnereim A, Wizel B. CD8+ T cell protective immunity against Chlamydia pneumoniae includes an H2-M3-restricted response that is largely CD4+ T cell-independent[J]. J Immunol, 2007,179 (6):3947-3957
    [25] Roshick C, Wood H, Caldwell HD, McClarty G. Comparison of gamma interferon-mediated antichlamydial defense mechanisms in human and mousecells[J]. Infect Immun ,2006,74 (1):225-238
    [26] Taylor GA. IRG proteins: key mediators of interferon-regulated host resistance to intracellular pathogens[J]. Cell Microbiol, 2007,9 (5):1099-1107
    [27] Ong ST, Ho JZ, Ho B, Ding JL. Iron-withholding strategy in innate immunity[J]. Immunobiology ,2006, 211(4):295-314
    [28] Ludwiczek S, Aigner E, Theurl I, Weiss G. Cytokine-mediated regulation of iron transport in human monocytic cells[J]. Blood, 2003,101(10):4148-4154
    [29] Paradkar PN, De Domenico I, Durchfort N et al. Iron depletion limits intracellular bacterial growth in macrophages[J]. Blood, 2008,112 (3):866-874
    [30] Coers J, Bernstein-Hanley I, Grotsky D et al. Chlamydia muridarum evades growth restriction by the IFN-gamma-inducible host resistance factor Irgb10[J]. J Immunol, 2008, 180(9):6237-6245
    [31] Bernstein-Hanley I, Coers J, Balsara ZR et al. The p47 GTPases Igtp and Irgb10 map to the Chlamydia trachomatis susceptibility locus Ctrq-3 and mediate cellular resistance in mice[J]. Proc Natl Acad Sci U S A, 2006, 103(38):14092-14097
    [32] Zhong G, Fan T, Liu L. Chlamydia inhibits interferon gamma-inducible major histocompatibility complex class II expression by degradation of upstream stimulatory factor 1[J]. J Exp Med ,1999,189 (12):1931-1938

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700