Mn(Ⅲ)TPP-Au/SiO_2新型复合催化剂制备及其催化空气氧化环己烷反应性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现有的环己烷氧化制环己酮和环己醇生产工艺普遍存在转化率低、选择性差、工艺复杂、耗能大和对环境污染严重等问题,这就使得研究和开发高效、环境友好的环己烷催化氧化工艺具有重要的理论意义和实用价值。本论文旨在液相条件下,研制一种新型催化剂用于以分子氧(空气)为氧化剂的环己烷选择性氧化反应。这种催化剂不仅能够使反应在相对温和的条件下进行,而且具有较高的催化反应性能。
     以氯金酸和硼氢化钠为原料,柠檬酸钠作保护剂,在室温条件下一步还原制备出了不同粒径的单分散纳米金颗粒。表征结果显示,制备的金纳米颗粒呈球形,为面心立方结构;柠檬酸钠保护剂的存在不仅提高了粒子的单分散性和稳定性,还在一定程度上抑制了金颗粒的生长,使得颗粒的粒径可控,且分布很窄。紫外-可见吸收光谱反映出,随着粒径的增大,胶体金在可见区的最大吸收峰逐渐向长波方向移动。
     通过自组装方法制备了Au/SiO2催化剂,并采用X-射线衍射、透射电镜、原子吸收光谱、紫外-可见光谱和氮吸附脱附(比表面积及孔结构分析)对其进行表征。该催化剂在不加任何助剂的条件下,在环己烷催化氧化反应中表现出良好的催化活性。考察了焙烧温度、金含量、反应压力、温度及时间对催化剂活性的影响。结果表明,经500℃焙烧的1% Au/SiO2催化剂,在3.0 MPa空气气氛中于150℃下连续反应4 h时,环己烷转化率约为10.0%,环己酮和环己醇的总选择性约为92.0%。
     以四苯基卟啉和醋酸盐为原料,合成了四种简单过渡金属配合物。研究发现,可以应用紫外-可见及红外光谱对过渡金属卟啉配合物中心离子的价态及其在周期表中的位置进行初步判断。以空气氧化环己烷制备环己酮和环己醇为探针反应,在不加入任何有机溶剂或助催化剂的条件下考察了金属卟啉用量、反应压力、温度、时间等对其催化活性的影响。结果发现,锰卟啉催化活性最好,在适宜反应条件下,环己烷转化率高达15.4%,环己酮和环己醇的总选择性约为93.9%。
     以包含巯基和吡啶基官能团的巯基吡啶为桥联剂,实现了Mn(Ⅲ)TPP在金负载量为5%的Au/SiO2催化剂上的固载化,从而得到了一种新型Mn(Ⅲ)TPP-Au/SiO2复合催化剂。首次将其应用于催化空气氧化环己烷反应的实验结果显示,与未固载金属卟啉的5% Au/SiO2催化剂相比,该复合催化剂具有更高的催化活性。在反应温度170℃,空气压力1.5 MPa,反应时间6 h的优化条件下,环己烷转化率与酮醇总选择性分别为5.39%和88.7%。此外,该催化剂还具有可重复使用的特点。
The commercial processes of cyclohexane oxidation to cyclohexanone and cyclohexanol generally show many problems, such as low conversion, poor selectivity, complicated technology, high-energy consumption and environmental pollution. So it seems to be of great academic and practical interesting to study and develop highly efficient and environmentally friendly catalytic cyclohexane oxidation processes. The aim of this work is to develop a novel catalyst, which is applied to catalyze selective oxidation of cyclohexane using molecular oxygen (air) as oxidation in liquid-phase. It can not only catalyze the reaction under relatively mild conditions, but also has gotten better catalytic performance.
     Monodispersed gold nanoparticles with different diameters were successfully synthesized by one step process at room temperature, using HAuCl4 and NaBH4 as the reactants, Na3C6H5O7 as the protecting agent. Characterization results indicate that the as-prepared gold nanoparticles are spherical, and their structure is face center cubic (FCC). Using sodium citrate not only improves monodispersity and stability of Au nanoparticles, but also inhibits the crystal growth, making the particle size is controllable and has a narrow distribution. The peak positions of UV-Vis absorption spectra of colloidal gold shift to the long wavelength as the crystal size increases.
     Au/SiO2 catalysts were prepared by self-assembly technique. X-ray diffraction (XRD), transmission election microscopy (TEM), atom absorption spectrometry (AAS), ultraviolet-visible spectroscopy (UV-Vis) and nitrogen adsorption/desorption (specific surface area and pore structure analysis) were used to characterize the catalysts. The as-prepared Au/SiO2 catalysts exhibited excellent catalytic performance for selective oxidation of cyclohexane by air in the system without any promoter. The influences of gold content, reaction pressure, reaction temperature, reaction time and calcination temperature of catalyst on the catalytic performance were studied. The conversion of cyclohexane and total selectivity of cyclohexanone and cyclohexanol over the catalyst with 1% gold loading and calcination temperature 500℃, were up to ~10.0% and ~92.0% respectively, under the conditions of reaction temperature 150℃, 3.0 MPa air, reaction time 4 h.
     Four kinds of simple transition metal complexes were synthesized from tetraphenylporphyrin and transition metal acetate. Results reveal that using UV-Vis and FTIR techniques can determine the valence state and position in the periodic table of the central ions in transition metal porphyrin complexes. The catalytic oxidation of cyclohexane to cyclohexanone and cyclohexanol in air as probe reaction was performed without any organic solvent or cocatalyst, and the influences of the amount of metal porphyrin, reaction pressure, reaction temperature and reaction time on the catalytic activity were investigated. It was found that manganese porphyrin had the highest activity, and a maximum 15.4% of cyclohexane conversion and 93.9% selectivity of cyclohexanone and cyclohexanol could be obtained under the suitable conditions.
     A Mn(Ⅲ) TPP-Au/SiO2 composite catalyst was obtained by immobilizing Manganese(Ⅲ) porphyrin on Au/SiO2 (5% Au loading) using mercaptopyridine with sulfhydryl and pyridyl groups as bridging agent, and it was used for the aerobic oxidation of cyclohexane for the first time. Experimental results show that the activity of the catalyst was higher than that of the pure 5% Au/SiO2 catalyst. Under the suitable conditions of reaction temperature 170℃, 1.5 MPa air and reaction time 6 h, the conversion of cyclohexane and the total selectivity of cyclohexanone and cyclohexanol were 5.39% and 88.7% respectively. In addition, the catalyst can be used repeatedly.
引文
[1]张立德,牟季美.纳米材料和纳米技术.北京:科学技术出版社, 2001
    [2] Ball P, Garwin L. Science at the atomic scale. Nature 1992, 355: 761-766
    [3]纳米科技背景资料.科学技术部基础研究司资料. 2001
    [4] Auer S, Frenkel D. Suppression of crystal nucleation in polydisperse colloids due to increase of the surface free energy. Nature, 2001, 413: 711-713
    [5] Cavicchi R E, Silsbee R H. Coulomb suppression of tunneling rate from small metal particles. Phys. Rev. Lett., 1984, 52(16): 1453–1456
    [6] Bucher J P, Douglass D C, Bloomfield L A. Magnetic properties of free cobalt clusters. Phys. Rev. Lett., 1991, 66(23): 3052–3055
    [7] Kamat P V, Dimitrijevi N M. Colloidal semiconductors as photocatalysts for solar energy conversion. Sol. Energy, 1990, 44(2): 83-98
    [8]张立德,牟季美.物理学与新型(功能)材料专题系列介绍(Ⅲ)开拓原子和物质的中间领域──纳米微粒与纳米固体.物理, 1992, 21(3): 167-173
    [9]魏建红,官建国,袁润章.金属纳米粒子的制备与应用.武汉理工大学学报, 2001, 23(3):1-4
    [10]江炎兰,张金春,王杰,等.纳米材料的性能与应用——金属及其合金.兵器材料科学与工程, 2001, 24(6): 64-66
    [11]刘珍,梁伟,许并社,等.纳米材料制备方法及其研究进展.材料科学与工艺, 2000, 8(3): 103-108
    [12]张中太,林元华,唐子龙,等.纳米材料及其技术的应用前景.材料工程, 2000, (3): 42-48
    [13] Liu S T, Maoz R, Schmid G, et al. Template guided self-assembly of [Au55] clusters on nanolithographically defined monolayer patterns. Nano Lett., 2002, 2(10): 1055-1060
    [14] Wang P, Lu Y H, Tang L, et al. Surface-enhanced optical nonlinearity of a gold film. Opt. Commun., 2004, 229(1-6): 425-429
    [15] Yang,Y, Hori M, Tomokatsu H, et al. Self-assembled 3-dimensional arrays of Au/SiO2 core-shell nanoparticles for enhanced optical nonlinearities. Surf. Sci., 2005, 579(2-3): 215-224
    [16]赵红秋,林琳,唐季安,等.利用纳米金颗粒增强DNA探针在传感固定程度和识别能力.科学通报, 2001, 46(4): 292-296
    [17]蔡强,吴维明,陈裕泉.纳米金的电检测方法与免疫检测中的应用.传感技术学报, 2003, 6(2): 124-127
    [18] Zhou X, Zhou J. Improving the signal sensitivity and photostability of DNA hybridizations on microarrays by using dye-doped core-shell silica nanoparticles. Anal. Chem., 2004, 76(18): 5302-5312
    [19] Goyal R N, Oyama M, Tyagi A. Simultaneous determination of guanosine and guanosine-5′-triphosphatein biological sample using gold nanoparticles modified indium tin oxide electrode. Anal. Chim. Acta, 2007, 581(1): 32–36
    [20] Holt K B, Sabin G, Compton R G, et al. Reduction of tetrachloroaurate(Ⅲ) at boron-doped diamond electrodes: gold deposition versus gold colloid formation. Electroanalysis, 2002, 14(12): 797-803
    [21] Hirsch T, Zharnikov M, Shaporenko A, et al. Size-controlled electrochemical synthesis of metal nanoparticles on monomolecular templates. Angew. Chem. Int. Ed., 2005, 44(41): 6775-6778
    [22] Sau T K, Murphy C J. Self-assembly patterns formed upon solvent evaporation of aqueous cetyltrimethylammonium bromide-coated gold nanoparticles of various shapes. Langmuir, 2005, 21(7): 2923–2929
    [23] Habas S E, Lee H, Radmilovic V, et al. Shaping binary metal nanocrystals through epitaxial seeded growth. Nature Mater., 2007, 6: 692-697
    [24] Kim M K, Jeon Y M, Jeon W S, et al. Novel dendron-stabilized gold nanoparticles with high stability and narrow size distribution. Chem. Commun., 2001, (7): 667-668
    [25]张冬柏,齐利民,程虎民,等.液晶模板法制备Au纳米线.高等学校化学学报, 2003, 24(12): 2143-2146
    [26] Esumi K, Kameo A, Suzki A, et al. Preparation of gold nanoparticles in formamide and N,N-dimethylformamide in the presence of poly (amidoamine) dendrimers with surface methyl ester groups. Colloid. Surf., A, 2001, 176(2-3): 233-237
    [27] Mori Y, Okamoto S I, Aashi T. Preparation of gold nanoparticles in water-in-oil microemulsion. Kagaku Kogaku Ronbun., 2001, 27(6): 736-741
    [28] Xu X C, Yang W S, Liu J, et al. Synthesis of a high-permeance NaA zeolite memberance by microwave heating. Adv. Mater., 2000, 3(12): 195-197
    [29]覃爱苗,蒋治良,邹节明,等.用聚丙烯酰胺微波高压合成金纳米粒子.应用化学, 2002, 19(12): 1150-1153
    [30] Frens G. Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nat. Phys. Sci., 1973, 241: 20-22
    [31] Henglein A, Giersig M. Formation of colloidal silver nanoparticles: capping action of citrate. J. Phys. Chem. B, 1999, 103 (44): 9533–9539
    [32] Turkevich J, Stevenson P C, Hillier J. A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss. Faraday Soc., 1951, 11: 55-75
    [33] Yonezawa T, Kunitake T. Practical preparation of anionic mercapto ligand-stabilized gold nanoparticles and their immobilization. Colloids Surf., A, 1999, 149(1-3):193-199
    [34] Brust M, Walker M, Bethell D, et al. Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid–liquid system. Chem. Commun., 1994, (7): 801-802
    [35] Jakob M, Levanon H, Kamat P V. Charge distribution between UV-Irradiated TiO2 and goldnanoparticles: determination of shift in the fermi level. Nano Lett., 2003, 3 (3): 353–358
    [36] Vander Hulst H C. Light scattering by small metal particles. New York: John Wiley&Sons, 1957
    [37] Nakamura K, Kawabata T, Mori Y. Size distribution analysis of colloidal gold by small angle X-ray scattering and light absorbance. Powder Technol., 2003, 131(2-3): 120-128
    [38] Terrill R H, Postlethwaite T A, Chen C H, et al. Monolayers in three dimensions: NMR, SAXS, thermal, and electron hopping studies of alkanethiol stabilized gold clusters. J. Am. Chem. Soc., 1995, 117 (50): 12537–12548
    [39] Nyarady S A, Sievers R E. Selective catalytic oxidation of organic compounds by nitrogen dioxide. J. Am. Chem. Soc., 1985, 107 (12): 3726–3727
    [40] Lee J Y, Schwank J. Infrared spectroscopic study of NO reduction by H2 on supported gold catalysts. J. Catal., 1986, 102(1): 207-215
    [41] Shastri A G, Datye A K, Schwank J. Gold-titania interactions: temperature dependence of surface area and crystallinity of TiO2 and gold dispersion. J. Catal., 1984, 87(1): 265-275
    [42] Cant N W, Fredrickson P W. Silver and gold catalyzed reactions of carbon monoxide with nitric oxide and with oxygen. J. Catal., 1975, 37(3): 531-539
    [43] Bond G C. The catalytic properties of gold. Gold Bull., 1972, 5(1): 11-13
    [44] Haruta M. Novel catalysis of gold deposited on metal oxides. Catal. Surv. Jpn., 1997, 1(1): 61-73
    [45] Gluhoi A C, Lin S D, Nieuwenhuys B E. The beneficial effect of the addition of base metal oxides to gold catalysts on reactions relevant to air pollution abatement. Catal. Today, 2004, 90(3-4): 175-181
    [46] Thompson D T. An overview of gold-catalysed oxidation processes. Top. Catal., 2006, 38(4): 231-240
    [47] Hashmi A S K, Hutchings G J. Gold catalysis. Angew. Chem. Int. Ed., 2006, 45(47): 7896-7936
    [48] Bamwenda G R, Tsubota S, Nakamura T, et al. The influence of the preparation methods on the catalytic activity of platinum and gold supported on TiO2 for CO oxidation. Catal. Lett., 1997, 44(1-2): 83-87
    [49]郝郑平,安立敦,王弘立.负载型金催化剂的制备、催化性能及应用前景.分子催化, 1996, 10(3): 235-240
    [50] Buffat P, Borel J P. Size effect on the melting temperature of gold particles. Phys. Rev. A: At. Mol. Opt. Phys., 1976, 13(6): 2287-2298
    [51] Golunski S, Rajaram R, Hodge N, et al. Low-temperature redox activity in co-precipitated catalysts: a comparison between gold and platinum-group metals. Catal. Today, 2002, 72(1-2): 107-113
    [52] Hodge N A, Kiely C J, Whyman R, et al. Microstructural comparison of calcined and uncalcined gold/iron-oxide catalysts for low-temperature CO oxidation. Catal. Today, 2002, 72(1-2): 133-144
    [53] Andreeva D, Idakiev V, Tabakova T, et al. Low-temperature water-gas shift reaction over Au/CeO2 catalysts. Catal.Today, 2002, 72(1-2): 51-57
    [54] Wolf A, Schüth F. A systematic study of the synthesis conditions for the preparation of highly active gold catalysts. Appl. Catal., A, 2002, 226(1-2): 1-13
    [55] Ivanova S, Petit C, Pitchon V. A new preparation method for the formation of gold nanoparticles on an oxide support. Appl. Catal., A, 2004, 267(1-2): 191-201
    [56] Mallick K, Witcomb M J, Scurrell M S. Simplified single-step synthetic route for the preparation of a highly active gold-based catalyst for CO oxidation. J. Mol. Catal. A: Chem., 2004, 215(1-2): 103-106
    [57] Claus P, Bruckner A, Mohr C, et al. Supported gold nanoparticles from quantum dot to mesoscopic size scale: Effect of electronic and structural properties on catalytic hydrogenation of conjugated functional groups. J. Am. Chem. Soc., 2000, 122(46): 11430-11439
    [58] Schimpf S, Lucas M, Mohr C, et al. Supported gold nanoparticles: in-depth catalyst characterization and application in hydrogenation and oxidation reactions. Catal. Taday, 2002, 72(1-5): 63-78
    [59] Seker E, Gulari E. Single step sol–gel made gold on alumina catalyst for selective reduction of NOx under oxidizing conditions: effect of gold precursor and reaction conditions. Appl. Catal., A, 2002, 232(1-2): 203-217
    [60] Okumura M, Tanaka K, Ueda A, et al. The reactivities of dimethylgold(Ⅲ)β-diketone on the surface of TiO2: A novel preparation method for Au catalysts. Solid State Ionics, 1997, 95(1-2): 143-149
    [61] Zanella R, Sandoval A, Santiago P, et al. New preparation method of gold nanoparticles on SiO2. J. Phys. Chem. B, 2006, 110(17): 8559–8565
    [62] Zhu H G, Liang C D, Yan W F, et al. Preparation of highly active silica-supported Au catalysts for CO oxidation by a solution-based technique. J. Phys. Chem. B, 2006, 110(22): 10842–10848
    [63] Baiker A, Maciejewski M, Tagliaferri S, et al. Carbon-monoxide oxidation over catalysts prepared by in-Situ activation of amorphous gold-silver-zirconium and gold-iron-zirconium alloys. J. Catal., 1995, 151(2): 407-419
    [64] Shibata M, Kawata N, Masumoto T, et al. Selective hydrogenation of unsaturated carbonyl compounds over an oxidized gold–zirconium alloy. J. Chem. Soc., Chem. Commun., 1988, (3): 154-156
    [65]吴世华,黄唯平,张守民,等.溶剂化金属原子浸渍法制备高分散Au/TiO2低温CO氧化催化剂.催化学报,2000, 21(5): 419-422
    [66]顾忠华,罗来涛,蔡建信.金催化剂及其研究进展.工业催化, 2006, 14(10): 1-5
    [67] Zheng N F, Stucky G D. A general synthetic strategy for oxide-supported metal nanoparticle catalysts. J. Am. Chem. Soc., 2006, 128(44): 14278–14280
    [68]傅锦冲,刘月英,胡荣宗,等.微生物还原法制备负载型高分散度金催化剂.物理化学学报. 1998, 14(9): 769-771
    [69] Veith G M, Lupini A R, Pennycook S J, et al. Nanoparticles of gold onγ-Al2O3 produced by dc magnetron sputtering. J. Catal., 2005, 231(1): 151-158
    [70] Yuan Y Z, Kozlova A P, Asakura K, et al. Supported Au catalysts prepared from Au phosphine complexes and as-precipitated metal hydroxides: characterization and low-temperature CO oxidation. J. Catal., 1997, 170(1): 191-199
    [71] Riahi G, Guillemot D, Polisset-Thfoin M, et al. Preparation, characterization and catalytic activity of gold-based nanoparticles on HY zeolites. Catal. Today, 2002, 72(1-2): 115-121
    [72] Cunningham D A H, Vogel W, Sanchez R M T, et al. Structural analysis of Au/TiO2 catalysts by debye function analysis. J. Catal., 1999, 183(1): 24-31
    [73] Zhang X, Shi H, Xu B Q. Catalysis by gold: isolated surface Au3+ ions are active sites for selective hydrogenation of 1,3-butadiene over Au/ZrO2 catalysts. Angew. Chem. Int. Ed., 2005, 44(43): 7132-7135
    [74] Liu Z P, Wang C M, Fan K N. Single gold atoms in heterogeneous catalysis: selective 1,3-butadiene hydrogenation over Au/ZrO2. Angew. Chem. Int. Ed., 2006, 45(41): 6865-6868
    [75] Mohr C, Hofmeister H, Radnik J, et al. Identification of active sites in gold-catalyzed hydrogenation of acrolein. J. Am. Chem. Soc., 2003, 125(7): 1905-1911
    [76] Claus P, Hofmeister H, Mohr C. Identification of active sites and influence of real structure of gold catalysts in the selective hydrogenation of acrolein to allyl alcohol. Gold Bull., 2004, 37(3-4): 181-186
    [77] Zhao R, Ji D, LüG M, et al. A highly efficient oxidation of cyclohexane over Au/ZSM-5 molecular sieve catalyst with oxygen as oxidant. Chem. Commum., 2004, 7: 904-905
    [78] Xu Y J, Landon P, Enache D, et al. Selective conversion of cyclohexane to cyclohexanol and cyclohexanone using a gold catalyst under mild conditions. Catal. Lett., 2005, 101(3-4): 175-179.
    [79]王东辉,郝郑平,程代云,等.负载型金催化剂在化工中的应用.化工进展, 2002, 21(7): 462-465.
    [80] Venezia A M, Parola V L, Deganello G, et al. Synergetic effect of gold in Au/Pd catalysts during hydrodesulfurization reactions of model compounds. J. Catal., 2003, 215(2): 317-325
    [81] Venezia A M, Parola V L, NicolìV, et al. Effect of gold on the HDS activity of supported palladium catalysts. J. Catal., 2002, 212(1): 56-62
    [82] Bonarowska M, Burda B, Juszczyk W, et al. Hydrodechlorination of CCl2F2 (CFC-12) over Pd-Au/C catalysts. Appl. Catal., B, 2001, 35(1): 13-20
    [83] Bonarowska M, Pielaszek J, Semikolenov V A, et al. Pd–Au/Sibunit carbon catalysts: characterization and catalytic activity in hydrodechlorination of dichlorodifluoromethane (CFC-12). J. Catal., 2002, 209(2): 528-538
    [84] Porta F, Prati L, Rossi M, et al. Metal sols as a useful tool for heterogeneous gold catalyst preparation: reinvestigation of a liquid phase oxidation. Catal. Today, 2000, 61(1-4): 165-172
    [85] Biella S, Prati L, Rossi M. Selective oxidation of D-glucose on gold Catalyst. J. Catal., 2002, 206(2): 242-247
    [86] Landon P, Collier P J, Carley A F, et al. Direct synthesis of hydrogen peroxide from H2 and O2 using Pd and Au catalysts. Phys. Chem. Chem. Phys., 2003, 5(9): 1917-1923
    [87] Ishihara T, Ohura Y, Yoshida S, et al. Synthesis of hydrogen peroxide by direct oxidation of H2 with O2 on Au/SiO2 catalyst. Appl. Catal., A, 2005, 291(1-2): 215-221
    [88] Bamwenda G R, Tsubota S, Nakamura T, et al. Photoassisted hydrogen production from a water-ethanolsolution: a comparison of activities of Au-TiO2 and Pt-TiO2. J. Photochem. Photobiol., A, 1995, 89(2): 177-189
    [89] Nijhuis T A, Huizinga B J, Makkee M, et al. Direct epoxidation of propene using gold dispersed on TS-1 and other titanium-containing supports. Ind. Eng. Chem. Res., 1999, 38(3): 884–891
    [90] Uphade B S, Yamada Y, Akita T, et al. Synthesis and characterization of Ti-MCM-41 and vapor-phase epoxidation of propylene using H2 and O2 over Au/Ti-MCM-41. Appl. Catal., A. 2001, 215(1-2): 137-148
    [91] Stangland E E, Stavens K B, Andres R P, et al. Propylene epoxidation over gold-titania catalysts. Stud. Surf. Sci. Catal., 2000, 130(1): 827-832
    [92] Centeno Má, Carrizosa I, Odriozola J A. Deposition–precipitation method to obtain supported gold catalysts: dependence of the acid–base properties of the support exemplified in the system TiO2–TiOxNy–TiN. Appl. Catal., A, 2003, 246(2): 365-372
    [93] Schwartz V, Mullins D R, Yan W F, et al. XAS study of Au supported on TiO2: influence of oxidation state and particle size on catalytic activity. J. Phys. Chem. B, 2004, 108(40): 15782–15790
    [94] Hua J M, Wei K M, Zheng Q, et al. Influence of calcination temperature on the structure and catalytic performance of Au/iron oxide catalysts for water–gas shift reaction. Appl. Catal., A, 2004, 259(1): 121-130
    [95] Jacobs G, Patterson P M, Williams L, et al. Water-gas shift: in situ spectroscopic studies of noble metal promoted ceria catalysts for CO removal in fuel cell reformers and mechanistic implications. Appl. Catal., A, 2004, 262(2): 177-187
    [96] Tabakova T, Idakiev V, Andreeva D, et al. Influence of the microscopic properties of the support on the catalytic activity of Au/ZnO, Au/ZrO2, Au/Fe2O3, Au/Fe2O3–ZnO, Au/Fe2O3–ZrO2 catalysts for the WGS reaction. Appl. Catal., A, 2000, 202(1): 91-97
    [97] Andreeva D. Low temperature water gas shift over gold catalysts. Gold Bull., 2002, 35(3): 82-88
    [98] Bethke G K, Kung H H. Selective CO oxidation in a hydrogen-rich stream over Au/γ-Al2O3 catalysts. Appl. Catal., A, 2000, 194-195: 43-53
    [99] Krawczyk K, M otek M. Combined plasma-catalytic processing of nitrous oxide. Appl. Catal., B, 2001, 30(3-4): 233-245
    [100] Craenenbroeck J V, Andreeva D, Tabakova T, et al. Spectroscopic analysis of Au–V–based catalysts and their activity in the catalytic removal of diesel soot particulates. J. Catal., 2002, 209(2): 515-527
    [101] Ueda A, Haruta M. Nitric oxide reduction with hydrogen, carbon monoxide, and hydrocarbons over gold catalysts. Gold Bull., 1999, 32(1): 3-11
    [102] Nkosi B, Adams M D, Coville N J, et al. Hydrochlorination of acetylene using carbon-supported gold catalysts: a study of catalyst reactivation. J. Catal., 1991, 128(2): 378-386
    [103] Hutchings G J. Gold catalysis in chemical processing. Catal. Today, 2002, 72(1-2): 11-17
    [104]宋钰珠,古昆,杜官本,等.卟啉化学简介.云南化工, 1996, (1): 10-15
    [105] Adler A D, Longo F R, Shergalis W. Mechanistic investigations of porphyrin syntheses. I. preliminarystudies on ms-tetraphenylporphin. J. Am. Chem. Soc., 1964, 86 (15): 3145–3149
    [106] Adler A D, Longo F R, Finarelli J D, et al. A simplified synthesis for meso-tetraphenylporphine. J. Org. Chem., 1967, 32 (2): 476-478
    [107] Lindsey J S, Schreiman I C, Hsu H C, et al. Rothemund and Adler-Longo reactions revisited: synthesis of tetraphenylporphyrins under equilibrium conditions. J. Org. Chem., 1987, 52 (5): 827–836
    [108] Menieur B, Montanari F, Casella L. Metallopophyrins catalyzed oxidations. Netherlands: Kluwer Academic Publishers, 1994, 49-861
    [109] Arsenault G P, Bullock E, MacDonald S F. Pyrromethanes and porphyrins therefrom. J. Am. Chem. Soc., 1960, 82 (16): 4384–4389
    [110] Littler B J, Ciringh Y Z, Lindsey J S. Investigation of conditions giving minimal scrambling in the synthesis of trans-porphyrins from dipyrromethanes and aldehydes. J. Org. Chem., 1999, 64(8): 2864-2872
    [111] Rao P D, Littler B J, GeierⅢG R, et al. Efficient synthesis of monoacyl dipyrromethanes and their use in the preparation of sterically unhindered trans-porphyrins. J. Org. Chem., 2000, 65(4): 1084-1092
    [112] Clarke O J, Boyle R W. Selective synthesis of asymmetrically substituted 5,15-diphenylporphyrins. Tetrahedron Lett., 1998, 39(39): 7167-7168
    [113] Broadhurst M J, Grigg R, Johnson A W. Synthesis of porphin analogues containing furan and/or thiophen rings. J. Chem. Soc. C, 1971: 3681-3690
    [114] Boudif A, Momenteau M. A new convergent method for porphyrin synthesis based on a‘3 + 1’condensation. J. Chem. Soc., Perkin Trans. 1, 1996, (11): 1235-1242
    [115] Hatscher S, Senge M O. Synthetic access to 5,10-disubstituted porphyrins. Tetrahedron Lett., 2003, 44(1): 157-160
    [116] Lash T D. Porphyrins with exocyclic rings. Part 9 [1] Synthesis of porphyrins by the‘3 + 1’approach. J. Porphyrins Phthalocyanines, 1997, 1(1): 29-44
    [117] Petit A, Loupy A, Maillard P, et al. Microw are irradiation dry mesia: a new and easy method for synthesis of tetrapyrrolic compounds. Synth. Commun., 1992, 22(8):1137-1142
    [118]胡希明,梅治乾,刘海洋,等.四苯基卟啉微波诱导合成研究,华南理工大学学报(自然科学版), 1999, 27(10): 11-15
    [119]陈年友,赵胜芳,廖学红,等.四苯基卟啉的微波合成.武汉大学学报(理学版), 2004, 50(2): 169-172
    [120]王征远,江桂英.微波催化合成四苯基卟啉.精细化工中间体, 2004, 34 (1): 38-39
    [121]张丽蓓,周锡庚,蔡瑞芳,等.金属卟啉化合物研究进展.上海化工, 1999, (12): 4-7
    [122]童沈阳,孙国斌.卟啉在分析化学中的应用.化学试剂, 1987, 9(1): 29-38
    [123]刘国发.稀土卟啉络合物.化学通报, 1988, (10):12-16
    [124]杨继彰. 1994年世界新药的研究与开发.中国新药杂志, 1995, 4(3): 59-61
    [125]顾瑛,刘凡光,王开,等.光动力疗法治疗鲜红斑痣1216例临床分析.中国激光医学杂志, 2001,10(2): 86-89
    [126]王霞,刘道杰.卟啉试剂在分析化学中的应用.聊城师院学报(自然科学版). 2001, 14(2): 49-51
    [127]金晓敏,吴健.卟啉类光敏药物的研究进展.中国药物化学杂志, 2002, 12(1): 52-56
    [128]刘学军,陈茹玉,杨媛媛. 5-氟尿嘧啶-1-基磷三肽化合物的合成及抗癌活性,高等学校化学学报, 2002, 23(7): 1299-1303
    [129]麻晓霞,任奇志,马紫峰.金属卟啉类化合物电催化剂研究进展.化学世界. 2005, 4: 243-246
    [130]孙昌俊,王义贵,陈再成,等.糖苷合成研究(IV)——氟脲嘧啶N-葡萄糖醛酸苷的合成及其抗肿瘤活性,高等学校化学学报, 1994, 15(8): 1168-1171
    [131]罗宣干,卓仁禧,李满庆. 5-氟脲嘧啶的D-氨基葡萄糖衍生物的合成及其抗肿瘤活性的研究,高等学校化学学报, 1996, 17(9): 1416-1420
    [132] Deviprasad G R, D Souza F. Molecular recognition directed porphyrin chemosensor for selective detection of nicotine and cotinine. Chem. Commun., 2000, (19): 1915-1916
    [133] Armitage B. Photocleavage of Nucleic Acids. Chem. Rev., 1998, 98 (3): 1171–1200
    [134] McMillin D R, McNett K M. Photoprocesses of copper complexes that bind to DNA. Chem. Rev., 1998, 98 (3): 1201–1220
    [135]吴越,叶兴凯,张长安.金属卟啉类化合物的催化作用.化学通报, 1988, (1): 1-7
    [136] Haber J, M?odnicka T. Oxidation of hydrocarbons with dioxygen. J. Mol. Catal., 1992, 74(1-3): 131-141
    [137] Meunier B. Metalloporphyrins as versatile catalysts for oxidation reactions and oxidative DNA cleavage. Chem. Rev., 1992, 92 (6): 1411–1456
    [138]李秀玲,余蓉.金属血卟啉配合物的合成及仿酶活性的研究.华西药学杂志, 2004, 19(5): 342-344
    [139] Machado A M, Wypych F, Drechsel S M, et al. Study of the catalytic behavior of montmorillonite/iron(Ⅲ) and Mn(Ⅲ) cationic porphyrins. J. Colloid Interface Sci., 2002, 254(1): 158-164
    [140] Zhang X B, Guo C C, Xu J B, et al. Synthesis of acetylglycosylated metalloporphyrins and their catalysis for cyclohexane oxidation with PhIO under mild conditions. J. Mol. Catal. A: Chem., 2000, 154(1-2): 31-38
    [141] Paulson D R, Ullman R, Sloane R B, et al. Catalysis of autoxidation by metalloporphyrins. J. Chem. Soc., Chem. Commun., 1974, (5): 186-187
    [142] Mlodnicka T. Metalloporphyrins as catalysts in autoxidation processes: a review, J. Mol. Catal., 1986, 36(3): 205-242
    [143]井淑波,王国甲.环己烷催化氧化研究进展.精细石油化工, 2004, (2): 52-57
    [144] Shilov A E, Shteinman A A. Oxygen atom transfer into C?H bond in biological and model chemical systems. Mechanistic Aspects. Acc. Chem. Res., 1999, 32 (9): 763–771
    [145] Wang R M, Wang Y P. Synthesis of polymeric metalloporphyrin and their catalytic activity in the oxidation. Chem. Lett., 1993, 22 (5): 855-858
    [146] Wang R M, Li S B, Wang Y P, et al. Sheet polymer and its complexes.Ⅱ. preparation and catalyticactivity of polymeric tetrakisphenylporphyrin films crosslinked by 4,4’-biphenylene-bisulfoate. J. Appl. Polym. Sci., 1998, 67(12): 2027-2034
    [147] Ellis Jr P E, Lyons J E. Effect of axial azide on the selective, low temperature metalloporphyrin-catalysed reactions of isobutane with molecular oxygen. J. Chem. Soc., Chem. Commun., 1989, (16): 1187-1188
    [148] Bartoli J F, Battioni P, Foor W R D, et al. Synthesis and remarkable properties of ironβ-polynitroporphyrins as catalysts for monooxygenation reactions. J. Chem. Soc., Chem. Commun., 1994, (1): 23-24
    [149] Grinstaff M W, Hill M G, Labinger J A, et al. Mechanism of catalytic oxygenation of alkanes by halogenated iron porphyrins. Science, 1994, 264(5163): 1311-1313
    [150] Meunier B, Carvalho M E D, Robert A. Aspects of metalloporphyrin-catalyzed oxygenation of hydrocarbons with anionic single oxygen donors, NaOCl and KHSO5. J Mol. Catal., 1987, 41(1-2): 185-195
    [151] Bruice T C. Reactions of hydroperoxides with metallotetraphenylporphyrins in aqueous solutions. Acc. Chem. Res., 1991, 24 (8): 243–249
    [152] Gunter M J, Turner P. Metalloporphyrins as models for the cytochromes p-450. Coord. Chem. Rev., 1991, 108(2): 115-161
    [153] Vos D E D, Jacobs P A. Heterogenization of Mn and Fe complex oxidation catalysts. Catal. Today, 2000, 57(1-2): 105- 114
    [154]李臻,夏春谷.金属卟啉催化烯烃环氧化及反应机理研究.化学进展, 2002, 14 (5) : 384-390
    [155] Hilal H S, Kim C, Sito M L, Schreiner A F. Preparation and characterization of tetra(4-pyridyl)porphyrinatomanganese(Ⅲ) cation supported covalently on poly (siloxane). J. Mol. Catal., 1991, 64(2): 133-142
    [156]程坦,李翔,张曼征.负载金属卟啉氧化异丙苯的研究.工业催化, 1993, (2): 37-41
    [157] Rosa I L V, Manso C M C P, Serra O A, et al. Biomimetical catalytic activity of iron(Ⅲ) porphyrins encapsulated in the zeolite X. J. Mol. Catal. A: Chem., 2000, 160(2): 199-208
    [158] Doro F G, Smith J R L, Ferreira A G, et al. Oxidation of alkanes and alkenes by iodosylbenzene and hydrogen peroxide catalysed by halogenated manganese porphyrins in homogeneous solution and covalently bound to silica. J. Mol. Catal. A: Chem. 2000, 164(1-2): 97-108
    [159] Mansuy D. Activation of alkanes : the biomimetic approach. Coord. Chem. Rev. 1993, 125(1-2): 129-141
    [160]俞善信,钟为标,郭灿城.卟啉化合物的合成及其对细胞色素P-450的模拟ⅩⅢ. PVC和CPVC固载TPPMn(Ⅲ)OH的合成及其对惰性氢键的温和催化活化.催化学报, 1994, 15(3): 232-235
    [161]李臻,景震强,夏春谷.金属卟啉配合物的催化氧化应用研究进展.有机化学, 2007, 27(1): 34-44
    [162]游劲松,蓝仲薇,余孝其.负载化金属卟啉研究进展.石油化工, 1996, 25: 56-61
    [163]郭志武,靳海波,佟泽民.环己酮、环己醇制备技术进展.化工进展, 2006, 25(8): 852-858
    [164]谢娟,魏雨,赵新强,等.自组装技术制备Au/SiO2催化剂及其催化空气氧化环己烷的性能研究.石油炼制与化工, 2009, 40(2): 31-36
    [165]吴鑫干,刘含茂.环己烷催化氧化反应及工艺的研究进展.化工科技, 2002, 10 (2): 48-53
    [166]谢文莲,李玲,郭灿城.环己烷氧化制环己酮工艺技术进展.精细化工中间体, 2003, 33(1): 8-10
    [167]张丽芳,陈赤阳,项志军.环己烷氧化制备环己酮和环己醇工艺研究进展.北京石油化工学院学报. 2004, 12(2): 39-43
    [168]张毅,常有国,王学丽,等.环己烷氧化制环己酮催化剂研究进展.精细石油化工进展, 2005, 6(8): 43-45
    [169] Groves J T, Nemo T E, Myers R S. Hydroxylation and epoxidation catalyzed by iron-porphine complexes. Oxygen transfer fromiodosylbenzene. J. Am. Chem. Soc., 1979, 101(4): 1032-1033
    [170] Guo C C, Chu M F, Liu Q, et al. Effective catalysis of simple metalloporphyrins for cyclohexane oxidation with air in the absence of additives and solvents. Appl. Catal., A, 2003, 246(2): 303-309
    [171]郭灿城,刘强,刘洋,等.金属卟啉催化空气氧化环己烷的方法. CN1405131, 2003
    [172]周小平,蔡炳新,张海洲.环己烷选择性氧化催化剂的研究进展.应用化工, 2002, 31(2): 7-9
    [173] Chavez F A, Briones J A, Olmstead M M, et al. Syntheses and stuctures of alkyl peroxo adducts ofβ-diketonate cobalt(Ⅲ) complexes and their role in oxidation of hydrocarbons and olefin epoxidation. Inorg. Chem., 1999, 38(7): 1603-1608
    [174] Guo C C, Huang G, Zhang X B, et al. Catalysis of chitosan-supported iron tetraphenylporphyrin for aerobic oxidation of cyclohexane in absence of reductants and solvents. Appl. Catal., A, 2003, 247 (2): 261-267
    [175]黄冠,郭灿城.甲壳素铁卟啉制备及其催化空气氧化环己烷研究.分子催化, 2005, 19(1): 36-40
    [176] Kesavan V, Sivanand P S, Chandrasekavn S, et al. Catalytic aerobic oxidation of cycloalkanes with nanostructured amorphous metals and alloys. Angew. Chem. Int. Ed., 1999, 38 (23): 3521-3523
    [177] Perkas N, Koltypin Y, Palchik O, et al . Oxidation of cyclohexane with nanostructured amorphous catalysts under mild conditions. Appl. Catal., A, 2001, 209(1-2): 125-130
    [178]Srivastava D N, Perkas N, Seisenbaeva G A, et al . Preparation of porous cobalt and nickel oxides f rom corresponding alkoxides using a sonochemical technique and it s application as a catalyst in t he oxidation of hydrocarbons. Ultrason. Sonochem., 2003, 10(1): 1-9
    [179] Armbruster U, Martin A, Smejkal Q, et al. Heterogeneously catalysed partial oxidation of cyclohexane in supercritical carbon dioxide. Appl. Catal., A, 2004, 265(2): 237-246
    [180] Langhendries G, Baron G V, Vankelecom I F J, et al. Selective hydrocarbon oxidation using a liquid-phase catalytic membrane reactor. Catal. Today, 2000, 56(1-3): 131-135
    [181] Dapurkar S E, Sakthivel A, Selvam P. Mesoporous VMCM-41: highly efficient and remarkable catalyst for selective oxidation of cyclohexane to cyclohexanol. J. Mol. Catal. A: Chem., 2004, 223(1-2): 241-250
    [182] Selvam P, Dapurkar S E. Catalytic activity of highly ordered mesoporous VMCM-48. Appl. Catal., A, 2004, 276(1-2): 257-265
    [183] Anisia K S, Kumar A. Oxidation of cyclohexane with molecular oxygen using heterogeneous silica gel catalyst bonded with [1,2-bis(salicylidene amino)-phenylene] zirconium complex. Appl. Catal., A, 2004, 273(1-2): 193-200
    [184]黄世勇,王海涛,宋艳芬,等.杂原子MCM-41分子筛的合成及对环己烷氧化的研究.精细化工, 2004, 21(1): 41-45
    [185] Thomas J M, Raja R, Sankar G, et al. Redox molecular sieve catalysts for the aerobic selective oxidation of hydrocarbons. Stud. Surf. Sci. Catal., 2000, 130(1): 887-892
    [186] Tian P, Liu Z M, Wu Z B, et al. Characterization of metal-containing molecular sieves and their catalytic properties in the selective oxidation of cyclohexane. Catal. Today, 2004, 93(95): 735-742
    [187] Sakthivel A, Selvam P. Mesoporous (Cr)MCM-41: a mild and efficient heterogeneous catalyst for selective oxidation of cyclohexane. J. Catal., 2002, 211(1): 134-143
    [189] Subrahmanyam C, Viswanathan B, Varadarajan T K. Synthesis, characterization and catalytic activity of mesoporous trivalent iron substituted aluminophosphates. J. Mol. Catal. A: Chem., 2004, 223(1-2): 149-153
    [190]阳卫军,郭灿城.金属卟啉化合物及其对烷烃的仿生催化氧化.应用化学, 2004, 21(6): 541-545
    [191]刘依农,赵锁奇,王仁安.固载型过渡金属卟啉催化氧化烷烃的研究进展.化学试剂, 2003, 25(4): 211-214
    [192]桂建舟,刘丹,邱宝军,等.环己烷在Au-Co/SBA-15上选择性氧化的研究.应用化工, 2006, 35(3): 161-163
    [193]熊海,石峰,彭家建,等.金催化剂催化环己烷液相选择氧化研究.分子催化, 2005, 19(3): 204-207
    [194] Porta F, Prati L, Rossi M, et al. Metal sols as a useful tool for heterogeneous gold catalyst preparation: reinvestigation of a liquid phase oxidation. Catal. Today, 2000, 61(1-4): 165-172
    [195]阎淼.卟啉及金属卟啉的合成及其在催化烯烃环氧化反应中的应用和光谱性质的研究[硕士学位论文].保存地点:河北师范大学, 2005
    [196]陶泳,高滋.金的催化作用.化学世界, 2005, 46(2): 114-117
    [197] Du Y K, Yang P, Mou Z G, et al. Thermal decomposition behaviors of PVP coated on p latinum nanoparticles. J. Appl. Polym. Sci., 2006, 99 (1): 23-26
    [198] Daniel M C, Astruc D. Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev., 2004, 104(1): 293-346
    [199]裴立宅.表面活性剂在合成金纳米晶溶胶中的应用.稀有金属快报, 2004, 23(11): 35-38
    [200]杨生春,董守安,唐春,等.金纳米粒子自球形向棒状的转变和生长的光化学法研究.化学学报,2005, 63 (10): 873-879
    [201] Guo W J, Dai J, Zhang D Q, et al. Redox active gold nanoparticles modified with tetrathiafulvalene derivative via direct sulfur bridge. Inorg. Chem. Commun., 2005, 8(11): 994-997
    [202] Bond G C, Thompson D T. Catalysis by gold. Catal. Rev.-Sci. Eng., 1999, 41(3/4): 319-388
    [203] Kozlov A I, Kozlova A P, Asakura K, et al. Supported gold catalysts prepared from a gold phosphine precursor and as-precipitated metal-hydroxide precursors: effect of preparation conditions on the catalytic performance. J. Catal., 2000, 196(1): 56-65
    [204]孙秀兰,赵晓联,汤坚.单分散性胶体金的制备工艺优化.免疫学杂志, 2004, 20(2): 151-154
    [205] Enüstün B V, Turkevich J. Coagulation of colloidal gold. J. Am. Chem. Soc., 1963, 85(21): 3317-3328
    [206]彭菊村,卢强华,吴波英.试剂的浓度和加入顺序对水相合成金纳米颗粒的影响.稀有金属, 2006, 30(4): 552-555
    [207]彭菊村,卢强华,吴波英.金纳米颗粒水相合成工艺研究.稀有金属材料与工程, 2006, 35(6): 954-958
    [208] San T K, Pal A, Pal T. Size regime dependent catalysis by gold nanoparticles for the reduction of eosin. J. Phys. Chem. B, 2001, 105(38): 9266-9272
    [209]李中春,周全法. SDS/Vc/H2O微乳液中纳米金的合成.稀有金属材料与工程, 2007, 36(6): 1055-1057
    [210] Kozlov A I, Kozlova A P, Liu H C, et al. A new approach to active supported Au catalysts. Appl. Catal., A, 1999, 182(1): 9-28
    [211] Burda C, Green T, Landes C, et al. Optical spectroscopy of nanophase material. New York: Wiley, 2000
    [212]朱道本,王佛松编.有机固体.上海:上海科学技术出版社, 1999
    [213]郭志新,李玉良,朱道本.富勒烯的化学研究进展.化学进展, 1998, 10(1): 1-15
    [214] LüG M, Ji D, Qian G, et al. Gold nanoparticles in mesoporous materials showing catalytic selective oxidation cyclohexane using oxygen. Appl. Catal., A, 2005, 280(2): 175-180
    [215]赵睿,吕高孟,季东,等. Au/ZSM-5催化选择氧化环己烷制环己酮和环己醇的研究.分子催化, 2005, 19(2): 115-120
    [216]薛伟,张敬畅,王延吉,等.利用W/O微乳液制备具有规则介孔结构的单分散球形纳米SiO2.石油学报, 2005, 21(4): 37-43
    [217]朱淮武,张朝平.复合磁性纳米NiFe2O4的制备及光谱特性.光谱学与光谱分析, 2004, 24(1): 25-28
    [218]胡瑞省,刘善堂,朱涛,等.金纳米粒子通过形成Au-S键的组装.物理化学学报, 1999, 15(11): 961-965
    [219] Gregg S J, Sing K S W. Adsorption, surface area and porosity. 2nd Edition. New York: Academic Press, 1982
    [220]吕倩,孟明,查宇清.高热稳定性纳米Au/TiO2催化剂的制备与表征.催化学报, 2006, 27(12):1111-1116
    [221]朱自成.表面分析技术综述.表面技术, 1992 , 21(1): 5-9
    [222]沈春玉,储刚.固体催化剂结构分析.抚顺石油学院学报, 2003, 23(3): 31-33
    [223]杨南如.无机非金属材料测试方法.武汉:武汉工业大学出版社, 1993
    [224] Hutchings G J, Hall M S, Carley A F, et al. Role of gold cations in the oxidation of carbon monoxide catalyzed by iron oxide-supported gold. J. Catal., 2006, 242(1): 71-81
    [225] Boyd D, Golunski S, Hearne G R, et al. Reductive routes to stabilized nanogold and relation to catalysis by supported gold. Appl. Catal., A, 2005, 292: 76-81
    [226] Fierro-Gonzalez J C, Gates B C. Mononuclear AuⅢand AuⅠComplexes Bonded to Zeolite NaY: Catalysts for CO Oxidation at 298 K. J. Phys. Chem. B, 2004, 108 (44): 16999–17002
    [227] Grunwaldt J D, Maciejewski M, Becker O S, et al. Comparative study of Au/TiO2 and Au/ZrO2 catalysts for low-temperature CO oxidation. J. Catal., 1999, 186(2): 458-469
    [228] Salama T M, Shido T, Minagawa H, et al. Characterization of gold(I) in NaY zeolite and acidity generation. J. Catal., 1995, 152(2): 322-330
    [229] Park E D, Lee J S. Effects of pretreatment conditions on CO oxidation over supported Au catalysts. J. Catal., 1999, 186 (1): 1-11
    [230] MinicòS, ScirèS, Crisafulli C, et al. Influence of catalyst pretreatments on volatile organic compounds oxidation over gold/iron oxide. Appl. Catal., B, 2001, 34 (4): 277-285
    [231]索掌怀,金明善,鲁继青,等. Au/SiO2催化剂上丙烯空气氧化制丙烯醛.石油化工, 2005, 34(10): 932-937
    [232]毛立群,冯彩霞,金振声,等. Au/TiO2的制备及其光催化氧化丙烯的研究.感光科学与光化学, 2005, 23(1): 61-65
    [233]齐世学,邹旭华,徐秀峰,等. Au/NiO催化剂的XRD、TEM、TPR及XPS表征研究.分子催化, 2002, 16(3): 209-212
    [234]桂建舟,杜建亮,刘丹,等. Au-SBA-15介孔分子筛的合成及其催化性能研究.工业催化, 2006, 14(5): 56-60
    [235] Hao Z P, An L D, Wang H L, et al. Mechanism of gold activation in supported gold catalysts for CO oxidation. React. Kinet. Catal. Lett., 2000, 70(1): 153-160
    [236] Rolison D R. Catalytic nanoarchitectures-the importance of nothing and the unimportance of periodicity. Science, 2003, 299(5613): 1698-1701
    [237] Haruta M. Size- and support-dependency in the catalysis of gold. Catal. Today, 1997, 36(1): 153-166
    [238]周华,董守安.纳米金负载型催化剂的研究进展.贵金属, 2004, 25(2): 48-56
    [239]朱洪法.催化剂载体制备及应用技术.北京:中国石油化工出版社, 2002
    [240]庄玉兰,林骐,安志强. TiO2载体的应用研究进展.天津化工, 2006, 20(6): 12-14
    [241]张李锋,石悠,赵斌元,等.γ-Al2O3载体研究进展.材料导报, 2007, 21(2): 67-71
    [242]施岩,王海彦,王莉,等.高比表面纳米TiO2载体的液相合成方法.化学与黏合, 2005, 27(5): 303-307
    [243]董群,相田隆司,新山浩雄.金催化剂上一氧化氮还原反应的研究.大庆石油学院学报, 1992, 16(2): 60-64
    [244] Schubert M M, Hackenberg S, Veen A C, et al. CO oxidation over supported gold catalysts—“inert”and“active”support materials and their role for the oxygen supply during reaction. J. Catal., 2001, 197(1): 113-122
    [245] Hao Z P, Fen L B, Lu G Q, et al. In situ electron paramagnetic resonance (EPR) study of surface oxygen species on Au/ZnO catalyst for low-temperature carbon monoxide oxidation. Appl. Catal., A, 2001, 213(2): 173-177
    [246] Tripathi A K, Kamble V S, Gupta N M. Microcalorimetry, adsorption, and reaction studies of CO, O2, and CO+O2 over Au/Fe2O3, Fe2O3, and polycrystalline gold catalysts. J. Catal., 1999, 187(2): 332-342
    [247] Grunwaldt J D, Baiker A. Gold/Titania interfaces and their role in carbon monoxide oxidation. J. Phys. Chem. B, 1999, 103 (6): 1002-1012
    [248] Traylor T G, Hill K W, Fann W P, et al. Aliphatic hydroxylation catalyzed by iron(Ⅲ) porphyrins. J. Am. Chem. Soc., 1992, 114(4): 1308-1312
    [249] Wang C Q, Shalyaev K V, Bonchio M, et al. Fast catalytic hydroxylation of hydrocarbons with ruthenium porphyrins. Inorg. Chem., 2006, 45(12): 4769-4782
    [250] Groves J T, Nemo T E. Epoxidation reactions catalyzed by iron porphyrins. Oxygen transfer from iodosylbenzene. J. Am. Chem. Soc., 1983, 105(18): 5786-5791
    [251] Adam W, Stegmann V R, Saha-M?ller C R. Regio- and diastereoselective epoxidation of chiral allylic alcohols catalyzed by manganese(salen) and iron(porphyrin) complexes. J. Am. Chem. Soc., 1999, 121(9): 1879-1882
    [252] Moghadam M, Tangestaninejad S, Mirkhani V, et al. Mild and efficient oxidation of alcohols with sodium periodate catalyzed by polystyrene-bound Mn(Ⅲ)porphyrin. Bioorg. &Med. Chem., 2005, 13(8): 2901-2905
    [253] Mirkhani V, Tangestaninejad S, Moghadam M, et al. Efficient oxidative decarboxylation of carboxylic acids with sodium periodate catalyzed by supported manganese (Ⅲ) porphyrin. Bioorg. &Med. Chem. Lett., 2003, 13(20): 3433-3435
    [254] Moghadam M, Tangestaninejad S, Mirkhani V, et al. Rapid and efficient ring opening of epoxides catalyzed by a new electron deficient tin(IV) porphyrin. Tetrahedron, 2004, 60(29): 6105-6111
    [255]纪红兵,佘远斌.绿色氧化与还原.北京:中国石化出版社, 2005
    [256] Grootboom N, Nyokong T. Iron perchlorophthalocyanine and tetrasulfophthalocyanine catalyzed oxidation of cyclohexane using hydrogen peroxide, chloroperoxybenzoic acid and tert-butylhydroperoxide as oxidants. J. Mol. Catal. A: Chem., 2002, 179(1-2): 113-123
    [257] Sim?es M M Q, Santos I C M S, M. Balula S S, et al. Oxidation of cycloalkanes with hydrogen peroxide in the presence of Keggin-type polyoxotungstates. Catal. Today, 2004, 91-92: 211-214
    [258] Mansuy D, Bartoli J F, Chottard J C, et al. Metalloporphyrin-catalyzed hydroxylation of cyclohexane by alkyl hydroperoxides: pronounced efficiency of iron-porphyrins. Angew. Chem. Int. Ed. Engl., 1980, 19(11): 909-910
    [259] Wang D J, Zhang J, Shi T S, et al. Transition identification of tailed porphyrin-Mn(Ⅲ) complex in the near-UV and near-IR regions using surface photovoltage spectrum. J. Photochem. Photobiol., A, 1996, 93(1): 21-25
    [260] Yeow Edwin K L, Steer Ronald P. Dynamics of electronic energy transfer from the S2 state of azulene to the S2 state of zinc porphyrin. Phys. Chem. Chem. Phys., 2003, 5(1): 97-105
    [261]赵淑杰,刘文丛,赵晓松. Meso-四(对羟基苯基)卟啉及其金属配合物的合成与表征.分子科学学报, 2006, 22(1): 54-57
    [262] Poltowicz J, Haber J. The oxyfunctionalization of cycloalkanes with dioxygen catalyzed by soluble and supported metalloporphyrins. J. Mol. Catal. A: Chem., 2004, 220(1): 43-51
    [263]佘远斌,范莉莉,张燕慧,等.金属卟啉仿生催化绿色合成对硝基苯甲醛的新方法.化工学报, 2004, 55(12): 2032-2037
    [264] Lyons J E, Ellis P E, Myers H K. Halogenated metalloporphyrin complexes as catalysts for selective reactions of acyclic alkanes with molecular oxygen. J. Catal., 1995, 155(1): 59-73
    [265] Lyons J E, Ellis P E, Shaikh S N. Azide promotion of alkane oxidations catalyzed by metal complexes in solution. Inorg. Chim. Acta, 1998, 270(1-2): 162-168
    [266] Battioni P, Iwanejko R, Mansuy D. Reactivity of polyhalogenated and zeolite-encapsulated metalloporphyrins in oxidation with dioxygen. J. Mol. Catal. A: Chem., 1996, 109(2): 91-98
    [267] Moore K T, Horváth I T, Therien M J. High-pressure NMR studies of (porphinato)iron-catalyzed isobutane oxidation utilizing dioxygen as the stoichiometric oxidant. J. Am. Chem. Soc., 1997, 119 (7): 1791-1792
    [268]黄冠.生物高分子金属卟啉催化空气氧化环己烷研究[博士学位论文].保存地点:湖南大学, 2003
    [269]曹之旺.金属四苯基卟啉化合物的合成及其在催化氧化环己烷中的应用[硕士学位论文].保存地点:南京理工大学, 2006
    [270]王芳.卟啉衍生物的合成及其仿生催化氧化环己烷[硕士学位论文].保存地点:南京理工大学, 2007
    [271]李皓.金属卟啉催化氧化环己烷工业应用研究[硕士学位论文].保存地点:湘潭大学, 2004
    [272]黄冠,刘飞鸽,郭灿成.高分子多糖载体对四苯基金属卟啉催化性能影响.化学学报, 2006, 64(7): 662-666
    [273]刘小秦,肖俊钦,李皓.金属卟啉催化分解环己基过氧化氢工艺. CN1519218, 2004
    [274] Bain C D, Troughton E B, Tao Y T, et al. Formation of monolayer films by the spontaneous assembly of organic thiols from solution onto gold. J. Am. Chem. Soc., 1989, 111 (1): 321-335
    [275]邓文礼,杨大本,方哗,等.硫醇在An(111)上的SA单分子层膜研究.中国科学(B辑), 1996, 26(2): 174-180
    [276]卢莲英,汪敦佳,郑静,等. 2-巯基吡啶与铜(Ⅱ)、镍(Ⅱ)配合物的合成.甘肃科学学报, 2005, 17(2): 54-56
    [277]陈煦,李永强,张和,等. 2 -巯基吡啶的合成及结构测定.天津化工, 2000, (5): 26-27
    [278]宋仲容,李树伟,曹槐.四苯骈卟啉金属配合物轴向配位反应的热力学性质研究.化学研究与应用, 2004, 16(2): 259-260
    [279]王旭涛,褚明福,郭灿城.咪唑修饰硅胶配位固载锰(Ⅲ)卟啉对环己烷空气氧化的催化作用.高等学校化学学报, 2005, 26 (1) : 64-67
    [280] Bensebaa F, Zhou Y, Deslandes Y, et al. XPS study of metal–sulfur bonds in metal–alkanethiolate materials. Surf. Sci., 1998, 405(1): L472-L476
    [281] Wagner C D, Riggs W M, Davis L E, et al. Handbook of X-ray photoelectron spectroscopy. New York: Perkin-Elmer Corporation, 1979
    [282]赵继全,韩建萍,张月成.丙氨酸-水杨醛席夫碱锰(Ⅲ)配合物的制备及其对烯烃环氧化的催化性能.催化学报, 2005, 26(7): 571-576
    [283]孙二军,王栋,程秀利,等. 5, 10, 15, 20-四(对-十四酰亚胺基苯基)卟啉及其锰、锌配合物的合成及性质.高等学校化学学报, 2007, 28(7): 1208-1213
    [284]唐渝,王小白,桂明德,等.配位负载金属卟啉的合成及催化氧化环已烷的性能研究.化学研究与应用, 1998, 10 (5): 470-475

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700