复合型ABR处理印染废水的中试研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
印染废水具有水质复杂、pH高、可生化性差等特点,采用单一的好氧生物处理难以使出水达标排放,因此本研究采用中试规模的复合型厌氧折流板反应器(ABR)处理印染废水,通过厌氧微生物的水解酸化作用将印染废水中的复杂有机物降解为易于好氧微生物利用的简单有机物。本研究确定了复合型ABR稳定运行的工艺参数,从而为绍兴水处理发展有限公司一期工程厌氧段挖潜改造工程的设计和运行提供了决策依据和参考。
     本研究考察了复合型ABR的启动及其运行效能,中试结果表明,复合型ABR在HRT为60 h,pH为7.0~8.5,水力负荷为9.3 m~3/(m~2·d),容积负荷为0.4 kgCOD/(m~3·d)的条件下启动。复合型ABR将印染废水中的84种有机物削减为44种,并有效去除了某些类型的染料;在进水COD范围为700~1300 mg/L,HRT为12 h,pH在7.0~9.0波动时,水解酸化效果较明显,COD去除率平均为28.6 %,废水的平均B/C由0.27提高至0.35;当pH在6.5~7.2波动时,产甲烷作用增强,COD平均去除率达到40.0 %。SS的平均去除率为40.8 %。
     复合型ABR出水经好氧处理后,COD变化范围为104~142 mg/L,平均值为124 mg/L,经少量硫酸铝试剂混凝处理后可达标排放。复合型ABR降低了废水的污染程度,提高了废水的可生化性,减小了废水的pH变化范围,从而为后续好氧段的稳定运行提供了有利条件。
     广义灰色关联分析结果表明,表面水力负荷、容积负荷、水温和进水SS对复合型ABR的COD去除效果影响较大。依据复合型ABR的运行效能和广义灰色关联法的分析结果,确定了复合型ABR稳定运行的工艺参数:HRT控制在12 h;pH范围为7.0~9.0;碱度保持在600~1400 mg/L;ORP保持在-450~-550 mV;表面水力负荷为40~48 m~3/(m~2·d);容积负荷为1.3~2.5 kgCOD/(m~3·d)。
     通过分析复合型ABR的COD去除率的影响因素,认为复合型ABR的表面水力负荷的最大提升幅度不宜超过每天3 m~3/(m~2·d);可以不调节复合型ABR内的温度,但应尽可能采取适当的保温措施;应当对ABR的各隔室底部及时适量排泥。
Dye wastewater is characterized by complex quality, high pH, low biodegradability and so on, which is difficult to be discharged under standard by single aerobic biological treatment. Therefore, this study used a pilot-scale compound anaerobic baffled reactor (ABR) to treat dye wastewater, which utilized the hydrolyzation and acidification of the anaerobic microbes to degrade the complex organic matter in dye wastewater to simple one which could be easily used by aerobic microbes. This study identified technical parameters for steady operation of the modified anaerobic baffled reactor, and thus supplied basis and reference for decision making for the design and operation of the anaerobic part revamp engineering of the First Period Engineering in Shaoxing Water Treatment and Development Ltd.
     This study investigated the startup and operation performance of the modified anaerobic baffled reactor. The pilot-scale trial results showed that the reactor were successfully started up under the condition that influent COD range was 700~1 300 mg/L, HRT was 60 h, pH 7.0~8.5, hydraulic load range 9.3 m~3/(m~2·d) and volume load 0.4 kgCOD/(m~3·d). The modified anaerobic baffled reactor reduced the organic matter type number from 84 to 44, effectively removed some types of dye; when pH fluctuated between 7.0 and 9.0, the effect of hydrolyzation and acidification was evident, the average COD removal efficiency was 28.6 % and the ratio of BOD to COD from 0.27 to 0.35; when pH fluctuated between 6.5 and 7.2, the effect of methanogenesis was intensified, and the average COD removal efficiency reached 40.0 %. The average SS removal efficiency was 40.8 %.
     After the effluent of the compound ABR was treated by aerobic process, the COD variation range was 104~142 mg/L, the average of which was 124 mg/L. The effluent could be discharged under standard after cogulation treatment by a small amount of aluminium sulfate. The compound ABR reduced the pollution degree of dye wastewater, improved its biodegradability, decreased its pH variation range, and thus supplied favorable conditions for the steady operation of the latter aerobic part.
     The results of generalized grey relational analysis showed that hydraulic load, volume load, water temperature and influent SS greatly influenced COD removal efficiency. Based on the operational performance of the modified anaerobic baffled reactor and the results of generalized grey relational analysis maintained in a certain range: technical parameters for steady operation of the reactor were identified: HRT 12 h; pH range 7.0~9.0; alkalinity range 600~1400 mg/L; ORP range -450~-550 mV; hydraulic load range range 40~48 m~3/(m~2·d), volume load range 1.3~2.5 kgCOD/(m~3·d).
     Based on comprehensive analysis on the influencing factors of COD removal efficiency of the reactor, it is suggested that the maximum elevation of hydraulic load of the reactor should not be higher than 3 m~3/(m~2·d) per day; there is no need to regulate the reactor temperature, but it is better to take some insulation measures; it is necessary to discharge a proper amount of sludge at the bottom of each compartment in time.
引文
1纺织印染行业废水现状.中国纺织网http://info.texnet.com.cn/content/2007-11-19/145732.html
    2纺织印染行业废水排放现状及膜法回用技术.印染在线http://www.e-dyer.com/tech/9320.html
    3分析我国印染业废水处理现状.慧聪网http://info.water.hc360.com/2008/09/030919115433.shtml
    4刘翠英.印染废水的特点及其处理工艺问题述评.有色金属加工. 1998, (6): 27~29
    5彭会清,许开.印染废水处理方法进展与述评.南方冶金学院学. 2003, 24(4): 57~61
    6张林生,张胜林,夏明芳.印染废水处理技术及典型工程.化学工业出版社, 2005: 43~44
    7单国华,贾丽霞.印染废水及其处理方法研究进展.针织工业. 2009, (7): 62~67
    8 I. Gulkaya, G. A. Surucu. Importance of H2O2/Fe2+ Ratio in Fenton's Treatment of a Carpet Dyeing Wastewater. Journal of Hazardous Materials B. 2006, 136(3): 763~769
    9梁慧锋.印染废水处理技术的研究现状.企业导报. 2010, (3): 293~294
    10 S. Papié, D. Vujevié, N. Koprivanac et al. Decolourization and Mineralization of Commercial Reactive Dyes by Using Homogeneous and Heterogeneous Fenton and UV/Fenton Processes. Journal of Hazardous Materials. 2009, 164(2~3):1137~1145
    11 J. X. Chen, L. Z. Zhu. UV-Fenton Discolouration and Mineralization of Orange II over Hydroxyl-Fe-pillared Bentonite. Journal of Photochemistry and Photobiology A: Chemistry. 2007, 188(1): 56~64
    12 M. Constapel, M. Schellentréger, J. M. Marzinkowski et al. Degradation of Reactive Dyes in Wastewater from the Textile Industry by Ozone: Analysis of the Products by Accurate Masses. Water Research. 2009, 43(3): 733~743
    13 J. N. Wu, H. Doan and S.i Upreti. Decolorization of Aqueous Textile Reactive Dye by Ozone. Chemical Engineering Journal. 2008, 142(2): 156~160
    14 H. Y. Shu, M. C. Chang. Decolorization Effects of Six Azo Dyes by O3, UV/O3 and UV/H2O2 Processes. Dyes and Pigments. 2005, 65(1): 25~31 5~900
    15 I. Gültekin, N. H. Ince. Degradation of Aryl-azo-naphthol Dyes by Ultrasound, Ozone and Their Combination: Effect ofα-substituents Ultrasonics Sonochemistry. 2006, 13(3): 208~214
    16 M. H. P. Santana, L. M. D. Silva, A. C. Freitas et al. Application of Electrochemically Generated Ozone to the Discoloration and Degradation of Solutions Containing the Dye Reactive Orange 122. Journal of Hazardous Materials. 2009, 164(1): 10~17
    17 G. Tezcanli-Güyer, N. H. Ince. Individual and Combined Effects of Ultrasound, Ozone and UV Irradiation: a Case Study with Textile Dyes. Ultrasonics. 2004, 42(1~9): 603~609
    18汪晓军,林德贤,顾晓扬等.臭氧-曝气生物滤池处理酸性玫瑰红染料废水.环境污染治理技术与设备. 2006, 7(7): 43~46
    19李兵宇,刘万生,赵伟荣等. O3/UV与生化组合处理印染废水.印染. 2005, (13): 34~37
    20 A. Bes-Pia, A. Iborra-Clar, J. A. Mendoza-Roca et al. Nanofiltration of Biologically Treated Textile Effluents Using Ozone as a Pretreatment. Desalination. 2004, 167(1~3): 387~392
    21 P. C. C. Faria, J. J. M. Orfao and M. F. R. Pereira. Mineralisation of Coloured Aqueous Solutions by Ozonation in the Presence of Activated Carbon. Water Research. 2005, 39(8): 1461~1470
    22 Y. Dong, K. He, B. Zhao et al. Catalytic Ozonation of Azo Dye Active Brilliant red X-3B in Water with Natural Mineral Brucite. Catalysis Communications. 2007, 8(11): 1599~1603
    23 X. Y. Bi, P. Wang, C. Y. Jiao et al. Degradation of Remazol Golden Yellow Dye Wastewater in Microwave Enhanced ClO2 Catalytic Oxidation Process. Journal of Hazardous Materials. 2009, 168(2~3): 89
    24 I. Arslan-Alaton, J. L. Ferry. Application of Polyoxotungstates as Environmental Catalysts: Wet Air Oxidation of Acid Dye Orange II. Dyes and Pigments. 2002, 54(1): 25~36
    25胡涛,汪玉祥,许干等.印染废水的治理研究.江苏环境科技. 2005, 18(4): 29~32
    26 F. Banat, N. Al-Bastaki. Treating Dye Wastewater by an Integrated Process of Adsorption Using Activated Carbon and Ultrafiltration. Desalination. 2004, 170(1): 69~75
    27 J. Hyunbae. Adsorption of Anionic Dye and Surfactant from Water onto Organomorillonite. Separation Science and Technology. 2003, 35(3): 353~365
    28付兴隆,裴亮,张磊.印染废水分离处理新技术研究进展.过滤与分离. 2009, 19(1): 7~9
    29 J. J. Qin, M. H. Oo, K. A. Kekre. Nanofiltration for Recovering Wastewater from a Specific Dyeing Facility. Separation and Purification Technology. 2007, 56(2): 199~203
    30 J. Mo, J. E. Wang. Pretreatment of a Dyeing Wastewater Using Chemical Coagulants. Dyes and Pigments. 2007, 72(2): 240~245
    31 Z. Renata, S. L. Jadwiga, E. Stelmach et al. Coupling of Membrane Filtration with Biological Methods for Textile Wastewater Treatment. Desalination. 2006, 198(1~3): 316~325
    32陆继来,任洪强,夏明芳等.新排放标准的印染废水深度处理技术进展.工业水处理. 2009, 29(7): 7~11
    33 M. Y. Ghaly, J. Y. Farah and A. M. Fathy. Enhancement of Decolorization Rate and COD Removal from Dyes Containing Wastewater by the Addition of Hydrogen Peroxide under Solar Photocatalytic Oxidation. Desalination. 2007, 217(1~3): 74~84
    34 E. R. Bandala, M. A. Peláez and A. J. García-López. Photocatalytic Decolourisation of Synthetic and Real Textile Wastewater Containing Benzidine-based Azo Dyes. Chemical Engineering and Processing: Process Intensification. 2008, 47(2): 169~176
    35 R. Xu, J. Li, J. Wang et al. Photocatalytic Degradation of Organic Dyes under Solar Light Irradiation Combined with Er3+:YAlO3/Fe- and Co-doped TiO2 Coated Composites. Solar Energy Materials and Solar Cells. 2010, 94(6): 1157~1165
    36 S. Parra, S. E. Stanca, I. Guasaquillo et al. Photocatalytic Degradation of Atrazine Using Suspended and Supported TiO2. Applied Catalysis B: Environmental. 2004, 51(2): 107~116
    37 E. Fockedey, A. V. Lierde. Coupling of Anodic and Cathod Reactions for Phenol Electro-oxidation Using Three-dimesional Electodes. Water Research.2002, 36(16): 4169~4175
    38 F. Y. Yi, S. X. Chen, C. E. Yuan. Effect of Activated Carbon Fiber Anode Structure and Electrolysis Conditions on Electrochemical Degradation of Dye Wastewater. Journal of Hazardous Materials. 2008, 157(1): 79~87
    39 Z. M. Shen, W. H. Wang, J. P. Jia et al. Degradation of Dye Solution by an Activated Carbon Fiber Electrode Electrolysis System. Journal of Hazardous Materials. 2001, 84(1): 107~116
    40李雅婕,王平.生物技术在印染废水处理工艺中的应用.工业水处理. 2006, 26(5): 14~17
    41余雁.工业印染废水处理技术的探讨.沿海企业与科技. 2009, (5): 34~37
    42 V. N. Gunaseelan. Anaerobic Digestion of Biomass for Methane Production: A Review. Biomass and Bioenergy. 1997, 13(1, 2): 83~114
    43孙广垠,张娟,张炜等.全程厌氧与水解酸化在印染废水处理中的比较.工业水处理. 2009, 29(7): 41~43
    44 I. K. Kapdan, S. Alparslan. Application of Anaerobic - Aerobic Sequential Treatment System to Real Textile Wastewater for Color and COD Removal. Enzyme and Microbial Technology. 2005, 36(2, 3): 273~279
    45 C. O'Neill, F. R. Hawkes, D. L. Hawkes et al. Anaerobic-Aerobic Biotreatment of Simulated Textile Effluent Containing Varied Ratios of Starch and Azo Dye. Water Research. 2000, 34(8): 2355~2361
    46 X. Zheng, Y. B. Fan and Y. S. Wei. A Pilot Scale Anoxic/Oxic Membrane Bioreactor (A/O MBR) for Woolen Mill Dyeing Wastewater Treatment. Journal of Environmental Sciences. 2003, 15(4): 449~455
    47 M. Is??k, D. T. Sponza. Anaerobic/Aerobic Treatment of a Simulated Textile Wastewater. Separation and Purification Technology. 2008, 60(1): 64~72
    48李川.水解酸化-活性污泥法处理印染废水研究.环境工程学报. 2009, 3(10): 1789~1792
    49汪荣,郑俊,张刚.水解酸化-接触氧化工艺处理印染废水.给水排水. 2006, 32(5): 49~50
    50连庆堂,杨玉杰,谢腊平.水解酸化-两级生物接触氧化工艺处理印染废水.给水排水. 2007, 33(11): 66~67
    51 X. Zheng, J. X. Liu. Dyeing and Printing Wastewater Treatment Using a Membrane Bioreactor with a Gravity Drain. Desalination. 2006, 190(1~3): 277~286
    52 H. F. Wu, S. H. Wang, H. L. Kong et al. Performance of Combined Process of Anoxic Baffled Reactor-Biological Contact Oxidation Treating Printing and Dyeing Wastewater. Bioresource Technology. 2007, 98(7): 1501~1504
    53周书葵,曾光明,王许兵等.催化氧化-ABR-MBR处理印染废水的工程实践.给水排水. 2009, 35(5): 67~68
    54 X. J. Wang, X. Y. Gu, D. X. Lin et al. Treatment of Acid Rose Dye Containing Wastewater by Ozonizing-Biological Aerated Filter. Dyes and Pigments. 2007, 74(3): 736~740
    55 F. El-Gohary, A. Tawfik. Decolorization and COD Reduction of Disperse and Reactive Dyes Wastewater Using Chemical-coagulation Followed by Sequential Batch Reactor (SBR) Process. Desalination. 2009, 249(3): 1159~1164
    56张彦,张立秋,肖桃生.混凝-ABR-活性污泥法组合工艺处理印染废水.广州大学学报(自然科学版). 2004, 3(5): 470~473
    57吴志敏,张丽.混凝-ABR-氧化沟工艺处理印染废水.印染. 2009, (3): 37~39
    58许骞,徐文倩,周益洪.气浮-水解酸化-氧化沟处理印染废水工艺设计.中国资源综合利用. 2008, 26(7): 36~37
    59夏炎,张林生,陆继来等. MBR-NF组合工艺处理印染废水.印染. 2009, (21): 29~32
    60邓家添. MBR-RO组合工艺在印染废水回用的应用.海峡科学. 2009, (8): 64~65
    61许玉东.厌氧折流板反应池-生物接触氧化-混凝沉淀-砂滤工艺处理毛巾印染废水.环境工程. 2000, 18(2): 25~27
    62 J. Wang, M. C. Long, Z. J. Zhang et al. Removal of Organic Compounds during Treating Printing and Dyeing Wastewater of Different Process Units. Chemosphere. 2008, 71(1): 195~202
    63 T. H. Kim, C. Park, J. Lee et al. Pilot Scale Treatment of Textile Wastewater by Combined Process (Fluidized Biofilm Process - Chemical Coagulation - Electrochemical Oxidation). Water Research. 2002, 36(16): 3979~3988
    64吴玉,田刚,司亚安等.兼氧调节-曝气-混凝沉淀工艺处理印染废水.给水排水. 2009, 135(110): 67~69
    65刘伟京,许明,吴海锁等.厌氧-好氧-混凝工艺处理印染废水中试研究.环境科学研究. 2009, 22(4): 478~483
    66卢江涛,周笑绿.厌氧水解-好氧-吸附工艺处理印染废水.工业水处理. 2009, 29(11): 25~27
    67于佳,许吉现,孙广垠等.水解酸化-生物接触氧化-光催化氧化工艺处理印染废水的试验.中国新技术新产品. 2010, (5): 7
    68吴晓亮,江霜英,高廷耀.混凝-水解酸化-接触氧化-气浮工艺处理印染废水.化工环保. 2009, 29(3): 248~251
    69赵丰.混凝沉淀-水解酸化-A/O-混凝沉淀组合工艺.环境卫生工程. 2009, 17(3): 50~52
    70徐灏龙,白俊跃,彭振华. A/O/混凝沉淀/O组合工艺处理印染废水中试.中国给水排水. 2009, 25(23): 99~101
    71李达宁,汪晓军.曝气生物滤池-臭氧氧化-曝气生物滤池组合工艺对印染废水的深度处理.工业水处理. 2009, 29(11): 74~76
    72 A. Bachman, V. L. Beard and P. L. McCarty. Performance Characteristics of the Anaerobic Baffled Reactor. Water Research. 1985, 19(1): 99~106
    73 S. Nachaiyasit, D. C. Stuckey. The Effect of Loads on the Performance of an Anaerobic Baffled Reactor (ABR). 1. Step Changes in Feed Concentration at Constant Retention Time. Water Research. 1997, 31(11): 2737~2746
    74 S. Nachaiyasit, D. C. Stuckey. The Effect of Loads on the Performance of an Anaerobic Baffled Reactor (ABR). 2. Step and Transient Hydraulic Shocks at Constant Feed Strength. Water Research. 1997, 31(11): 2747~2754
    75 W. P. Barber, D. C. Stuckey. The Use of the Anaerobic Baffled Reactor (ABR) Wastewater Treatment: A review. Water Research. 1999, 33(7): 1559~1578
    76 G. D. Ji, T. H. Sun, J. R. Ni et al. Anaerobic Baffled Reactor (ABR) for Treating Heavy Oil Produced Water with High Concentrations of Salt and Poor Nutrient. Bioresource Technology. 2009, 100(3): 1108~1114
    77 J. L. Wang, Y. H. Huang. Performance and Characteristics of an Anaerobic Baffled Reactor. Bioresource Technology. 2004, 93(3): 205~208
    78 A. Grobicki, D. C. Stuckey. Hydrodynamic Characteristics of the Anaerobic Baffled Reactor. Water Research. 1992, 26(3): 371~378
    79喻学敏,白永刚,刘伟京等. ABR反应器预处理综合印染废水研究.环境工程学报. 2009, 3(6): 981~984
    80孔火良,吴慧芳.水力停留时间对ABR反应器处理印染废水的影响.中国沼气. 2008, 26(3): 15~18
    81 H. L. Kong, H. F. Wu. Pretreatment of Textile Dyeing Wastewater Using anAnoxic Baffled Reactor. Bioresource Technology. 2008, 99(16): 7886~7891
    82吴慧芳,王世和,夏明芳等. ABR处理印染废水水温影响特性及降解模型.工业水处理. 2006, 26(10): 39~43
    83康晓鹍,王世和,晏再生等. ABR处理印染废水的生化反应动力学研究.给水排水. 2009, 35: 293~296
    84熊春梅,林豪杰. (ABR+SBR)特性分析及其在印染废水中的应用.宁波高等专科学校学报. 2003, 15(4): 24~26
    85张玉华,高新红,袁东等. ABR-接触氧化-混凝沉淀工艺处理印染废水.给水排水. 2007, 33(9): 63~64
    86周华. ABR-一体化氧化沟组合工艺处理高浓度印染废水.广东水利电力职业技术学院学报. 2009, 7(4): 50~54
    87许华诚.印染废水处理技术难点浅析.中国环保产业. 2008, (9): 48~49
    88王进.高效厌氧技术在印染废水处理中的应用研究.上海交通大学博士学位论文. 2007: 1~5, 72, 36, 38, 39, 55~56, 51, 62, 59, 50, 57
    89国家环保局.水和废水监测分析方法(第四版).北京:中国环境科学出版. 2002: 88~284
    90陈世联.灰关联空间及其绝对关联度.曲靖师专学报. 1994, 13(1): 1~6
    91李刚,杨立中,欧阳峰.厌氧消化过程控制因素及pH和Eh的影响分析.西南交通大学学报. 2001, 36(5): 518~521
    92孔火良,夏明芳.折流式水解反应器处理印染废水水温影响研究.环境污染治理技术与设备. 2006, 7(12): 77~81
    93 F. M. Espinoza-Escalante, C. Pelayo-Ortíz, J. Navarro-Corona et al. Anaerobic Digestion of the Vinasses from the Fermentation of Agave Tequilana Weber to Tequila: The Effect of PH, Temperature and Hydraulic Retention Time on the Production of Hydrogen and Methane. Biomass and Bioenergy. 2009, 33(1): 14~20
    94刘思峰.灰色系统理论及其应用(第三版).科学出版社. 2004: 61~70
    95冯骞.水力条件对活性污泥处理系统的影响.河海大学博士论文. 2007: 24~26
    96石宪奎,樊秀芹.水力负荷与污泥负荷对污泥颗粒化过程的影响.水处理技术. 2007, 33(3): 11~13
    97刘炳娟.污泥负荷与水力负荷对颗粒污泥形成的影响.广东化工. 2008, 35(11): 87~89
    98张晓鹤.有机负荷对上流式多级厌氧反应器(UMAR)性能及颗粒污泥的影响研究.广西大学硕士论文. 2008: 27~28
    99 A. K. B. Amorim, M. Zaiat and E. Foresti. Performance and Stability of an Anaerobic Fixed Bed Reactor Subjected to Progressive Increasing Concentrations of Influent Organic Matter and Organic Shock Loads. Journal of Environmental Management. 2005, 76(4): 319~325
    100 G. C. Cha, H. K. Chung and J. C. Chung. Suppression of Acidogenic Activities due to Rapid Temperature Drop in Anaerobic Digestion. Biotechnology Letters. 1997, 19(5): 461~464
    101 S. Nachaiyasit, D. C. Stuckey. Effect of Low Temperatures on the Performance of an Anaerobic Baffled Reactor (ABR). Journal of Chemical Technology. Biotechnology. 1997, (69): 276~280

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700