混凝和Fenton工艺深度处理渗滤液时反应条化优化和DOM分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
垃圾渗滤液水质复杂,难于处理,其中主要是由于垃圾渗滤液中含有较高的溶解性有机物(DOM)。DOM的组成和特征可以影响到渗滤液处理工艺的选择。为了更有效地去除垃圾渗滤液中DOM,本文选用混凝法和Fenton法两种典型的渗滤液深度处理工艺,对渗滤液SBR出水进行处理,利用非离子吸附树脂将混凝和Fenton的进出水分别进行DOM分级,确定了不同组分的难易去除程度,通过荧光光谱和红外光谱确定了混凝和Fenton反应过程中不同组分的去除特性和结构变化规律。
     首先,通过单因子实验确定混凝工艺在投加0.772 mmol/L的聚合三氯化铁(PFC)(以Fe计)时,SBR出水pH=8.89的情况下,DOC的去除率为67.21%。Fenton工艺在H2O2的投加量为1.2 mL/L,Fe2+的投加量为6.44 mmol/L,pH为3.5,反应时间30 min时,DOC去除效果可以达到64%。此时,两种工艺出水的COD均小于100 mg/L,符合“生活垃圾填埋场污染控制标准(GB 16889-2008)”规定的一级排放限值。可以看出,混凝工艺比Fenton工艺的药剂投加量少,从而产生的沉淀量也少。因而,混凝工艺在深度处理中的经济成本和环境效益均优于Fenton工艺。
     在混凝过程中大分子有机物去除效果较好,主要是由于混凝工艺更容易通过吸附、拦截和网捕机制去除水中物质。在Fenton过程中,小分子烃类物质去除的较好,因此反应终止时Fenton出水的分子量有明显增大的趋势。混凝法对于各个组分的去除率从大到小依次为:HPO-N(83.47%),TPI-A(78.55%),HPO-A(72.22%),TPI-N(60.89%),HPI(0.49%);Fenton法对于各个组分的去除率从大到小依次为:HPO-N(84.78%),TPI-A(73.99%),TPI-N(67.57%),HPO-A(60.43%),HPI(17.10%)。
     HPO-A发射荧光的强度最大,远远高于其他组分,而HPO-A的SUVA也比其他几个组分大,说明其内部含有的芳香性组分较多,主要是腐殖酸和富里酸。HPI则主要是亲水性物质组成,并不属于腐殖质的范畴,主要是糖、氨基酸等的混合物,多为脂肪烃类物质。HPO-N和TPI-N两个组分的荧光物质主要是由芳香性蛋白质组成,并且具有较高的分子量。
     通过红外光谱的分析,可以得知HPO-A和TPI-A中有明显的羧酸基团的吸收峰。HPO-N和TPI-N则主要是脂肪烃的吸收峰,说明虽然HPO-N和TPI-N含有一定的芳香性蛋白质,但是其内部仍然是烃类物质占绝大部分,因为含有酰胺类震动峰,说明HPO-N和TPI-N是微生物体降解得到的糖蛋白等产物。
Landfill leachate contains the higher content of dissolved organic matter (DOM), and the composition and characteristics of DOM can affect the leachate treatment options. Therefore, this paper focus on two typical advanced treatment processes: coagulation and Fenton. Effluent of the SBR was treated by Fenton and coagulation processes, and after that the effluent from both processes was fractionated into five classes using non-ionic adsorption resin, in order to characterize the removal of DOC during Fenton and coagulation. Fluorescence EEMs was applied to characterize the transformations of DOM fractions and IR spectroscopy was used for gross characterization of DOM and can provide valuable information on the structural and functional properties of DOM molecules.
     The optimum operational conditions for coagulation was dosage of poly-ferric chloride (PFC) 0.772 mmol/L (Fe) without adjusted pH (8.89). DOC removal rate was 67.21%. The maximum amount of DOC that could be removed by the Fenton’s post-treatment was about 64% of the initial value. Such a maximum removal was achieved with dosages of H2O2 and Fe2+ respectively 1.2 mL/L and 6.44 mmol/L, pH=3.5 and reaction time=30 min. The residual COD of both effluents from coagulation and Fenton were less than 100 mg/L, which meet the correlative discharge standard (GB 16889-2008). Compared with Fenton process, coagulation showed a better performance for using less precipitant and producing less sludge. The cost of leachate treatment was lower and environmental benefit was obvious in coagulation process.
     Fenton process was good at removing organics of small molecules, thus the residual organics in the effluent of Fenton were of large molecular weight. In the coagulation process, complex organic matters of large molecular weight were removed, because mechanism of coagulation was adsorption and interception. The removal rates of different fractions during coagulation process in decreasing order was as following: HPO-N (83.47%), TPI-A (78.55%), HPO-A (72.22%), TPI-N (60.89%), HPI (0.49%); so was Fenton process: HPO-N (84.78%), TPI-A (73.99%), TPI-N (67.57%), HPO-A (60.43%), HPI (17.10%).
     The peaks in the fluorescence EEMs of HPO-A were the highest ones, which showed that there were more fluorescing materials in HPO-A, while SUVA of HPO-A was also higher than other fractions, which meant that its internal components containing more aromatic substances. HPI, mainly composed of hydrophilic material which is not in the range of humus, was properly derived from carbohydrate and amino acids and contained mainly of aliphatic hydrocarbons. There were more aromatic proteins in HPO-N and TPI-N, and these organic matters were with large molecular weight.
     The IR spectrum effectively indicated that carboxylic acids existed as a major functional group in the influent HPO-A and TPI-A. The FT-IR spectra of the HPO-N and TPI-N were very similar, with greater hydrocarbon character and less carboxylic acid character than other fractions. Moreover, both contained a significant amide-1 or amide-2 peaks. HPO-N and TPI-N were enriched in hydrocarbon and amide-1 or amide-2 functional groups, indicating bacteria-derived glycoprotein material.
引文
1 A. B. Morton. Forest Products Decomposition in Municipal Solid Waste Landfills. Waste Management. 2006, 26(4): 321~333
    2 P. Kjeidsen, M. A. Barlaz, A. P. Rooker. Present and Long-Term Composition of MSW Landfill Leachate: A Review. Critical Reviews in Environmental Science and Technology. 2002, 32(4): 297~336
    3 http://www.cn-hw.net/html/28/200612/783.html
    4杨良斌,赵秀兰,李丽,等.关于中国生活垃圾渗滤液排放标准的探讨.环境科学与管理. 2007, 32(5): 19~22
    5赵由才,龙燕,张华.生活垃圾卫生城埋技术(M).北京:化学工业出版社. 2004:100~102
    6 J. B. Christensen, D. L. Jensen, C. Gr?n, Z. Filip. Characterization of the Dissolved Organic Carbon in Landfill Leachate-Polluted Groundwater. Water Research. 1998,32(1):125~135
    7 M. A. Nanny, N. Ratasuk. Characterization and Comparison of Hydrophobic Neutral and Hydrophobic Acid Dissolved Organic Carbon Isolated from Three Municipal Landfill Leachates. Water Research. 2002, 36(6):1572~1584
    8 M. J. Baedecker, W. Back. Modern Morine Sediments as a Natural Analog to the Chemically Stressed Environment of a Landfill. Journal of Hydrology. 1979, 43:393~414
    9 E. R. C. Hornibrook, F. J. Longstaffe, W. S. Fyfe. Evolution of Stable Carbon Isotope Composition for Methane and Carbon Dioxide in Freshwater Wetlands and other Anaerobic Environments. Geochimica et Cosmochimica Acta. 2000, 64(6):1013~1027
    10 J. Albaiges, F. Casado, F. Ventura. Organic Indicators of Groundwater Pollution by a Sanitary Landfill. Water Research. 1986, 20(9):1153~1159
    11 B. Schultz, P. Kjeldsen. Screening of Organic Matter in Leachates from Sanitary Landfills Using Gas Chromatography Combined with Mass Spectrometry. Water Research. 1986, 20(8): 965~970
    12 A. Imai, T. Fukushima, K. Matsushige. Characterization of Dissolved Organic Matter in Effluents from Wastewater Treatment Plants. Water Research. 2002, 36(4): 859~870
    13 K. Kaiser, W. Zech. Rates of Dissolved Organic Matter Release and Sorption in Forest Soils. Soil Science. 1998, 163(9):714~725
    14 K. H. Kang, H. S. Shin, H. Park. Characterization of Humic Substances Present in Landfill Leachates with Different Landfill Ages and its Implications. Water Research. 2002, 36:4023~4032
    15 N. Calace, A. Massimiani, B. M. Petronio, et al. Municipal Landfill Leachate-Soil Interactions: a Kinetic Approach. Chemosphere. 2001, 44:1025~1031
    16夏立江,温小乐.生活垃圾堆填区周边土壤的性状变化及其污染状况.土壤与环境. 2001, 10(1):17~19
    17 R. E. Hamon, S. E. Lorenz, P. E. Holm, et al. Changes in Trace Metal Species and other Components of the Rhizosphere during Growth of Radish. Plant and Environment. 1995, 18: 749~756
    18 P. L. Guisquiani, L. Concezzi, M. Businelli, et al. Fate of Pig Sludge Liquid Fraction in Calcareous Soil: Agricultural and Environmental Implications. Journal of Environmental Quality. 1998, 27 : 364~371
    19 V. Antoniadis, B. J. Alloway. The Role of Dissolved Organic Carbon in the Mobility of Cd, Ni and Zn in Sewage Sludge-Amended Soils. Environmental Pollution . 2002, 117: 515~521
    20 J. A. Leenheer. Comprehensive Approach to Preparative Isolation and Fractionation of Dissolved Organic Carbon from Natural Waters and Wastewater. Environmental Science and Technology. 1981, 15: 578~587
    21 T. R. Fox, N. B. Comerfield. Low Molecular Weight Organic Acid in Selected Forest Soils of the South-Eastern USA. Soil Science Society of America Journal. 1990, 54: 1763~1767
    22 K. Kaizer, W. Zech. Competitive Sorption of Dissolved Organic Matter Fractions to Soils and Related Mineral Phases. Soil Science Society of America Journal. 1997, 61:64~69
    23 O. A. Davies, M. E. Allison, H. S. Uyi. Bioaccumulation of Heavy Metals in Water, Sediment and Periwinkle (Tympanotonus Fuscatus var Radula) from the Elechi Creek Niger Delta. African Journal of Biotechnology. 2006, 5(10): 968~972
    24 S. Inaba, C. Takenaka. Effects of Dissolved Organic Matter on Toxicity and Bioavailability of Copper for Lettuce Sprouts. Environment International. 2005, 31: 603~608
    25 C. T. Chiou, R. L. Malcolm, T. I. Brinton, et al. Water Solubility Enhancement of Some Organic Pollutants and Pesticides by Dissolved Humic and Fulvic Acids. Environmental Science and Technology. 1986, 20(5):502~508
    26 Y. P. Chin, P. M. Gschwend. Partitioning of Polycyclic Aromatic Hydrocarbons to Marine Porewater Organic Colloids. Environmental Science Technology. 1992, 26(8):1621~1626
    27 Y. P. Chin, G. R. Aiken, K. M. Danielsen. Binding of Pyrene to Aquatic and Commercial Humic Substances: the Role of Molecular Weight and Aromaticity. Environmental Science Technology. 1997, 31(6):1630~1635
    28 B. Marschner, R. Winkler, D. Jo¨demann. Factors Controlling the Partitioning of Pyrene to Dissolved Organic Matter Extracted from Different Soils. Eur. J. Soil Sci.. 2005, 56(3):299~306
    29 B. Raber, I. Kogel-Knabner, C. Stein, et al. Partitioning of Polycyclic Aromatic Hydrocarbons to Dissolved Organic Matter from Different Soils. Chemosphere. 1998, 36(1):79~97
    30 K. U. Totsche, I. Kogel-Knabner. Mobile Organic Sorbent Affected Contaminant Transport in Soil: Numerical Case Studies for Enhanced and Reduced Mobility. Vadose Zone. 2004, 3(2):352~367
    31 L. Cox, P. Velarde, A. Cabrera, et al. Dissolved Organic Carbon Interactions with Sorption and Leaching of Diuron in Organic-Amended Soils. Eur. J. Soil Sci.. 2007, 58(3):714~721
    32 N. Her, G. Amy, D. McKnight, et al. Characterization of DOM as a Function of MW by Fluorescence EEM and HPLC-SEC Using UVA, DOC, and Fluorescence Detection. Water Research, 2003, 37(17):4295~4303
    33 T. Polubesova, M. Sherman-Nakache, B. Chefetz. Binding of Pyrene to Hydrophobic Fractions of Dissolved Organic Matter: Effect of Polyvalent Metal Complexation. Environmental Science Technology. 2007, 41(15):5389~5394
    34 F. M. Kargi, Y. Pamukoglu. Aerobic Biological Treatment of Pretreated Landfill Leachate by Fed-Batch Operation. Enzyme and Microbial Technology. 2003, 33: 588~595
    35 Y. Fujita, W. H. Ding, M. Reinhard. Identification of Wastewater Dissolved Organic Carbon Characteristics in Reclaimed Wastewater and Recharged Groundwater. Water Environment Research. 1996, 68:867~876
    36 F. Wang, M. G. El-Din, D. W. Smith. Oxidation of Aged Raw Landfill Leachate with O3 only and O3/H2O2: Treatment Effciency and Molecular Size-a Review. Ozone Science Engineering. 2004, 26:287~298
    37 F. J. Rivas, F. Beltran, F. Carvalho, et al. Stabilized Leachates: Sequential Coagulation+Flocculation+Chemical Oxidation Process. Journal of Hazardous Materials. 2004, 116:95~102
    38 J. A. Leenheer, J. P. Croue. Characterizing Aquatic Dissolved Organic Matter. Environmental Science and Technology. 2003, 37:18~26
    39 P. J. He, J. F. Xue, L. M. Shao, et al. Dissolved Organic Matter(DOM)in Recycled Leachate of Bioreactor Landfill. Water Research. 2006, 40:1465~1473
    40 H. S. Li, S. Q. Zhou, Y. B. Sun, et al. Advanced Treatment of Landfill Leachate by a New Combination Process in a Full-Scale Plant. Journal of Hazardous Materials. 2009,172:408~415
    41 D. Kulikowska, E. Klimiuk, A. Drzewicki. BOD5 and COD Removal and Sludge Production in SBR Working with or without Anoxic Phase. Bioresource Technology. 2007, 98:1426~1432
    42 N. Laitinen, A. Luonsi, J. Vilen. Landfill Leachate Treatment with Sequencing Batch Reactor and Membrane Bioreactor. Desalination. 2006, 191:86~91
    43 F. J. Rivas,F. Beltrán, F. Carvalho,Benito Acedo,Olga Gimeno.Stabilized Leachates: Sequential Coagulation-Flocculation+Chemical Oxidation Process. Journal of Hazardous Materials. 2004, B116:95~102
    44 G. Shahin, A. A. Hamidi, H. I. Mohamed,et al. Application of Response Surface Methodology(RSM) to Optimize Coagulation–Flocculation Treatment of Leachate Using Poly-Aluminum Chloride (PAC) and Alum. Journal of Hazardous Materials. 2009, 163:650~656
    45 S. Sinha, Y. Yoon, G. Amy, et al. Determining the Effectiveness of Conventional and Alternative Coagulants through Effective Characterization Schemes. Chemosphere. 2004, 57:1115~1122
    46 X. Ntampou, A. I. Zouboulis, P. Samaras. Appropriate Combination of Physico-Chemical Methods (Coagulation/Flocculation and Ozonation) for the Effcient Treatment of Landfill Leachates. Chemosphere. 2006, 62:722~730
    47 A. C. Comel, J. Veron. Landfill Leachates Pretreatment by Coagulation- Flocculation, Water Research. 1997, 31:2775~2782
    48 E. Diamadopoulos. Characterization and Treatment of Recirculation-Stabilized Leachate, Water Research. 1994, 28:2439~2445
    49 E. Otal, C. Arnaiz, J. C. Gutierrez, et al. Anaerobic Degradation of p-Coumaric Acid and Pre-Ozonated Synthetic Water Containing this Compound. Biochemical Engingeering. 2004, 20:29~34
    50 X. J. Lu, B. Yang, J. H. Chen, et al. Treatment of Wastewater Containing Azo Dye Reactive Brilliant Red X-3B Using Sequential Ozonation and Upflow Biological Aerated Filter Process. Journal of Hazardous Materials. 2009, 161:241~245
    51 A. Lopez, M. Pagano, A. Volpe, et al. Fenton’s Pre-Treatment of Mature Landfill Leachate. Chemosphere . 2004, 54:1005~1010
    52 O. Primo, A. Rueda, M. J. Rivero, et al. An Integrated Process, Fenton Reaction–Ultrafiltration, for the Treatment of Landfill Leachate: Pilot Plant Operation and Analysis. Ind. Eng. Chem. Res. 2008,47:946~952
    53 S. L. Huo, B. D. Xi, H. C. Yu, et al. In Situ Simultaneous Organics and NitrogenRemoval from Recycled Landfill Leachate Using an Anaerobic–Aerobic Process. Bioresource Technology. 2008, 99:6456~6463
    54 G. G. Li, J. S. Cao, Z. G. Wang. Current Situation of China Urban Garbage Disposal and Existing Problems. Environmental Protection. 2002, 4:35~38
    55 Y. D. Xu, D. B. Yue, Y. Zhu,et al. Fractionation of Dissolved Organic Matter in Mature Landfill Leachate and its Recycling by Ultrafiltration and Evaporation Combined Processes. Chemosphere. 2006, 64(6):903~911
    56 Y. W. Kang, K. Y. Hwang. Effects Reaction Conditions on the Oxidation Efficiency in the Fenton Process. Water Research. 2000, 34(10):2786~2790
    57 L. D. Palma, P. Ferrantelli, C. Merli, et al. Treatment of industrial landfill leachate by means of evaporation and reverse osmosis. Waste Management. 2002, 22:951~955
    58 M. Altinbas, C. Yangin, I. Ozturk. Struvite Precipitation from Anaerobically Treated Municipal and Landfill Wastewaters. Water Science and Technology. 2002, 46(9):271~278
    59席北斗,魏自民,赵越等.垃圾渗滤液水溶性有机物荧光谱特性研究.光谱学与光谱分析. 2008, 28(11):2605~2608
    60 K. H. Kang, H. S. Shinb, H. Park. Characterization of Humic Substances Present in Landfill Laechates with Different Landfill Ages and its Implication. Water Researh. 2002, 36:4023~4032
    61 H. J. Fan, H. Y. Shu, H. S. Yang, et al. Characteristics of Landfill Leachates in Central Taiwan. Science of the Total Environment. 2006, 36:25~37
    62 T. Fukushima, T. Ishibashi, A Imai. Chemical Characterization of Dissolved Organic Matter in Hiroshima Bay, Japan. Estuarine, Coastal and Shelf Scienca. 2001(53):51~62
    63方芳,刘国强,郭劲松等.垃圾渗滤液中溶解性有机质研究进展.水处理技术. 2009, 35(4):4~8
    64 H. Zhang,J. C. Heung,C. P. Huang. Optimization of Fenton Process for the Treatment of Landfill Leachate. Journal of Hazardous Materials. 2005,(B125): 166~174
    65 A. Lopez,M. Pagano,A. Volpe,et al. Fenton’s Pre-Treatment of Mature Landfill Leachate. Chemosphere. 2004, 54:1005~1010
    66 G. L. AIKEN,D. M. MCKNIGHT,K. A. THORN,et al. Isolation of Hydrophilic Organic Acids from Water Using Nonionic Macroporous Resins. Org Geochem, 1992, 18(4):567~573
    67 J. E. Drewes, D. M. Quanrud, G. L. Amy, et al. Character of Organic Matter in Soil-Aquifer Treatment Systems. J. Environ. Eng.,ASCE. 2006, 132(11): 1447~1458
    68 W. Chen,P. Westerhoff,J. A. Leenheer,et al. Fluorescence Excitation-Emission Matrix Regional Integration to Quantify Spectra for Dissolved Organic Matter. Environmental Science and Technology. 2003, 37:5701~5710
    69 R. D. Holbrook,J. Rreidenich,P. A. Derose. Impact of Reclaimed Water on Select Organic Matter Properties of a Receiving Streams Fluorescence and Perylene Sorption Behavior. Environmental Science and Technology. 2005, 39:6453~6460
    70 R. J. Bigda. Consider Fenton’s Chemistry for Wastewater Treatment. Chem Eng Prog. 2005, 91:62~66
    71 Y. W. Kang, K. Y. Hwag. Effects of Reaction Conditions on the Oxidation Efficiency in the Fenton Process. Water Research. 2006, 34(10):2786~2790
    72 E. Neyens, J. Baeyens. A Review of Classic Fenton’s Peroxidation as an Advanced Oxidation Technique, Journal of Hazardous Materials. 2003, B98:33~50
    73 B. Z. Dong, D. W. Cao,J. C. Fan. Characteristics of Changes in Distribution of Molecular Weight of Dissolved Organics in Huangpu River Water Source. Acta Scientiae Circumstantiae. 2001, 21:553–556
    74 W. M. Davis,C. L. Erickson,C. T. Johnson,et al. Quantitative Fourier Transform Infrared Spectroscopic Investigation of Humic Substance Functional Group Composition. Chemosphere. 1999, 38(12):2913-2928
    75 C. F. Lin, S. H. Liu, O. J. Hao. Effect of Functional Groups of Humic Substances on UF Performance. Water Research. 2001, 35(10):2395-2402
    76 H. C. Kim, M. J. Yu. Characterization of Natural Organic Matter in Conventional Water Treatment Processes for Selection of Treatment Process Focused on DBPs Control. Water Research. 2005, 39(19):4779-4789
    77 V. Kanokkantapong, T. F. Marhaba, B. Panyapinyophol. FTIR Evaluation of Functional Groups Involved in the Formation of Haloacetic Acids During the Chlorination of Raw Water. Journal of Hazardous Material. 2006, 136(2):188-196

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700