超声波强化膜生物反应器处理低温城市污水脱氮性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于低温环境对微生物的影响,我国北方寒冷地区城市污水的生物处理一直面临处理效果低、出水难以达标的困扰。膜生物反应器处理低温城市污水具有潜在优势,该技术已经在污水回用和难降解有机废水处理领域崭露头角,并在世界范围内许多实际工程中得到了成功的应用。考察膜生物反应器对低温污水的处理效果和研究其强化措施具有重要的意义。
     本实验采用一体式膜生物反应器(SMBR)对低温污水进行处理,研究了该反应器在低温条件下,超声波强化生物脱氮效果的最佳作用参数及在该参数强化下长期稳定运行的强化效果。并探讨了施加超声波后对膜污染现象的影响,重点研究了超声波强化的作用机理。
     实验采用自行设计的SMBR,有效容积为28L,实验用水为人工配制,水温控制为10±1℃,HRT为2.4h。启动期不进行超声波强化的结果表明,SMBR处理低温城市污水时启动期较长,为27d。低温对SMBR中COD总去除率的影响不大,COD总去除率仍能维持在90%以上,而对NH_3-N去除的影响较大。低温条件下SMBR启动初期对NH_3-N的处理效果很差,随着硝化细菌对环境的逐渐适应, NH_3-N去除率才开始逐渐上升。在第27d COD去除率达到稳定状态时,NH_3-N的生物去除率和总去除率分别达到59.7%和64.9%。但此时NH_3-N去除效果并没有达到稳态,去除率还继续上升,第31天达到69.6%。此后,稳定在65%到70%之间。
     引入低强度超声波强化SMBR运行后,在短HRT条件下对提高低温城市污水处理效果有明显作用。在超声波辐照后的48h内每间隔2h到6h取样,考察不同超声波参数组合对NH_3-N降解的强化作用。结果表明,功率密度为0.21W/L、辐照时间为20min及0.28W/L、15min,能量消耗为4.2W·min /L的超声波为最佳参数。结果表明,在此超声波参数作用下, NH_3-N生物去除率提高百分比约为32%。出水中的含氮化合物主要是NH_3-N,NO2-N和NO3-N含量很低。辐照间隔缩短为原来的一半时,膜清洗周期延长了两天。随着系统运行时间的延长,反应器中EPS的总量升高,说明随着系统的长期运行,膜污染程度加重。EPS中的主要成分为蛋白质,而且系统运行的各阶段多糖含量没有明显变化,因此可以认为蛋白质是引起膜污染加剧的主要原因。引入超声波对污泥强化后,有效预防了污泥膨胀的问题。
     最后,实验对超声波强化低温城市污水生物处理的作用机理进行了探讨。超声波辐照可以改变细胞膜通透性,随着超声波功率密度的增加细胞膜通透性逐渐增加,从而加快细胞内外物质交换、传输和可逆渗透。超声波对细胞膜通透性的改变作用比脱氢酶活性提高率能更好地解释超声波参数选择与NH_3-N去除率提高比的关系。功率密度为0.14W/L和0.21W/L时,随着辐照时间和功率密度的增大,细胞膜通透性也提高。当超声波输入能量过大时,细胞膜上产生的孔太大而使得细胞不能完成自我修复,发生不可逆细胞膜通透性改变,从而影响到微生物细胞代谢功能的提高。
As the impact of low temperature, the biological treatment of urban sewage infrigid area has been facing with poor removal efficiency. MBR has the potentialadvantages of treating low temperature urban sewage. It has been used in the waterreuse and wastewater treatment, and many practical projects in the world have beensuccessfully applied in. So investigating the performance of submerged MBRtreating low temperature urban sewage and developing measures to strengthen itseffect are of great significance.
     In the study, the wastewater at low temperature was treated by an submergedmembrane bioreactor (SMBR). The best ultrasound-enhanced indexes and theperformance of the reactor in removing nitrogen after ultrasound radiated werestudied. And membrane fouling with ultrasound radiated was also investigated.Furthermore, the mechanism of ultrasound enhancing the biological nitrogenremoval at low temperature was mainly investigated.
     A lab-scale SMBR with effective volume of 28L operated at 10±1℃, andcontrolled HRT at 2.4h. The sewage was prepared artificially. The effectiveness ofSMBR treating low temperature urban sewage in start-up period was studied. Theresults showed that in treating low temperature urban sewage, the start-up period ofSMBR was as long as 27d.Low temperature had little effect on total COD removalrate, which can be maintained over 90%, while it had larger effect on NH_3-N removal.In the prophase of start-up period, NH_3-N had very low removal rate. It didn’t raiseup to the perfect level until nitro-bacteria started adapting the low temperature. Whenthe COD removal rate reached its steady state, NH_3-N biological removal and totalremoval rates were 59.7% and 64.9%, but they were still unstable. The biologicalremoval rate was 69.6%, stable at 65% to 70%.
     The ultrasound can improve the performance of SMBR treating low temperaturesewage at short HRT. Samples Irradiated by ultrasound within 48h were examinedevery 2 to 6 hours to study the strengthening effects on NH_3-N degradation underdifferent combinations of ultrasonic parameters. Results showed that ultrasound withpower densities of 0.21W/L at irradiation time of 20min and 0.28W/L at 15min,energy consumptions of 4.2W·min/L, were the optimum parameters. Under which,the improvement of NH_3-N biological removal efficiency was up to 32%. Nitrogencompounds in the effluent were mainly NH_3-N. NO2-N and NO3-N contents were verylow. The membrane cleaning cycle extended 2d when ultrasound radiation time wasreduced by half, meaning ultrasound can reduce membrane fouling at low temperature. With the system running, the total amount of EPS increased. And themain component was protein, which means protein was the reason of membranefouling. After ultrasound radiation, Sludge filamentous bulking didn’t happen during theexperiment.
     At last, the mechanism of ultrasound enhancing the biological nitrogen removalwas investigated. Changes of cell membrane permeability can explain therelationship between ultrasound parameters and increased NH_3-N removal ratesbetter than dehydrogenase activity increasing. When the power densities were0.14W/L and 0.21W /L, cell membrane permeability increased with the extension ofirradiation time and the increase of power densities. But if energy input wasexcessive, the membrane holes became so large that cells were unable to completeself-healing, changing cell membrane permeability irreversibly, and consequentlyinhibiting the improvement of metabolism.
引文
1韩晓云.低温生物膜及其微生物特性的研究.哈尔滨工业大学博士学位论文.2007:2~4
    2任南琪,马放.污染控制微生物学原理与应用.化学工业出版社.2003:110~112
    3李林宝.低温生物脱氮法处理污水的研究进展.中国资源综合利用. 2007,25(5):26~29
    4傅金祥.低温下DAT-IAT工艺污水处理厂活性污泥培养驯化.沈阳建筑大学学报(自然科学版). 2005, 21(1):44~46
    5赵立军.低温污水生物强化处理技术应用研究.哈尔滨工业大学学报.2007:19~23
    6 C. W. Randall. Design and Retrofit of Wastewater Treatment Plants forBiological Nutrient Removal. Lancaster, Pennsylvania: Technomic PublishingCompany. Inc.1992
    7尹军.低温对污水生物处理过程的影响及改进措施.吉林建筑工程学院学报. 2007, 24(2):29~33
    8 M. A. Head. Bioaugmentation for nitrification at cold temperatures. WaterResearch 38, 2004: 523~530
    9 M. Mauret. Application of experimental research methodology to the study ofnitrification in mixed culture. Water SciTechnol. 1996, 34(2):245-252
    10杨小丽.基于污水厂运行数据的低温生物脱氮强化研究.中国给水排水.2009, 25(1):82~88
    11 Ma?gorzata Komorowska-Kaufman. Factors affecting the biological nitrogenremoval from wastewater. Process Biochemistry 41, 2006:1015~1021
    12 X. J. Tan. Performance of operation of sequencing bath reactor system for lowtemperature sewage treatment. Journal of Tongji University. 2008,36(1):1094~1100
    13孟雪征.利用耐冷菌处理低温污水的研究.山东建筑工程学院学报. 2001,16(2):53~56
    14杜彦武.寒冷地区城市污水处理的工艺与强化措施.低温建筑技术. 2008,3:133~134
    15韩洪军.低温对于脱氮效果影响的试验研究.现代化工. 2007, 25:171~177
    16彭永臻.城市污水常低温短程深度脱氮.水工业市场. 2008, 3:16~17
    17安红莹.低水温条件下SBR处理城市污水的工艺研究.成都纺织高等专科学校学报. 2006, 23(3):4~8
    18付永胜.青藏高原上的啤酒废水生物处理工程.中国给水排水. 2003,
    19(7):88~90
    19张秀红.一体化A/O生物膜反应器低温硝化研究.环境科学. 2007,28(1):142~146
    20刘礼祥.一体化CI BR反应器的低温脱氮除磷中试.中国给水排水.2006, 22(19):21~24
    21刘长青.低温对生物脱氮除磷系统影响的试验研究.水处理技术. 2006,32(8):18~21
    22尹军.低温SBR法污水处理工艺若干研究进展.吉林建筑工程学院学报.2007, 24(1):1~3
    23 Kazuichi Isaka. Nitrification of landfill leachate using immobilized nitrifyingbacteria at low temperatures. Biochemical Engineering Journal 37, 2007:49~55
    24 J. S. Kim. Effect of pump shear on the performance of a crossflow membranebioreactor. Water Res. 2001, 35(9):2137~2144
    25 W. De Wilde. Towards standardisation of the MBR technology? ScienceDirectDesalination 231, 2008:156~165
    26 T. Stephenson.膜生物反应器污水处理技术.化学工业出版社. 2003:5~8
    27 H. Van der Roest. The Dutch contribution to the MBR development inperspective. H2O MBR Special. 2001:7~10
    28魏源送.废水处理中污泥减量技术的研究及应用.中国给水排水. 2000, 17(7):23~26
    29赵辰.膜生物反应器处理低温生活污水的中试研究.动力与电气工程.2009, 28:95~96
    30傅金祥.温度对IMBR污水处理效果的影响.沈阳建筑工程学院学报(自然科学版). 2004, 20(3):211~214
    31水春雨.复合式膜生物反应器处理青藏铁路站区低温生活污水.铁道劳动安全卫生与环保. 2008, 35(1):24~26
    32侯世全.生物法处理低温生活污水试验研究.铁道劳动安全卫生与环保.2005, 32(5):209~211
    33张业静. MBR与A/O工艺处理低温高盐废水的对比试验研究.环境科学与管理. 2009, 34(1):52~54
    34金建华.低温下一体式膜生物反应器处理城市污水研究.中国给水排水.2008, 124(17):28~31
    35赵骞.低温下溶解氧和污泥龄对SMBR脱氮性能的影响研究.哈尔滨工业大学工学硕士论文. 2009
    36朴芬淑.膜生物反应器低温自补偿作用的探讨.沈阳大学学报. 2006,18(2):64~68
    37余亚琴. IMBR中膜污染类型随温度变化规律初探.安全与环境工程. 2008,15(3):49~52
    38傅金祥.温度对IMBR膜过滤能量损失与膜污染的影响研究.沈阳建筑大学学报(自然科学版). 2005, 21(2):142~145
    39李廷盛.超声化学.科学出版社. 1995:244~245
    40毛月红.超声波水处理技术及应用.工业水处理. 2006, 26(6):10~13
    41 C. Pdtrier. Ultrasonic waste-water treatment: incidence of ultrasonic frequencyon the rate of phenol and carbon tetrachloride degradation. UltrasonicsSonochemistry. 1997, 4(4):295~300
    42吕鹏.超声对酶的影响.生物技术通讯. 2004, 15(5):534~536
    43黎春怡.超声波和超临界流体对酶活性的影响.生物技术通讯. 2007,18(2):360~362
    44卢群.超声波辐照对大肠杆菌细胞膜的影响.华南理工大学学报(自然科学版). 2006, 34(12):51~54
    45 L. D. Lin. Enhancement of shikonin production in single-and two-phasesuspension cultures of Lithospermum erythrorhizoncells using low-energyultrasound. Biotechnology and Bioengineering. 2002, 78(1):81~88
    46 Y. Y. Liu. Influence of ultrasonic stimulation on the growth and proliferation ofOryza sativaNipponbare callus cells. Colloids and Surfaces B: Biointerfaces.2003, 27:287~293
    47何镍鹏.超声技术在废水处理中的应用.化学工程与装备. 2008,9:146~149
    48闫怡新.低强度超声波强化污水生物处理技术.中国给水排水. 2004,20(8):31~33
    49杜桂敏.超声波及其在水处理领域的应用.舰船防化. 2008, 6:26~30
    50 S. F1nd1k. Direct sonication of acetic acid in aqueous solutions. UltrasonicsSonochemistry. 2006, 13(3):203~207
    51 O. Schl(?)afer. Ultrasound stimulation of micro-organisms forenhancedbiodegradation. Ultrasonics 40, 2002:25~29
    52刘娇.低温时低强度超声波强化SMBR处理污水效能研究.哈尔滨工业大学工学硕士论文. 2008
    53 Y. Jiang. Sonolysis of 4-chlorophenol in aqueous solution: effects of substrateconcen-tration, aqueous temperature and ultrasonic frequency. UltrasonicsSonochemistry. 2006, 13(5):415~422
    54 R. G. Parag. Destruction of phenol using sonochemical reactors: scale upaspects and comparison of novel configuration with conventional reactors.Separation and Purification Technology. 2004, 34:25~34
    55郭日生.水资源安全保障技术发展战略研究.海洋出版社. 2007.
    56陈伟.超声/过氧化氢技术降解水中42氯酚.中国给水排水. Vol.16, No2,2000, 16(2):1~4
    57 E. Neczaj. Effect of sonication on combined treatment of landfill leachate anddomestic sewage in SBR reactor. Desalination 204, 2007:227~233
    58刘红.低强度超声波对低温下污水生物处理的强化效果及工艺设计.环境科学. 2008, 29(3):721~725
    59刘昕.在线超声对膜生物反应器膜污染的控制.中国环境科学. 2008,28(6):517~521
    60 H. Liu. Extraction of extracellular polymeric substances (EPS) of sludges.Journal of Biotechnology. 2002, 95:249~256
    61 O. H. Lowery. Protein measurement with the folin phenol reagent. Journal ofBiology and Chemistry. 1951, 193:265~275
    62周恢. MBR中污泥脱氢酶活性测定方法的改进.中国环境保护工业. 2006,12(3):31~33
    63 Q. Lu. Study on the alterations of Escherichia coli membrane by ultrasoundfield. Journal of shaan xi university of science and technology. 2006,24(1):18~23
    64傅金祥.污水除磷脱氮理论与实践.中国建材出版社. 1998.
    65刘红.低强度超声波改善污泥活性.环境科学. 2005, 26(4): 124~128
    66高大维.线性超声波辐照对啤酒酵母细胞生长的影响.华南理工大学学报(自然科学版). 1999, 27(12):34~37
    67 O. Schl?fer. Improvement of biological activity by low energy ultrasoundassisted bioreactor. Ultrasonics. 2000, 38(8):711~716
    68闫怡新.低强度超声波强化污水生物处理中超声辐照周期的优化选择.环境科学. 2006, 27(5):898~902
    69时兰春.低强度超声波在生物技术中应用的研究进展.重庆大学学报. 2002,25(10):139~142
    70戴传云.低功率超声波对微生物发酵的影响.重庆大学学报. 2003,26(2):15~17
    71 J .Y. Wu. Oxidative burst, Jasmonic acid biosynthesis, and taxol productioninduced by low-energy ultrasound in Taxus chinensiscell suspension cultures.Biotechnology and bioengineering. 2004, 85(7):714~720
    72 S. Vignesaeran. Application of Micro-filtration for Water and WastewaterTreatment. Environmental Sanitation Reviews. 199l, 31(1):l7~18
    73 L. Wontae. Sludge characteristics and their contribution to microfiltration insubmerged membrane bioreactor. Journal of Membrane Science. 2003,216(1):217~227
    74 I .S. Chang. Effects of membrane fouling on solute rejection during membranefiltration of activated sludge.Process Biochemistry. 2001, 36(8):855~860
    75 H. Nagaoka. Influence of bacterial extracellular polymers on the membraneseparation activated sludge process. Water Science and Technology. 1996,34(9):165~172
    76 I. S. Chang. Membrane Filtration Charteristics in Membrane-Coupled ActivatedSludge System—The Effect of Physiological States of Activated Sludge onMembrane Fouling. Desalination 120, 1998:221~233
    77 M. C. GAO. Nitrification and sludge characteristics in a submerged membranebioreactor on synthetic inorganic wastewater. Desalination170, 2004:177~185
    78 X. Y. Li. Influence of loosely bound extracellular polymeric substances (EPS)on the flocculation, sedimentation and dewaterability of activated sludge. WaterResearch. 2007, 41:1022~1030
    79 C. Park. Characterization of activated sludge exocellular polymers using severalcation-associated extraction methods.Process Biochemistry. 2007, 41(8):1679~1688
    80石晓庆.膜生物反应器工艺运行条件对脱氮性能及膜污染影响的试验研究.北京交通大学硕士学位论文. 2009:24~27
    81卜庆杰.新型膜-生物反应器在不同通量下的膜污染特性研究.环境污染治理技术与设备. 2005, 6(3):85~90
    82 B. D. Cho. Fouling transients in nominally sub-critical flux operation of amembrane bioreactor. J.Membr. Sci. 2002, 209:391~.403
    83 C. P. Chu,Chang. Observations on changes in ultrasonically treatedwaste-activated sludge.Water Research. 2001, 35(4):1038~1046
    84 C. Y. Dai. Low ultrasonic stimulates fermentation of riboflavin producing strainEcemothecium ashbyii. Colloids and Surfaces B: Biointerfaces. 2003, 30:37~41
    85 J. V. Sinisterra. Application of ultrasound to biotechnology: an overview.Ultrasonics. 1992, 30(3):180~185
    86 T .J. Mason. The uses of ultrasound in food technology. UltrasonicsSonochemistry. 1996, 3(3):253-260
    87 R. Bar. Ultrasound-enhanced bioprocesses: cholesterol oxidation byRhodococcus erythropolis. Biotechnol. Bioeng. 1988, 32:655~663
    88刘红.微污染水源水处理中超声波强化生物降解有机污染物研究.环境科学. 2004, 25(3):57~60

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700