污泥丝状菌微膨胀的引发与控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
活性污泥膨胀是活性污泥法问世以来在运行管理与控制中的难题之一,是活性污泥法的癌症,发生率高,危害大,难治理。彭永臻教授变控制为利用,提出了低溶解氧丝状菌污泥微膨胀节能方法。本论文以此方法为基础,围绕三个方面展开:低DO下微膨胀的启动和维持、微膨胀时出水水质的考察和膨胀的抑制。
     研究了污泥膨胀的引发问题,采用协同低DO和负荷启动了污泥膨胀,并且对比了膨胀状态下污染物的去除特点。结果发现,在DO < 0.5 mg/L,MLSS 3000-3500 mg/L的条件下,负荷为0.22 gCOD/(gMLSS·d)时,未发生污泥膨胀;负荷为0.44 gCOD/(gMLSS·d)时,发生丝状菌微膨胀;在负荷为0.66 gCOD/(gMLSS·d),引发粘性膨胀。粘性膨胀时出水氨氮及磷去除效果变差,但丝状菌膨胀时氨氮及磷去除效果良好,且比吸磷速率更快,出水SS更低。且都发生了同步硝化反硝化现象,未发生污泥膨胀时SND率最大,丝状菌膨胀时次之,粘性膨胀时最小。
     研究了污泥膨胀的抑制,防止过度膨胀。通过调节工艺参数,系统地研究了有机负荷,溶解氧,进水方式等常见运行参数对丝状菌污泥膨胀的抑制作用。结果发现,单独提高DO(4mg/L-6mg/L)对抑制丝状菌膨胀作用不大。单独增大有机负荷(>0.40kgCOD·kgMLSS-1·d-1)以及强化贮存选择作用难以有效抑制丝状菌膨胀,并且如果后续曝气时间控制不利易引发粘性膨胀。增设前置缺氧或厌氧段,是抑制丝状菌污泥膨胀的有效手段。
     探讨了过度厌氧对丝状菌污泥膨胀的抑制作用。结果发现,过度厌氧对丝状菌膨胀抑制强化作用不大。且过度厌氧对脱氮除磷反应历程没有影响,未增加厌氧阶段释磷量。另外,低氧下发生了同步硝化反硝化,在平均溶解氧小于0.4mg/L范围内,SND率随平均溶解氧升高而增大。
Since the Activated sludge process has been commonly employed in wastewater treatment plants, it offen suffered the cancer of sludge bulking. Sludge bulking problem has the specialty of high frequency, strong damage, hard to solve and so on. Pro.Peng Yongzhen changed the view of controlling to utilizing, firstly proposed“The theory and technique of saving energy achieved by limited filamentous bulking under low DO”. The method is working by controling the activated sludge wastewater treatment system under low DO conditions artificialy, to cause sludge bulking happen. But the phenomenon of sludge flowing out of the system should not happen. It can realize the aim of improving the outflow water quality and saving energy by utilizing the filamentous specialty of high ratio surface area and strong ability to resistence low DO and decompose low organic concentration. Significantly, after its introduction, there are three questions about the study: how to achieve and stay steady limited filamentous bulking;the removal effect of pollutes and the inhibitting of bulking. In this paper, the three aspects and their spread were investigated.
     Firstly, the operating parameter caused and stayed limited filamentous sludge bulking were investigated in a lab-scale SBR reactor. The effects of sludge loads under low DO condition on activated sludge settle ability was investigated. Results showed that when the system was kept in low DO level, the sludge settled properly at sludge load of 0.20g/(g?d),deterioration of SVI was faster as the sludge loads grew higher. And the kind of sludge bulking was not the same. When sludge load was 0.66g/(g?d) non-filamentous activated sludge bulking occurred,and when sludge load at 0.44 g/(g?d) filamentous activated sludge bulking occurred. And the removal effect under different kind of bulking was compared. The removal effect of de-nitrogenized and de-phosphorusized deteriorated in non-filamentous activated sludge bulking but it would not occur under filamentous activated sludge bulking, Besides, the rate of phosphorus absorption was faster, and SS in effluent was almost negligible. The SND rate was the biggest when sludge bulking didn’t happen, which decreased when non-filamentous activated sludge bulking occurred, and was the smallest in the condition of filamentous activated sludge bulking.
     Secondly, through adjusting process parameters to inhibit filamentous sludge bulking. Inhibition effect of organic loading rate, dissolved oxygen(DO), feeding pattern and some other common operation parameters on filamentous sludge bulking were investigated by SBR systematically. The results showed that, the effect of inhibiting filamentous sludge bulking through increasing DO (4-6mg/L) alone is not obvious;and it is difficult to inhibit filamentous sludge bulking through increasing organic loading rate alone (>0.40kgCOD?kgMLSS-1?d-1) or enhance storage selective function. What’s worse, if aerobic time and aeration rate are not proper, viscosity sludge bulking is prone to happen; setting up proposed anoxic(anaerobic) phase is an effective method to inhibit filamentous sludge bulking.
     Besides, the effect of over-anaerobic on inhibitting filamentous sludge bulking was studied in SBR system. Results showed that the Sludge traits became better in the two systems however the role of over anaerobism on inhibiting filamentous sludge bulking is not remarkable.And Over-anaerobic has no significant effect on the process of the process character of de-nitrogenized and de-phosphorusized; phosphorus release will not rise by means of excessive anaerobism. Besides evident SND phenomenon and SND rate increases with the higher average DO within the range of 0.4mg / L
引文
1 M. Sezgin, D. Jenkins and D. S. Parker. A Unified Theory of Filamentous Activated Sludge Bulking. J. W. P. C. F. 1978, 50(9):127~132
    2 Eikelboom D. H. and van Buijsen H. J. J. Microscopic Sludge Investivation Manual [M]. TNO Research Institute for Environmental Hygiene, Delft, 1983
    3 Novak L, Larrea L, Wanner J, et al. Non~filamentous activated sludge bulking in a laboratory scale system[J]. Water Res. 1993, 27(8):1339~1346
    4高春娣,彭永臻,潼川哲夫,彭峰,杨庆.营养物质缺乏引起的丝状菌污泥膨胀及其控制.水处理技术. 2003, 29(3):159~162
    5高春娣,彭永臻,王淑莹,陈滢.氮缺乏引起的非丝状菌活性污泥膨胀.环境科学. 2001, 22(6):61~65
    6高春娣,彭永臻,王淑莹.磷缺乏引起的非丝状菌活性污泥膨胀.中国环境科学. 2002, 22(1):40~43
    7 Blackbeard JR, Gabb D, Ekama GA and Marasis GvR. A survey of filamentous bulking and foaming in activated sludge plants in South Africa. WaterSA, 1988, 14(1) 29~33
    8 Wagner M, Amann R, Kampfer P, et al. Identification and in situ detection of Gram~negative filamentous bacteria in activated sludge. Appl. Environ. Microbiol. 1994, 17:405~417
    9崔洪升,白晓慧,李刚,等.寒冷地区城市污水处理厂污泥膨胀及其控制方法.哈尔滨建筑大学学报. 2001, 34(2):79~82
    10 S. Knoop and S. Kunst. Influence of tamperature and sluge loading on activated sludge settling, especially on MICROTHEIX PARVICELLA. Wat. Sci. Tech. 1998. 37(4~5):27~35
    11 F. Strom, D. Jenkins. Identification and significance of filamentous microorganisms in activated sludge. J. WPCF. 1984. 56(5):449~459
    12 Wesley O. Pipes. Bulking, Deflocculation and pinpoint floc. J. WPCF, 1979. 51(1)
    13丁峰,彭永臻,支霞辉. SBR法处理工业废水中pH值对污泥膨胀的影响.环境工程. 2004, 22(1):29~32
    14 Peidi HuPeter, Strom F. Research Note. Research JWPCF, 1991, 63:276~277
    15 G. Gaval and J. J. Pernelle. Impact of the Repetition of Oxygen Deficiencieson the Filamentous Bacteria Proliferation in Activated Sludge. Wat. Res. 2003, 37(9):1991~2000
    16王凯军.活性污泥膨胀的机理与控制.中国环境科学出版社.1992
    17 PipesWO. Bulking of activated sludge. Adv. Appl Microbiol. 1967, 9:185~234
    18 Chudoba, J. , J. Blaha, and V. Madera. Control of activated sludge filamentous bulking~~III. Effect of sludge loading. Water Res. 1974, 8(4):231~237
    19 Casey TG, Wentzel MC, Ekama GA, et al. An hypothesis for the causes and control of anoxic–aerobic(AA)filament bulking in nutrient removal activated sludge systems. Wat. Sci. Tech. 1994, 29(7):203~212
    20 Casey TG, Wentzel MC, Ekama GA. Filamentous organism bulking in nutrient removal activated sludge systems. Paper 11:a biochemical/microbiological model for proliferation of anoxic~aerobic(AA)filamentous organisms. Water SA. 1999, 25(4):443~451
    21 Horan NJ, Bu’Ali AM, Eccles CR. Isolation, identification and characterisation of filamentous and floc~forming bacteria from activated sludge flocs. Environ. Technol. Lett. 1988, 9:449~457
    22陈滢.生活污水的短程硝化反硝化和污泥膨胀的研究[D].北京工业大学工学博士学位论文,2004
    23 C. Chieas and L. Robert. Growth and Control of Filamentous Microbes in Activated Sludge:An Integrated Hypothesis. Water Res. 1985, 19(4):68~72
    24王凯军.统一的活性污泥丝状菌型污泥膨胀.环境科学. 1993, 14(2):44~48
    25张自杰,林荣忱,金儒霖.排水工程(第四版).北京:中国建筑工业出版社. 2006
    26陈滢,彭永臻,杨向平,等.低溶解氧SBR除磷工艺研究.中国给水排水. 2004, 20(8):40~42
    27 H. W. Zhao, D. S. Mavinic, K. W. Oldham and A. K. Frederic. Controlling Factors for Simultaneous Nitrification and Denitrification in A Two~stage Intermittent Aeration Process Treating Domestic Sewage. Wat. Res. 1999, 33(4):961~970
    28 C. Helmer and S. Kunst. Simutaneous Nitrification/denitrification in An Aerobic Biofilm System. Wat. Sci. Tech. 1998, 37(4~5):183~187
    29邹联沛,张立秋,王宝贞,王琳. MBR中DO对同步硝化反硝化的影响.中国给水排水. 2001, 17(6):10~14
    30 G. Bertanza. Simutaneous Nitrification~denitrification Process in Extended Aeration Plants:Pilot and Real Scale Experiences. Wat. Sci. Tech. 1997,35(6):53~61
    31 X. D. Hao, J. Hans and W. V. G. Johan. Conditions and Mechanisms Affecting Simultaneous Nitrification and Denitrification in A Pasveer Oxidation Ditch. Bioresource Technology. 1997, 59(2~3):207~215
    32吕锡武,李从娜,稻森悠平.溶解氧及活性污泥浓度对同步硝化反硝化的影响.城市环境与城市生态. 2001, 14(1):33~35
    33 E. V. Münch, P. Lant and J. Keller. Simultaneous Ntrification and Denitrification in Bench~scale Sequencing Batch Reactors. Wat. Res. 1996, 30(2):277~284
    34 Robertson L. A, Van NielE. W. J, et al. Simultaneous ni~trification and denitrification in aerobic chemostat cultures of Thiosphaera pantotropha. Appl. Environ. Microbio. l, 1988, 54(11): 2812~281
    35 Rittmann B. E, LangelandW. E. Simultaneous denitrification with nitrification in single~channel oxidation ditches. JWPCF, 1995, 57(4): 300~308
    36高廷耀,周增炎,未晓君.生物脱氮工艺中的同步硝化反硝化现象.给水排水, 1998, 24(12): 6~9
    37 D. Castignetti, H. C. Thomas. Heterotrophic Nitrification among Denitrifiers. M Apllied Environmental Microbiology. 1984, 47(4), 620~623
    38 L. A. Robertson, N. E. W. J. Van, R. A. M. Torremans and J. G. Kuenen. Simultaneous Nitrification and Denitrification in Aerobic Chemostat of Thiosphaera Pantotrpha. Apllied Environmental Microbiology. 1988, 54(11):2812~2818
    39 Castignetti D, Gunner HB. Nitrite and nitrate synthesis from pyruvic oxime by an Alcaligenes sp. Curr. Microbiol 1981, 5:379~384
    40 Castignetti D, Hollocher TC. Nitrogen redox metabolism of a heterotrophic nitrifying~denitrifying Alcaligenes sp. from soil. Appl. Environ. Microbiol 1982, 44:923~928
    41 Kshirsagar M, Gupta AB, Gupta SK. Aerobic denitrification studies on activated sludge mixed with Thiosphaera pantotropha. Environ. Technol. Lett. 1995, 16:35~43
    42 Hu TL, Kung KT. Study of heterotrophic nitrifying bacteria from wastewater treatment systems treating acrylonitrile, butadiene and styrene resin wastewater, Wat. Sci. Tech. 2000, 42(3~4):315~322
    43 Kim Joong Kyun, Park Kyoung Joo, Cho Kyoung Sook, et al. Aerobic nitrification~denitrification by heterotrophic Bacillus strains. Bioresource Technology 2005, 96:1897~1906
    44 Patureau D, Godon JJ, Dabert P, et al. Microvirgula aerodenitrificans gen. nov,sp. nov, a new gram~negative bacterium exhibiting co-respiration of oxygen and nitrogen oxides up to oxygen saturated conditions. Int. J. Sys. Bacteriol. 1998, 48:775~782
    45 Scholten E, Lukow T, Auling G, et al. Thaurea mecharnichensis sp. nov, an aerobic denitrifier from a leachate treatment plant. Int J Sys Bacteriol 1999, 49:1045~1051
    46 Robertson LA, Dalsgaar T, Revsbech NP, et al. Confirmation of'aerobic denitrification'in batch cultures, using gas chromatography and 15N mass spectrometry. FEMS Microbiol. Ecol. 1995, 18:113~120
    47 Baumann B, Snozzi M, Zehnder AJB, et al. Dynamics of denitrification activity of Paracoccus denitrificans in continuous culture during aerobic~anaerobic changes. J. Bacteriol 1996, 178:4367~4374
    48 Munch EV, Lant PA, Keiler J. Simultaneous nitrification and denitrification in bench~scale sequencing batch reactors, Water Res. 1996, 30:277~284
    49 Zhao HW, Mavinic DS, Oldham WO, et al. Controlling factors for simultaneous nitrification and denitrification in a two~stage intermittent aeration process treating domestic sewage. Water Res. 1999, 33:961~970
    50 A. C. Chao C. A. and Keinath T. M. Influence of Process Loading Intensity on Sludge Clarification and Thickening Characteristics. WaterResearch, 1979, 13:1213~1223
    51 Mulder EG, Antheunisse J, Crombach WHJ. Microbial aspects of pollution in the food and dairy industries. In:Sykes G, Skinner FA(eds)Microbial aspects of pollution. 1971, Soc Appl Bacteriol Symp Series No 1. Academic Press, London, pp 71~89
    52周利,彭永臻,高春娣,丁峰. SBR工艺中污泥负荷对丝状菌污泥膨胀的影响.中国给水排水. 1999, 15(6):11~13
    53 Palm J. C, Jenkins D, Parker D. S. Relationship between organic loading dissolved oxygen concentration and sludge settle~ability in the completely mixed activated sludge process. J. Wat. Pollut. Control Fed. 1980, 52(10):2484~2506
    54白璐,王淑莹,彭永臻,等.低溶解氧条件下活性污泥沉降性的研究.工业水处理, 2006, 26(5):54~56
    55周利,彭永臻.丝状菌污泥膨胀的影响因素与控制.环境科学进展, 1999, 7(1):88~93
    56张建新,王洪臣.北京市高碑店污水处理厂污泥膨胀的研究及控制对策.给水排水, 2003, 29(7):9~13
    57 K. Kaewpipat, J. C. P. L. Grady. Population Dynamics in Laboratory~scale Activated Sludge Reactors. Wat. Sci. Tech. 2002, 46(1~2):19~27
    58 Palm J. C. , Jenkins D. , Parker D. S. Relationship between organic loading dissolved oxygen concentration and sludge settle~ability in the completely mixed activated sludge process. J. Wat. Pollut. Control Fed. 1980, 52(10):2484~2506
    59 Kappeler J. , Gujer W. Verification and applications of a mathematical model for "aerobic bulking". Wat. Res. 1994, 28(2):311~322
    60彭永臻,郭建华,王淑莹,陈滢.低溶解氧污泥微膨胀节能理论与方法的发现、提出及理论基础.环境科学, 2008, 29(12): 3343~3345
    61 Cenens C. , Smets I. , Ryckaert V. et al. Modeling the competition between floc~forming and filamentous bacteria in activated sludge waste water treatment systems. Part I. Evaluation of mathematical models based on kinetic selection theory. Water Res. 2000, 34:2525~2534
    62 Rittmann B. E. , Langeland W. E. Simultaneous denitrification with nitrification in single~ channel oxidation ditches[J]. JWPCF, 1995, 57 (4):300~308
    63高廷耀,周增炎,朱晓君.生物脱氮工艺中的同步硝化反硝化现象.给水排水,1998,24(12):6~9
    64吕锡武,李锋,稻森悠平,等.氨氮废水处理过程中的好氧反硝化.给水排水,2000,26(4):17~20
    65 Chudoba J, Grau P, Ottva V. Control of activated sludge fila~mentous bulkingⅡ. Selection of Microorganisms by Means of a Selector. Water Research, 1973
    66卢少勇,宋英豪,申立贤,等.呼吸速率测定研究进展.环境污染治理技术与设备, 2002, 3(8):24~27
    67 Joaquin Sueseun. Dissolved Oxygen Control and Simultaneous Estimation of oxygen Uptake Rate In Activated Sludge Plants[J]. Wat. Envir. Res. 1998, 70(3):316~322
    68 SpanjersH, et al. Respirometry in control of the activated sludge pro~cess. Wat Sci Tech, 1996, 34(3~4):117~126
    69 Huang J Y C, et al. Measurement and new application of oxygen up~take rates in activated sludge process. J Water Pollut Control Fed, 1984, 56(3):259~265
    70 Huang J Y C, et al. Oxygen uptake rates for determination microbial activity and application. Wat Res , 1985, 19(3):273~281
    71 Pijuan, M. Saunders, A. M. Guisasola, A. Baeza, J. A. Casas, C. Blackall, L.L. Enhanced biological phosphorus removal in a sequencing batch reactor using propionate as the sole carbon source. Biotechnol. Bioeng. 2004, 85, 56~67
    72闫骏,王淑莹,高守有,等.低溶解氧下低/值生活污水的同步硝化反硝化[ J ].中国给水排水, 2007, 23(3):44~48
    73 C. Chieas and L. Robert. Growth and Control of Filamentous Microbes in Activated Sludge:An Integrated Hypothesis. Water Res. 1985, 19(4):68~72
    74 Chudoba J, Ottova V, Madera V. Control of activated sludge filamentous bulking~ⅠEffect of the hydraulic regime or degree of mixing in an aeration tank. Wat Res, 1973, 7(9):1163~1182
    75 Vaiopoulou E, Melidis P, Aivasidis A. An activated sludge treatment plant for integrated removal of carbon, nitrogen and phosphorus[J]. Desalination, 2007, 211:192~199.
    76 Knoop S, Kunst S. Influence of temperature and sludge loading on activated sludge settling, expecially on Microthrix parvicella. Water Sci Technol, 1998, 37:27~35
    77 StillD. A. , Ekama G. A. , entzelM. C. , et al. Filamentous organism bulking in nutrient removal activated sludge. Wat. S. A. 1996, 22(2):97~118
    78 Daigger G. T. , RobbinsM. H. , Marshall B. R. The design of a selector to control low F/M filamentous bulking. J. Wat. Pollut. Control Fed. 1985, 56(3):220~226
    79 R. E. Sheker, R. M. Aris and W. K. Shieh. The effects of fill strategies on SBR performance under nitrogen deficiency and rich conditions. Wat. Sci. Tech. 1993, 28(10):259~266
    80 Martins A M P, Heijnen J J, Van Loosdrecht MCM. Effect of feeding pattern and storage on the sludge settleability under aerobic conditions. Water Research, 2003, 37:2555~2575
    81 Beccari M, Majone M, Massanisso P, et al. A bulking sludge with high storage response selected under intermittent feeding. Wat Res, 1998, 32(11):3403~3413
    82 Beun J J, Paletta F, Van Loosdrecht MCM, et al. Stoichiometry and kinetics of poly B hydroxybutyrate metabolism under denitrifying conditions in activated sludge cultures. Biotechnol Bioeng, 2000, 67:379~389
    83高大文,彭永臻,郑庆柱. SBR工艺中短程硝化反硝化的过程控制.中国给水排水, 2002, 18: 13~17
    84 Third K A, Burnett N, Cord~Ruwisch R. Simultaneous nitrification and denitrification using stored substrate (PHB) asthe electron donor in an SBR.Biotechnology and Bioengineering, 2003, 83(6): 706~720.
    85闫骏,王淑莹,高守有,等.低溶解氧下低/值生活污水的同步硝化反硝化.中国给水排水, 2007, 23(3): 44~48
    86 Robertson LA, Kuenen JG. Aerobic denitrification:a controversy revived. Arch. Microbiol. 1984, 139:347~354
    87 Baumann B, Snozzi M, Zehnder AJB et al. Dynamics of denitrification activity of Paracoccus denitrificans in continuous culture during aerobic~anaerobic changes. J. Bacteriol. 1996, 178:4367~4374
    88 Hibiya K, Terada A, Tsuneda S, et al. Simultaneous nitrification and denitrification by controlling vertical and horizontal microenvironment in a membrane~aerated biofilm reactor, J. Biotechnol. 2003, 100:23~32
    89 B. E. Rittmann, W. E. Langeland. Simultaneous Denitrification with Nitrification in Single~channel Oxidation Ditches. J. W. P. C. F. 1985, 57(4):300~308
    90张鹏,周琪,屈计宁,顾国维.同时硝化与反硝化研究进展.重庆环境科学. 2001, 23(6):20~24
    91 Snidaro D, Zartarian F, Jorand F, et al. Characterization of activated sludge flocs structure. Wat. Sci. Tech. 1997, 36(4):313~320
    92 De Beer D, Schramm A, Santegoeds MC, et al. Anaerobic processes in activated sludge. Wat. Sci. Tech. 1998, 37(4–5):605~608
    93 Hisashi Satoh, Yoshiyuki Nakamura, Hideki Ono, et al. Effect of oxygen concentration nitrification and denitrification in single activated sludge flocs. Biotechnol. Bioeng 2003, 83:604~607
    94 Li BK, Bishop P. Micro~profiles of activated sludge floc determined using microelectrodes. Water Res. 2004, 38:1248~1258
    95彭赵旭,彭永臻,左金龙.同步硝化反硝化的影响因素.给水排水, 2009, 35: 162~166

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700