碳纤维负载TiO_2复相光催化材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
二氧化钛的负载化和催化活性的进一步提高,是扩大光催化材料实用化范围的关键所在。本论文选用聚丙烯腈基碳纤维(PAN-CF)为载体,探索合适的溶胶凝胶工艺,通过浸渍涂覆技术制备碳纤维负载二氧化钛薄膜光催化复合材料,并重点研究TiO_2薄膜结构及改性对碳纤维负载TiO_2复相光催化材料催化性能的影响。
     首先,以Ti(OC_4H_9)_4-C_2H_5OH-H_2O体系的全相图为理论依据,采用不同的溶胶体系及热处理工艺制备不同的TiO_2/CF光催化材料,并对材料结构与性能进行表征,结果表明:溶胶浓度影响制备材料的形态结构、CF对TiO_2的负载率及负载牢度;溶胶的浓度和退火温度对制备材料的催化活性有明显的影响。Ti浓度为0.5M的溶胶制备的TiO_2/CF负载牢度好,负载率高,催化活性好。另外,考虑碳纤维的热稳定性,以退火温度为600℃下保温2h,升温速率为2~3℃/min,为最佳的热处理工艺。
     其次,为了充分利用载体的吸附性能,以提高TiO_2/CF光催化材料的催化活性,以聚乙二醇(PEG)为模板剂改性钛溶胶,制备了多孔TiO_2/CF光催化材料,研究了多孔TiO_2/CF光催化复合材料对甲基橙溶液及品红溶液的吸附性能,以及复合材料对甲基橙溶液的光催化性能,结果表明:多孔TiO_2/CF光催化材料对甲基橙染料及品红染料的吸附符合准二级动力学方程,且吸附量随PEG分子量的增大而增加;PEG分子量为2000时,与TiO_2/CF相比,对甲基橙溶液的光催化效率有了一定的提高。
     再次,采用溶胶凝胶法及浸渍涂覆技术分别制备了碳纤维负载TiO_2/SnO_2双层结构薄膜光催化材料(TiO_2/SnO_2 /CF)及碳纤维负载SnO_2-TiO_2混合型薄膜光催化材料(SnO_2 -TiO_2/CF)。结果表明:TiO_2/SnO_2双层薄膜有效提高了材料的催化活性,与TiO_2/CF相比,TiO_2/SnO_2 /CF对甲基橙溶液的光催化降解效率提高了13.3%;而对于混合型的SnO_2-TiO_2/CF,当SnO_2含量为20%时,SnO_2 -TiO_2/CF比TiO_2/CF催化活性有了明显提高,对酸性橙Ⅱ溶液催化降解效率提高了近60%。
     最后,提出了通过简单的氧化还原技术,对载体表面进行贵金属Pd修饰的方法,提高碳纤维负载二氧化钛光催化的材料(TiO_2/ Pd-CF)的催化性能,结果表明TiO_2/ Pd-CF催化活性比TiO_2/CF有很大的提高,且当Pd粒子的沉积量为10.8mg/g时,对酸性橙Ⅱ溶液催化效果提高了70%以上,为提高负载型光催化材料提供了新思路。
Preparation of immobilized photocatalytic titanium dioxide materials and further improvement of the photocatalytic activity of the materials are keys to expand the scope of practical application of photocatalytic materials. In this paper, the composite photocatalyst of TiO_2 thin film supported on polyacrylonitile based carbon fiber (PAN-CF) substrates was prepared by sol-gel dip coating technique and a suitable sol-gel process was explored. The effects of the TiO_2 thin film structure and its modification on the photocatalytic performance of the composite photocatalyst of TiO_2 thin film supported on carbon fiber materials were researched.
     First, the TiO_2/CF photocatalyst materials were prepared by different sol systems and heat treatment processes on the basis of the multicomponent system phase diagram theory of Ti(OC_4H_9)_4-C_2H_5OH-H_2O, and the structures and properties of the materials were studied. The results suggest that the concentration of the sol has significant effects on the morphologies and structures of TiO_2/CF film, the load rate of TiO_2 and load fastness. It also indicated that the catalytic activity of TiO_2/CF film is remarkably influenced by the concentration of the sol and annealing temperature, and the TiO_2/CF prepared from the Ti sol with concentration of 0.5M exhibits better load fastness, higher load rate and excellent catalytic performance. Moreover, The optimum heat treatment process was determined as annealed at 600℃for 2 hours at a rate of 2~3℃/min.
     Second, in order to make full use of the adsorption properties of carrier, the TiO_2 porous film photocatalysts deposited on carbon fiber were fabricated through the sol-gel dip-coating technology using PEG-modified titanium sol. The adsorption effects of the composites to methyl orange and fuchsin, and the photocatalytic property of the composites to methyl orange were investigated respectively. The results suggest that the adsorption kinetic process of TiO_2/CF composites to methyl orange solution and fuchsin fitted very well with the pseudo-second-order kinetic model. In addition, with the improvement of PEG molecules, the adsorption capacity is increased, and the catalytic performance of porous TiO_2/CF using PEG2000 as a template was increased on some degree that compare with TiO_2/CF by photocatalytic degradation of methyl orange solution.
     And then, the compound photocatalysis material of TiO_2/SnO_2 films with bilayer structure (TiO_2/SnO_2/CF) and TiO_2-SnO_2 hybrid films supported on carbon fiber(SnO_2-TiO_2/CF) were prepared by sol-gel dip-coating technology, respectively. The study revealed that the photocatalytic activity of the composite is efficiently enhanced by using TiO_2/SnO_2 films with bilayer structure, and the photocatalytic degradation efficiency of TiO_2/SnO_2/CF was improved 13% compare with TiO_2/CF, by photocatalytic degradation of methyl orange solution. The photocatalytic activity of SnO_2-TiO_2/CF with SnO_2 content of 20%(mole fraction) was markedly improved compare with TiO_2/CF, and the degradation efficiency of TiO_2/SnO_2/CF was improved 60% by photocatalytic degradation of acid orangeⅡsolution.
     The last, photocatalytic property of the TiO_2 films photocatalysts supported on Pd modified carbon fiber(TiO_2/ Pd-CF) was improved by the method of noble metal Pd modified carrier surface through a facile oxidation-reduction technology. The results indicate that the catalytic activity of TiO_2/Pd-CF exhibited greatly enhanced compare with TiO_2/CF, and the photocatalytic performance of TiO_2/Pd-CF towards the degradation of acid orangeⅡwas improved 70% when the Pd particles loading is 10.8mg/g. It provides a new idea for improving photocatalytic property of immobilized photocatalytic materials.
引文
[1] Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode [J]. Nature. 1972, 238:37-38.
    [2] Ni M., Leung M. K., Leung D. Y., et al. A review and recent developments in photocatalytic water-splitting using TiO_2 for hydrogen production[J]. Renewable and Sustainable Energy Reviews. 2007,11(3):401-425.
    [3] Ortiz-islas E., Gomez R., Lopez T., et al. Effect of the crystallite size in the structural and textural properties of sulfated and phosphated titania[J]. Applied Surface Science. 2005, 252(3):807-812.
    [4] Sun B., Smirniotis P. G.. Interaction of anatase and rutile TiO_2 particles in aqueous photooxidation[J]. Catalysis Today. 2003,88(1-2):49-59.
    [5]刘守新,刘鸿.光催化及光电催化基础与应用[M].第一版.北京:化学工业出版社, 2005.
    [6] Carey J. H., Lawrence J., Tosine H. M.. Photodechlorination of PCB's in the presence of titanium dioxide in aqueous suspensions[J]. Bulletin of Environmental Contamination and Toxicology. 1976,16(6):697-701.
    [7] Frank S. N., Bard A. J.. Heterogeneous photocatalytic oxidation of cyanide and sulfite in aqueous solutions at semiconductor powders[J]. the journal of physical chemistry. 1977, 81(15): 1484–1488.
    [8] Karvinen S., Hirva P., Pakkanen T. A.. Ab initio quantum chemical studies of cluster models for doped anatase and rutile TiO_2[J]. Journal of Molecular Structure: THEOCHEM. 2003,626(1-3):271-277.
    [9]高濂,郑栅,张青红.纳米氧化钛光催化材料及应用[M].第一版.北京:化学工业出版社, 2002.
    [10] Linsebigler A. L., Lu G., Yates J. T.. Photocatalysis on TiO_2 Surfaces: Principles, Mechanisms, and Selected Results[J]. Chemical Reviews. 1995, 95(3):735-758.
    [11] Hoffmann M. R., Martin S. T., Choi W., et al. Environmental applications of semiconductor photocatalysis[J]. Chemical Reviews. 1995,95(1):69-96.
    [12]王挺,蒋新.纳米TiO_2制备技术的进展和新型涂料产品的设计[J].浙江化工.2007, 38(5):10-14.
    [13]郭玉.二氧化钛薄膜的掺杂、复合及性能研究[D].杭州:浙江大学, 2007.
    [14]郑燕青,施尔畏,元如林等.二氧化钛晶粒的水热制备及其形成机理研究[J].中国科学, E辑. 1999, 29(3):206-213.
    [15]郑燕青,施尔畏,李汉军等.水热条件下二氧化钛晶体同质变体的形成[J].中国科学, E辑. 2001,31(3):204-212.
    [16]黄剑锋.溶胶-凝胶原理与技术[M].第一版.北京:化学工业出版社, 2005.
    [17] Addamo M., Augugliaro V., Di P. A., et al. Photocatalytic thin films of TiO_2 formed by a sol-gel process using titanium tetraisopropoxide as the precursor[J]. Thin Solid Films. 2008, 516(12):3802-3807.
    [18] Mohammadi M. R., Fray D. J., Mohammadi A. Sol-gel nanostructured titanium dioxide: Controlling the crystal structure, crystallite size, phase transformation, packing and ordering[J]. Microporous and Mesoporous Materials. 2008, 112(1-3):392-402.
    [19] Ding Z., Lu G. Q., Greenfield P. F.. Role of the crystallite phase of TiO_2 in heterogeneous photocatalysis for phenol oxidation in water[J]. Journal of Physical Chemistry B. 2000, 104(19):4815-4820.
    [20]刘曙光,魏伟.混晶结构纳米TiO_2粉体的制备与性能表征[J].硅酸盐通报. 2007, 26(6):1089-1093.
    [21] Yu J. G., Zhao X. J., Zhao Q. N.. Effect of surface structure on photocatalytic activity of TiO_2 thin films prepared by sol-gel method[J]. Thin Solid Films. 2000,379(1-2):7-14.
    [22]赵青南,余家国等. TiO_2薄膜孔结构对光催化性能的影响[J].陶瓷学报. 1999,20(3):177-180.
    [23] Walden M., Lai X., Goodman D. W.. Onset of Catalytic Activity of Gold Clusters on Titania with the Appearance of Nonmetallic Properties[J]. Science. 1998,281(5383): 1647-1650.
    [24]李华乐,成立,王振宇.新型半导体纳米材料的主要制备技术[J].半导体技术. 2006, 31(3):217-223.
    [25]郭延红.活性炭负载TiO_2光催化降解水中苯酚的研究[J].工业催化. 2006,14(6):42-45.
    [26]金建国,张文丽,邱继军. TiO_2光催化剂的应用及其关键技术[J].陶瓷学报. 2001, 22(4): 276-279.
    [27] Howe R. F., Gratzel M.. EPR study of hydrated anatase under UV irradiation[J]. Journal of Physical Chemistry. 1987,91(14):3906-3909.
    [28] Augustinski J.. Aspects of photo-electrochemical and surface behaviour of titanium (IV) oxide[J]. Structure and Bonding. 1988,69:1-61.
    [29] Choi W., Ko J. Y., Park H., et al. Investigation on TiO_2-coated optical fibers for gas-phase photocatalytic oxidation of acetone[J]. Applied Catalysis B: Environmental. 2001,31(3): 209-220.
    [30]鄂磊,徐明霞.贵金属修饰型TiO_2的催化活性及Fermi能级对其光催化性能的影响[J].硅酸盐学报. 2004,32(12):1538-1541.
    [31]席北斗,孔欣,刘纯新等.加铂修饰型催化剂光催化氧化五氯酚[J].环境化学. 2001, 20(1):27-30.
    [32]高远,徐安武,祝静艳等. RE/TiO_2用于NO2光催化氧化的研究[J].催化学报. 2001, 22(1):53-56.
    [33] Choi W., Termin A., Hoffman M. R.. The role of metallic dopants in quantum-sized TiO_2: correlation between photocareactivity and charge carrier recombination dynamics[J]. Journal of Physical Chemistry. 1994, 98(51):13669-13679.
    [34]宋绵新,周天亮,王峰. TiO_2光催化剂改性掺杂与负载技术研究进展[J].材料导报.2006,20(8):16-20.
    [35]丘永樑,陈洪龄,徐南平.水热法制备CdS/TiO_2及其光活性[J].化工学报. 2005,56(7): 1338-1342.
    [36] Asahi R., Morikawa T., Ohwaki T., et al. Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides[J]. Science. 2001,293:269-271.
    [37]尹峰,林瑞峰. TiO_2表面电子结构及其光催化活性[J].催化学报. 1999, 20(3): 343-346.
    [38]曹亚安,黄英. TiO_2纳米粒子膜的制备,表面态性质和光催化活性[J].催化学报.1999, 20(3):353-355.
    [39]唐玉朝,胡春,王怡中. TiO_2光催化反应机理及动力学研究进展[J].化学进展. 2002, 14(3):192-199.
    [40]左言军,习海玲.TiO_2悬浮体系光催化降解反应动力学模型的建立[J].催化学报.2001,22(2):198-202.
    [41] Yoneyama H., Torimoto T.. Titanium dioxide/adsorbent hybrid photocatalysts for photodestruction of organic substances of dilute concentrations[J]. Catalysis Today. 2000,58(2-3):133-140.
    [42]韩世同,习海玲,史瑞雪等.半导体光催化研究进展与展望[J].化学物理学报.2003, 16(5):339-349.
    [43]王幼平,余家国.溶胶-凝胶工艺制备掺铅TiO_2纳米薄膜及其光催化性能的研究[J].中国环境科学. 1998,18(3):244-247.
    [44] Zhang S., Kobayashi T., Nosaka Y., et al. Photocatalytic property of titanium silicate zeolite[J]. Journal of Molecular Catalysis A: Chemical. 1996,106(1-2):119-123.
    [45]刘鑫,刘福田,张宁等.沸石负载纳米TiO_2光催化剂水处理研究进展[J].硅酸盐通报. 2006,25(6): 135-139.
    [46] Takenori D., Kiyohisa I.. Photocatalytilly highly active nanocomposite films conxisting of TiO_2 particles and ZnO whiskers formed on steel plates[J]. Journal of the Electrochemical Society. 2000,147(6):2263- 2267
    [47] Lee D. K., Kim S. C., Kim S. J., et al. Photocatalytic oxidation of microcystin-LR with TiO_2-coated activated carbon[J]. Chemical Engineering Journal. 2004,102(1):93-98.
    [48] Fu P. F., Luan Y., Dai X. G.. Preparation of activated carbon fibers supported TiO_2 photocatalyst and evaluation of its photocatalytic reactivity[J]. Journal of Molecular Catalysis A: Chemical. 2004,221(1-2): 81-88.
    [49]韩兆慧,赵化侨.半导体多相光催化应用研究进展[J].化学进展. 1999,11(1):1-10.
    [50] Dai K., Chen H., Peng T., et al. Photocatalytic degradation of methyl orange in aqueous suspension of mesoporous titania nanoparticles[J]. Chemosphere. 2007,69(9):1361-1367.
    [51] Ao Y., Xu J., Fu D., et al. Photocatalytic degradation of X-3B by titania-coated magnetic activated carbon under UV and visible irradiation[J]. Journal of Alloys and Compounds. 2009, 471(1-2):33-38.
    [52]陈士夫,赵梦月.光催化降解有机磷农药废水的研究[J].工业水处理. 1996,16(1):17-19.
    [53]陈士夫,程雪丽.空心玻璃微球附载TiO_2清除水面漂浮的油层[J].中国环境科学.1999,19(1): 47-50.
    [54]方佑龄,孙育斌.纳米TiO_2在空心陶瓷微球上的固定化及光催化分解辛烷[J].应用化学. 1997,14 (2):81-83.
    [55]邓南圣,吴峰.环境光化学[M].第一版.北京:化学工业出版社, 2003.
    [56]邵绍燕,楚英豪,姚远等.纳米TiO_2在环境应用方面的研究进展[J].环境科学与技术. 2008,31(3): 43-46.
    [57] Zhang C., He H., Tanaka K.. Catalytic performance and mechanism of a Pt/TiO_2 catalyst for the oxidation of formaldehyde at room temperature[J]. Applied Catalysis B: Environmental. 2006,65(1-2): 37-43.
    [58] Jakse F. P., Friedman R. M., Delk F. S., et al. The oxidation of formaldehyde over Pt/titania[J]. Applied Catalysis. 1985,14:303-321.
    [59] Ching W. H., Leung M., Leung D. Y.. Solar photocatalytic degradation of gaseous formaldehyde by sol-gel TiO_2 thin film for enhancement of indoor air quality[J]. Solar Energy. 2004,77(2):129-135.
    [60] Yang L., Liu Z., Shi J., et al. Design consideration of photocatalytic oxidation reactors using TiO_2 coated foam nickels for degrading indoor gaseous formaldehyde[J]. Catalysis Today. 2007,126(3-4):359-368.
    [61] Hattori A., Tokihisa Y., Tada H., et al. Acceleration of Oxidations and Retardation of Reductions in Photocatalysis of a TiO_2/SnO2 Bilayer-Type Catalyst[J]. Journal of The Electrochemical Society. 2000,147(6):2279-2283.
    [62] Deguchi T., Imai K., Iwasaki M., et al. Photocatalytically Highly Active Nanocomposite Films Consisting of TiO_2 Particles and ZnO Whiskers Formed on Steel Plates[J]. Journal of The Electrochemical Society. 2000,147(6):2263-2267.
    [63]丁海燕,王玉萍,彭盘英.负载二氧化钛催化剂的制备与性能[J].南京师大学报:自然科学版. 2004,27(1):63-67.
    [64] Yusuf M. M., Imai H., Hirashima H.. Preparation of mesoporous TiO_2 thin films by surfactant templating[J]. Journal of Non-Crystalline Solids. 2001,285(1-3):90-95.
    [65] Jing L. Q., Li S. D., Shu S., et al. Investigation on the electron transfer between anatase and rutile in nano-sized TiO_2 by means of surface photovoltage technique and its effects on the photocatalytic activity[J]. Solar Energy Materials and Solar Cells. 2008,92(9):1030-1036.
    [66]余家国,赵修健. TiO_2纳米粉体的溶胶-凝胶工艺制备和光催化活性表征[J].中国粉体技术. 2000,6(2):7-10.
    [67] Yuan R., Guan R., Zheng J.. Effect of the pore size of TiO_2 loaded activated carbon fiber on its photocatalytic activity[J]. Scripta Materialia. 2005, 52(12):1329-1334.
    [68]陈士夫,赵梦月,陶跃武等.玻璃纤维附载TiO_2光催化降解有机磷农药[J].环境科学. 1996, 17(4):33-35.
    [69]金旭东,傅雅琴,倪庆清.碳纤维表面氧化处理对其负载TiO_2的影响[J].纺织学报. 2007, 28(12).
    [70] Samuneva B., Kozhukharov V., Trapalis C.. Sol-gel processing of titanium- containing thin coatings[J]. Journal of Materials Science. 1993,28:2353-2360.
    [71] Zhang L. W., Fu H. B., Zhu Y. F.. Efficient TiO_2 Photocatalysts from Surface Hybridization of TiO_2 Particles with Graphite-like Carbon[J]. Advanced Functional Materials. 2008,18(15):2189.
    [72] Ros T. G., Van Dillen A. J., Geus J. W., et al. Surface oxidation of carbon nanofibers[J]. Chemistry-A European Journal. 2002,8(5):1151-1162.
    [73] Su C., Hong B., Tseng C.. Sol-gel preparation and photocatalysis of titanium dioxide[J]. Catalysis Today. 2004, 96(3): 119-126.
    [74] Ronconi C. M., Ribeiro C., Bulhoes L. O. S., et al. PereiraInsights for phase control in TiO_2 nano- particles from polymeric precursors method[J]. Journal of Alloys and Compounds. 2008, 46(1-2): 435-438.
    [75] Alem A., Sarpoolaky H., Keshmiri M.. Titania ultrafiltration membrane: Preparation, characterization and photocatalytic activity[J]. Journal of the European Ceramic Society. 2009, 29(4): 629-635.
    [76] Li W., Ni C., Lin H., et al. Size dependence of thermal stability of TiO_2 nanoparticles[J]. Journal of Applied Physics. 2004,96(11):6663-6668.
    [77] Hirsch A.. Functionalization of single- walled carbon nanotubes[J]. Angewandte Chemie International Edition. 2002,41(11):1853-1859.
    [78] Hsiu-mei C., Ting-chien C., San-de P., et al. Adsorption characteristics of Orange II and Chrysophenine on sludge adsorbent and activated carbon fibers[J]. Journal of Hazardous Materials. 2009,161(2-3): 1384-1390.
    [79]高伟,吴凤清,罗臻等. TiO_2晶型与光催化活性关系的研究[J].高等学校化学学报. 2001,22 (44):660-662.
    [80] Park S J, Kim Y M. Influence of anodic treatment on heavy metal ion removal by activated carbon fibers[J]. Journal of Colloid and Interface Science. 2004, 278(2):276-281.
    [81] Hsiu-mei C., Ting-chien C., San-de P., et al. Adsorption characteristics of Orange II and Chrysophenine on sludge adsorbent and activated carbon fibers[J]. Journal of Hazardous Materials. 2009,161(2-3):1384-1390.
    [82] Daneshvar N., Aber S., Khani A., et al. Study of imidaclopride removal from aqueous solution by adsorption onto granular activated carbon using an on-line spectrophotometric analysis system[J]. Journal of Hazardous Materials. 2007,144(1-2):47-51.
    [83] Xu D., Huang Z. H., Kang F., et al. Effect of heat treatment on adsorption performance and photocatalytic activity of TiO_2 mounted activated carbon cloths[J]. Catalysis Today. 2008,139(1-2): 64-68.
    [84] Zhang W., He Y., Qi Q.. Synthesize of porous TiO_2 thin film of photocatalyst by charged microemulsion templating[J]. Materials Chemistry and Physics. 2005,93(2-3):508-515.
    [85] Sohrabi M. R., Ghavami M.. Photocatalytic degradation of Direct Red 23 dye using UV/TiO_2: Effect of operational parameters[J]. Journal of Hazardous Materials. 2008,153(3):1235-1239.
    [86] Li Y., Li X., Li J., et al. Photocatalytic degradation of methyl orange in a sparged tube reactor with TiO_2 coated activated carbon composites[J]. Catalysis Communications. 2005, 6(10): 650-655.
    [87] Yuan R., Guan R., Liu P., et al. Photocatalytic treatment of wastewater from paper mill by TiO_2 loaded on activated carbon fibers[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2007, 293(1-3): 80-86.
    [88] Zhao X., Zhao Q., Yu J., et al. Development of multifunctional photoactive self-cleaning glasses[J]. Journal of Non-Crystalline Solids. 2008,354(12-13):1424-1430.
    [89] Chen Y., Lunsford S., Dionysiou D. D.. Photocatalytic activity and electrochemical response of titania film with macro/mesoporous texture[J]. Thin Solid Films. 2008, 516(21):7930-7936.
    [90] Arconada N., Dur A., Su S., et al. Synthesis and photocatalytic properties of dense and porous TiO_2 anatase thin films prepared by sol-gel[J]. Applied Catalysis B: Environmental. 2009, 86(1-2): 1-7.
    [91] Sun W., Zhang S., Liu Z., et al. Studies on the enhanced photocatalytic hydrogen evolution over Pt/PEG-modified TiO_2 photocatalysts[J]. International Journal of Hydrogen Energy. 2008,33(4): 1112-1117.
    [92] Chen Y., Lunsford S., Dionysiou D. D.. Photocatalytic activity and electrochemical response of titania film with macro/mesoporous texture[J]. Thin Solid Films. 2008,516(21): 7930-7936.
    [93] Bosc F., Ayral A., Albouy P. A., et al. A Simple Route for Low-Temperature Synthesis of Mesoporousand Nanocrystalline Anatase Thin Films[J]. Chemistry of Materials. 2003, 15(12): 2463-2468.
    [94] Hameed B. H., Krishni R. R., Sata S. A.. A novel agricultural waste adsorbent for the removal of cationic dye from aqueous solutions[J]. Journal of Hazardous Materials. 2009, 162(1): 305-311.
    [95]张华,陈晨,梁晓飞等.活性炭/聚丙烯腈纤维对溶液中的甲基橙染料吸附动力学研究[J].环境工程学报. 2008,2(3):324-327.
    [96] Wu C. H.. Comparison of azo dye degradation efficiency using UV/single semiconductor and UV/coupled semiconductor systems[J]. Chemosphere. 2004, 57(7):601-608.
    [97] Chen X. B., Mao S. S.. Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications[J]. Chemical reviews. 2007,107(7):2891-2959.
    [98] Rauf M. A., Ashraf S. S.. Radiation induced degradation of dyes--An overview[J]. Journal of Hazardous Materials. 2009,166(1):6-16.
    [99] Fujishima A., Rao T. N., Tryk D. A.. Titanium dioxide photocatalysis[J]. Journal of Photochemistry and Photobiology C: Photochemistry Reviews. 2000,1(1):1-21.
    [100] Doh S. J., Kim C., Lee S. G., et al. Development of photocatalytic TiO_2 nanofibers by electrospinning and its application to degradation of dye pollutants[J]. Journal of Hazardous Materials. 2008,154 (1-3):118-127.
    [101] Liu S., Jaffrezic N., Guillard C.. Size effects in liquid-phase photo-oxidation of phenol using nanometer-sized TiO_2 catalysts[J]. Applied Surface Science. 2008,255(5):2704-2709.
    [102]郭延红.活性炭负载TiO_2光催化降解水中苯酚的研究[J].工业催化. 2006, 14(6):42-45.
    [103] Li Y., Ma M., Sun S., et al. Preparation of TiO_2-carbon surface composites with high photoactivity by supercritical pretreatment and sol-gel processing[J]. Applied Surface Science. 2008,254(13):4154-4158.
    [104] Liu J., Yang R., Li S.. Preparation and application of efficient TiO_2/ACFs photocatalyst[J]. Journal of Environmental Sciences. 2006,18(5):979-982.
    [105] Mart A. I., Acosta D. R., Cedillo G.. Effect of SnO2 on the photocatalytical properties of TiO_2 films[J]. Thin Solid Films. 2005,490(2):118-123.
    [106] Shen Y., Xiong T., Li T., et al. Tungsten and nitrogen co-doped TiO_2 nano-powders with strong visible light response[J].Applied Catalysis B:Environmental. 2008,83(3-4):177-185.
    [107] Xu M. W., Bao S. J., Zhang X. G.. Enhanced photocatalytic activity of magnetic TiO_2 photocatalyst by silver deposition[J]. Materials Letters. 2005,59(17):2194-2198.
    [108] Pilkenton S., Raftery D.. Solid-state NMR studies of the adsorption and photooxidation of ethanol onmixed TiO_2-SnO_2 photocatalysts[J]. Solid State Nuclear Magnetic Resonance. 2003, 24(4): 236-253.
    [109] Hou L. R., Yuan C. Z., Peng Y.. Synthesis and photocatalytic property of SnO_2/TiO_2 nanotubes composites[J]. Journal of Hazardous Materials. 2007,139(2):310-315.
    [110]蔡振钱,申乾宏,高基伟等. TiO_2/SnO_2复合薄膜的低温制备及其光催化性能[J].无机材料学报. 2007, 22(4):733-736.
    [111]尚静,谢绍东,刘建国. SnO_2TiO_2复合半导体纳米薄膜的研究进展[J].化学进展. 2005, 17(6):1012-1018.
    [112] Hohi Lee, Katsunosuke Machida, Akio Kuwae I. H.. UV-excited resonance Raman spectra of methyl orange and its complex with cetyltrimethylammonium bromide[J]. Journal of Raman Spectroscopy. 1983,14(2):126-129.
    [113] Coutinho C. A., Gupta V. K.. Photocatalytic degradation of methyl orange using polymer-titania microcomposites[J]. Journal of Colloid and Interface Science. 2009,333(2): 457-464.
    [114] Chang C. C., Chen J. Y., Hsu T. L., et al. Photocatalytic properties of porous TiO_2/Ag thin films[J]. Thin Solid Films. 2008,516(8):1743-1747.
    [115]柳清菊,杨喜昆,刘强等.TiO_2/SnO_2复合薄膜的亲水性能研究[J].无机材料学报.2003,18(6):1331-1336.
    [116] Ukaji E., Furusawa T., Sato M., et al. The effect of surface modification with silane coupling agent on suppressing the photo-catalytic activity of fine TiO_2 particles as inorganic UV filter[J]. Applied Surface Science. 2007,254(2):563-569.
    [117]蔡振钱,申乾宏,高基伟等. TiO_2/SnO_2复合薄膜的低温制备及其光催化性能[J].无机材料学报. 2007, 22(4): 733-736.
    [118] Chen L. C., Tsai F. R., Fang S H, et al. Properties of sol-gel SnO_2/TiO_2 electrodes and their photoelectrocatalytic activities under UV and visible light illumination[J]. Electrochimica Acta. 2009,54(4):1304-1311.
    [119]刘平,周廷云等. TiO_2/SnO_2复合光催化剂的耦合效应[J].物理化学学报. 2001,17(3): 265-269.
    [120] Gebeyehu D., Brabec C. J., Sariciftci N. S.. Solid-state organic/inorganic hybrid solar cells based on conjugated polymers and dye-sensitized TiO_2 electrodes[J]. Thin Solid Films. 2002, 403-404: 271-274.
    [121] Sankapal B. R., Lux-steiner M. C., Ennaoui A.. Synthesis and characterization of anatase-TiO_2 thin films[J]. Applied Surface Science. 2005, 239(2): 165-170.
    [122] Ge L., Xu M. X., Fang H. B.. Synthesis and characterization of the Pd/InVO4-TiO_2 co-doped thin filmswith visible light photocatalytic activities[J]. Applied Surface Science. 2006,253(4):2257-2263.
    [123] Wu Z. B., Sheng Z. Y., Liu Y., et al. Characterization and activity of Pd-modified TiO_2 catalysts for photocatalytic oxidation of NO in gas phase[J]. Journal of Hazardous Materials. 2009,164(2-3):542-548.
    [124] Wu Z. B., Wang H. Q., Liu Y., et al. Photocatalytic oxidation of nitric oxide with immobilized titanium dioxide films synthesized by hydrothermal method[J]. Journal of Hazardous Materials. 2008,151(1):17-25.
    [125] Maira A. J., Yeung K. L., Soria J., et al. Gas-phase photo-oxidation of toluene using nanometer-size TiO_2 catalysts[J]. Applied Catalysis B: Environmental. 2001, 29(4): 327-336.
    [126] Brezov V., Blazkov A., Karpinsk L., et al. Phenol decomposition using Mn~(2+)/TiO_2 photocatalysts supported by the sol-gel technique on glass fibres[J]. Journal of Photochemistry and Photobiology A: Chemistry. 1997, 109(2): 177-183.
    [127] Xie B. P., Xiong Y., Chen R. M., et al. Catalytic activities of Pd-TiO_2 film towards the oxidation of formic acid[J]. Catalysis Communications. 2005, 6(11): 699-704.
    [128] Hou L. R., Yuan C. Z., Peng Y.. Synthesis and photocatalytic property of SnO2/TiO_2 nanotubes composites[J]. Journal of Hazardous Materials. 2007,139(2):310-315.
    [129] Sheng Z. Y., Wu Z. B., Liu Y., et al. Gas-phase photocatalytic oxidation of NO over palladium modified TiO_2 catalysts[J]. Catalysis Communications. 2008,9(9):1941-1944.
    [130] Zhong J. B., Lu Y., Jiang W. D., et al. Characterization and photocatalytic property of Pd/TiO_2 with the oxidation of gaseous benzene[J]. Journal of Hazardous Materials. 2009, 168(2-3):1632-1635.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700