基于磁性纳米粒子和量子点的电化学生物传感器及修饰电极的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米材料是当今材料科学的研究热点,其在化学修饰电极和电化学生物传感器中的应用近年来引起了人们的重视。本论文旨在合成磁性纳米材料(如纳米Fe_3O_4等)和量子点(如CdS),并将上述纳米材料修饰于电极表面,用于药物分子的测定。并研制出了新型的电化学生物传感器,已用于实际生化样品的测定。
     本论文的主要内容如下:
     (1)制备了壳聚糖(CS)包裹四氧化三铁的磁性微球(Fe_3O_4/CS),并将其用于固定辣根过氧化物酶(HRP),制得了测定过氧化氢的电化学生物传感器(HRP-Fe_3O_4/CS-GCE)。考察了各种实验变量如支持电解质浓度、pH、酶的用量、媒介体亚甲基蓝浓度、工作电位等对生物传感器性能的影响。对H_2O_2进行测定,线性范围为2.0×10~(-4)~1.2×10-2 mol/L,检出限为1.0×10~(-4) mol/L(S/N=3),响应时间小于12 s。该传感器的表观米氏常数为21.4 mmol/L,表明所固定的酶具有较高的生物活性。该生物传感器具有高的稳定性和良好的重现性,用该法对实际样品进行了测定。
     (2)制备了壳聚糖(CS)包裹四氧化三铁的磁性微球(Fe_3O_4/CS),利用吸附交联作用,制得了磁性纳米微球-血红蛋白夹心法修饰的玻碳电极(Fe_3O_4/CS-Hb-Fe_3O_4/CS-GCE)。以对苯二酚(HQ)为电子媒介体,考察了各种实验变量如支持电解质浓度、pH、酶的用量、戊二醛的用量、对苯二酚浓度、工作电位等对生物传感器性能的影响。用计时电流法对H_2O_2进行测定,线性范围分别为5.0×10-5~1.8×10~(-3) mol/L和1.8×10~(-3)~6.8×10~(-3) mol/L,检出限为4.0×10~(-6) mol/L(S/N=3),响应时间小于10 s。表观米氏常数Km为0.29 mmol/L,表明固定的Hb有较好的生物活性。该生物传感器具有高的稳定性和良好的重现性,已用于实际样品测定。
     (3)研究了纳米四氧化三铁化学修饰电极对非甾体抗炎药尼美舒利(nimesulide)的测定。实验结果表明,在0.4 mol/L HAc-NaAc(pH 5.0)溶液中,尼美舒利在裸玻碳电极或纳米四氧化三铁修饰电极上均发生不可逆还原反应,但与裸玻碳电极相比,纳米四氧化三铁修饰电极对尼美舒利具有明显的催化和增敏作用,峰电位由-0.707 V(裸电极)正移到-0.682 V(vs. Ag/AgCl)(修饰电极),峰电位正移25 mV,灵敏度增加约3倍。对各种实验条件进行了优化,测得峰电流Ip与尼美舒利浓度在2.6×10~(-6)~1.0×10~(-4) mol/L范围内呈良好的线性关系,相关系数为0.993,检出限为1.3×10~(-7) mol/L。利用优化后的条件对尼美舒利药片进行了测定,测量值与标示值符合,回收率在96.9%~101.9%,并与紫外分光光度法进行了比较,无显著性差异。
     (4)研究了氯霉素在纳米钴修饰玻碳电极上的电化学行为及测定。实验结果表明,在0.3 mol/L NH3-NH4Cl(pH=10.0)缓冲液中,氯霉素在裸玻碳电极或纳米钴修饰电极上均发生不可逆还原反应,但与裸玻碳电极相比,纳米钴修饰电极对氯霉素的还原具有明显的增敏作用,灵敏度增加约6倍。对支持电解质、修饰剂用量等各种实验条件进行了优化。测得峰电流Ip与氯霉素浓度在5.0×10~(-6)~1.2×10~(-4) mol/L范围内呈良好的线性关系,相关系数为0.997,检出限为3.0×10~(-7) mol/L。利用优化后的条件对氯霉素滴眼液进行了测定,测量值与标示值符合,回收率在98.7%~102.2%。
     (5)将血红蛋白吸附在巯基乙酸包覆的硫化镉/羧基化多壁碳纳米管膜上,制得了测定过氧化氢的电化学生物传感器(Hb/CdS/MWNTs/GCE)。实验表明在pH 8.0的磷酸盐缓冲溶液中循环伏安扫描出现一对峰形良好的准可逆氧化还原峰,为Hb Fe(Ⅲ)/Fe(Ⅱ)电对的特征峰,其式量电位(E0')为-0.230 V(vs. Ag/AgCl)。该修饰电极对H_2O_2表现出较好的电催化行为,线性范围为2.0×10~(-6)~2.7×10~(-3) mol/L和2.7×10~(-3)~7.7×10~(-3) mol/L,检出限为3.0×10~(-7) mol/L(S/N=3),响应时间小于2 s。该传感器的表观米氏常数为1.324 mmol/L,表明所固定的血红蛋白具有较高的生物活性。
     (6)研究了以Nafion分散功能化多壁碳纳米管化学修饰电极对尼美舒利的测定。实验结果表明,在0.2 mol/L PBS(pH 6.6)溶液中,碳纳米管修饰电极对尼美舒利具有明显的催化和增敏作用。峰电位由-0.665 V(裸电极)正移到-0.553 V(修饰电极),峰电位正移112 mV,灵敏度增加约7倍。峰电流Ip与尼美舒利浓度在3.2×10~(-7)~6.5×10-5 mol/L范围内呈良好的线性关系,检出限为1.6×10~(-7) mol/L。研究了尼美舒利的电化学行为,利用优化后的条件对尼美舒利药片进行了测定,测量值与标示值符合。并且与紫外分光光度法比较进行了比较,无显著性差异。
Nanomaterials are the research focus in modern materials science. Considerable research efforts are being devoted toward the development of the chemical modified electrodes and electrochemical biosensors based on the nanomaterials. The main work of this paper is focus on the synthesis of magnetic nanoparticles (Fe_3O_4 nanoparticles) and quantum dots (CdS) and the fabrication of the modified electrodes based on the nanomaterials. Besides, some electrochemical biosensors have been developed. Also, the biosensors have been used to determine the real samples. The main results are listed below:
     (1) A new type of amperometric hydrogen peroxide biosensor was constructed based on horseradish peroxidase (HRP) immobilized on Fe_3O_4/chitosan modified glass carbon electrode. The effects of some experimental variables such as the concentration of supporting electrolyte, pH, enzyme loading, the concentration of the mediator of methylene blue (MB) and the applied potential were investigated. The linear range of the calibration curve for H_2O_2 was 2.0×10~(-4)~1.2×10-2 mol/L and the detection limit was 1.0×10~(-4) mol/L (S/N=3). The response time was less than 12 s. The apparent Michaelis-Menten constant Km was 21.4 mmol/L and it illustrated the excellent biological activity of the fixed enzyme. In addition, the biosensor had long-time stability and good reproducibility. And this method has been used to determine H_2O_2 concentration in the real sample.
     (2) A novel magnetic microsphere (Fe_3O_4/chitosan) was prepared using Fe_3O_4 magnetic nanoparticles and natural macromolecule (chitosan). Then an innovative biosensor was constructed based on an easy and effective Hemoglobin (Hb) immobilization method with the“sandwich”configuration of Fe_3O_4/CS-Hb-Fe_3O_4/CS. The effects of some experimental variables such as amount of glutaraldehyde, the concentration of HQ, and the working potential were investigated in the presence of the mediator of hydroquinone (HQ). This biosensor had a fast response to H_2O_2 less than 10 s and excellent linear relationships were obtained in the concentration range of 5.0×10-5 to 1.8×10~(-3) mol/L and 1.8×10~(-3) to 6.8×10~(-3) mol/L with the detection limit of 4.0×10~(-6) mol/L (S/N=3) under the optimum conditions. The apparent Michaelis-Menten constant Km was 0.29 mmol/L and it illustrated the excellent biological activity of the fixed Hb. Moreover, the biosensor had long-time stability and good reproducibility. And this method has been used to determine H_2O_2 concentration in the real sample.
     (3) A novel type of Fe_3O_4 nanoparticles modified glass carbon electrode (Fe_3O_4/GCE) was constructed and the electrochemical properties of N-(4-nitro-2-phenoxyphenyl) methanesulfonamide (nimesulide) were studied on the Fe_3O_4/GCE. In 0.4 mol/L HAc-NaAc (pH 5.0) buffer solution, the electrode process of the nimesulide was irreversible at bare GCE or Fe_3O_4/GCE. The Fe_3O_4/GCE exhibited a remarkable catalytic and enhancement effect on reductin of the nimesulide. The reduction peak potential of nimesulide shifted positively from -0.707 V at bare GCE to -0.682 V at Fe_3O_4/GCE, and the sensitivity increased ca 3 times. Some experimental conditions were optimized. The linear range between the peak current and the concentration of nimesulide was 2.6×10~(-6)~1.0×10~(-4) mol/L (R=0.993) with a detection limit of 1.3×10~(-7) mol/L. This method has been used to determine the content of nimesulide in medical tablets. The recovery was determined to be 96.9%~101.9% by means of standard addition method. Compared with ultraviolet spectrometry, the method is not remarkable difference.
     (4) A novel type of cobalt nanoparticles modified glass carbon electrode (CoNP/GCE) was constructed and the electrochemical properties of chloramphenicol (CAP) were studied on the CoNP/GCE. In 0.3 mol/L NH3-NH4Cl (pH 10.0) buffer solution, the electrode process of CAP was irreversible at bare GCE or CoNP/GCE. The CoNP/GCE exhibited a remarkable enhancement effect on reductin of CAP. The sensitivity increased ca 6 times. Some experimental conditions were optimized. The linear range between the peak current and the concentration of CAP was 5.0×10~(-6)~1.2×10~(-4) mol/L (R=0.997) with a detection limit of 3.0×10~(-7) mol/L. This method has been used to determine the content of CAP in the real sample. The recovery was determined to be 98.7%~102.2% by means of standard addition method.
     (5) A novel third-generation hydrogen peroxide (H_2O_2) biosensor (Hb/CdS/MWNTs/GCE) was fabricated through hemoglobin (Hb) adsorbed onto the mercaptoacetic acid modified CdS QDs/carboxyl multiwall carbon nanotubes (MWNTs) films. Cyclic voltammogram of Hb/CdS/MWNTs/GCE showed a pair of well-defined and quasi-reversible redox peaks with the formal potential (E0') of -0.230 V (vs. Ag/AgCl) in 0.1 mol/L pH 8.0 phosphate buffer solution (PBS), which was the characteristic of the Hb heme Fe(Ⅲ)/Fe(Ⅱ) redox couples. The biosensor showed excellent electrocatalytic activity to the reduction of H_2O_2. The response time to H_2O_2 of the designed biosensor at a potential of -0.30 V was less than 2 s and linear relationships were obtained in the concentration range of 2.0×10~(-6)~2.7×10~(-3) mol/L and 2.7×10~(-3)~7.7×10~(-3) mol/L with the detection limit of 3.0×10~(-7) mol/L (S/N=3). The apparent Michaelis-Menten constant Km was estimated to be 1.324 mmol/L and it illustrated the excellent biological activity of the fixed Hb.
     (6) A new method for the determination of Nimesulide was established based on the multiwalled carbon nanotubes (MWCNTs) modified glassy carbon electrode (MWCNTs/GCE). In 0.2 mol/L PBS (pH 6.6) buffer solution, the MWCNTs/GCE showed a remarkable catalytic and enhancement effect on reduction of the nimesulide. The reductoin peak potential of nimesulide shifted positively from -0.665 V at bare GCE to -0.553 V at MWCNTs/GCE, and the sensitivity increased ca 7 times. A linear dynamic range of 3.2×10~(-7) mol/L to 6.5×10-5 mol/L (R=0.999) with a detection limit of 1.6×10~(-7) mol/L was obtained. The electrochemical behaviors of nimesulide were studied and this method has been used to determine the content of nimesulide in medical tablets. Compared with UV-Vis spectrometry, the method was not remarkable difference.
引文
[1] E. Bakker, Electrochemical sensors [J]. Anal. Chem., 2004, 76(12): 3285-3298.
    [2]汪尔康. 21世纪的分析化学[M].北京:科学出版社, 1999: 36, 175, 185, 196, 216, 225.
    [3]姚守拙.化学与生物传感器[M].北京:化学工业出版社, 2006: 3.
    [4] J. Chen, Y. Miao, N. He, X. Wu, S. Li, Nanotechnology and biosensors [J]. Biotech. Adv., 2004, 22(7): 505-518.
    [5]张先恩.生物传感技术原理与应用[M].长春:吉林科技出版社,1991: 6-8.
    [6] B. Cem (?)zer, H. (?)zy(?)rük, S. S. (?)elebi, A. Y(?)ld(?)z, Amperometric enzyme electrode for free cholesterol determination prepared with cholesterol oxidase immobilized in poly(vinylferrocenium) film [J]. Enzyme Microb. Technol., 2007, 40(2): 262-265.
    [7] S. en, A. Gülce, H. Gülce, Polyvinylferrocenium modified Pt electrode for the design of amperometric choline and acetylcholine enzyme electrodes [J]. Biosens. Bioelectron., 2004, 19(10): 1261-1268.
    [8] P. Y. Ge, W. Zhao, Y. Du, J. J. Xu, H. Y. Chen, A novel hemin-based organic phase artificial enzyme electrode and its application in different hydrophobicity organic solvents [J]. Biosens. Bioelectron., 2009, 24(7): 2002-2007.
    [9] S. D. Luca, M. Florescu, M. E. Ghica, A. Lupu, G. Palleschi, C. M. A. Brett, D. Compagnone, Carbon film electrodes for oxidase-based enzyme sensors in food analysis [J]. Talanta, 2005, 68(2): 171-178.
    [10] G. Y. Zhao, F. F. Xing, S. P. Deng, A disposable amperometric enzyme immunosensor for rapid detection of Vibrio parahaemolyticus in food based on agarose/Nano-Au membrane and screen-printed electrode [J]. Electrochem. Commun., 2007, 9(6): 1263-1268.
    [11] E. Akyilmaz, O. Kozgus, Determination of calcium in milk and water samples by using catalase enzyme electrode [J]. Food Chem., 2009, 115(1): 347-351.
    [12] A. Amine, H. Mohammadi, I. Bourais, G. Palleschi, Enzyme inhibition-based biosensors for food safety and environmental monitoring [J]. Biosens. Bioelectron., 2006, 21(8): 1405-1423.
    [13] I. Karube, T. Okada, S. Suzuki, A methane gas sensor based on oxidizing bacteria [J]. Anal. Chim. Acta, 1982, 135(1): 61-67.
    [14] M. Hikuma, H. Obana, T. Yasuda, I. Karube, S. Suzuki, A potentiometric microbial sensor based on immobilized escherichia coli for glutamic acid [J]. Anal. Chim. Acta,1980, 116(1): 61-67.
    [15] D. J. Choi, S. J. You, J. G. Kim, Development of an environmentally safe corrosion, scale, and microorganism inhibitor for open recirculating cooling systems [J]. Mater. Sci. Eng., A, 2002, 335(1): 228-235.
    [16]张先恩,王志通,简浩然. BOD微生物传感器的研究[J].环境科学学报, 1986, 6(2): 184-192.
    [17]杨刚,胡瑾,曹幼平.微生物传感器BOD测定法在水环境监测中的运用探讨[J].治淮, 1999, 1(2): 44-46.
    [18]张先恩,宋冬林.一种快速测定Ks的新方法[J].微生物学杂志, 1991, 11(1): 34-37.
    [19]张先恩,张德亭,张素琴,张兴,夏祥明.利用微生物传感技术研究微生物底物间相互作用[J].微生物学通报, 1990, 17(2): 93-96.
    [20] M. Haga, S. Sugawara, H. Itagaki, Drug sensor: Liposome immunosensor for theophylline [J]. Anal. Biochem., 1981, 118(2): 286-293.
    [21] V. S. Bezerra, J. L. Filho, M. C. Montenegro, A. N. Araújo, V. L. Silva, Flow-injection amperometric determination of dopamine in pharmaceuticals using a polyphenol oxidase biosensor obtained from soursop pulp [J]. J. Pharm. Biomed. Anal., 2003, 33(5): 1025-1031.
    [22] S. Z. Yao, D. Z. Liu, K. Ge, K. Chen, L. H. Nie, A novel glutamine biosensor system based on a conductance-surface acoustic wave frequency response [J]. Enzyme Microb. Technol., 1995, 17(5): 413-417.
    [23] X. L. Gao, Y. Q. Li, G. H. Yin, Study and application of a new adenosine electrode with thymus tissue [J]. Biosens. Bioelectron., 1992, 7(1): 21-26.
    [24] P. D. Tam, N. V. Hieu, N. D. Chien, A. T. Le, M. A. Tuan, DNA sensor development based on multi-wall carbon nanotubes for label-free influenza virus (type A) detection [J]. J. Immunol. Methods, 2009, 350(1-2): 118-124.
    [25] Y. Wan, J. Zhang, G. Liu, D. Pan, L. H. Wang, S. P. Song, C. H. Fan, Ligase-based multiple DNA analysis by using an electrochemical sensor array [J]. Biosens. Bioelectron., 2009, 24(5): 1209-1212.
    [26] S. Y. Niu, M. Zhao, L. Z. Hu, S. S. Zhang, Carbon nanotube-enhanced DNA biosensor for DNA hybridization detection using rutin-Mn as electrochemical indicator [J]. Sens. Actuators, B, 2008, 135(1): 200-205.
    [27] R. F. Lane, A. T. Hubbard, Electrochemistry of chemisorbed molecules. I. Reactants connected to electrodes through olefinic substituents [J]. J. Phys. Chem., 1973, 77(11): 1401-1410.
    [28] B. F. Watkins, J. R. Behling, E. Kariv, L. L. Miller, Chiral electrode [J]. J. Am. Chem. Soc., 1975, 97(12): 3549-3550.
    [29] P. R. Moses, L. Wier, R. W. Murray, Chemically modified tin oxide electrode. Anal. Chem., 1975, 47(12): 1882-1886.
    [30] A. Bewich, K. Kunimatsu, B. S. Pons, Infra red spectroscopy of the electrode-electrolyte interphase [J]. Electrochim. Acta, 1980, 25(4): 465-468.
    [31] P. A. Christensen, Electrochemical aspects of STM and related techniques [J]. Chem. Soc. Rev., 1992, 21(3): 197-208.
    [32] H. Y. Liu, F. R. F. Fan, C. W. Lin, A. J. Bard, Scanning electrochemical and tunneling ultramicroelectrode microscope for high-resolution examination of electrode surfaces in solution [J]. J. Am. Chem. Soc., 1986, 108(13): 3838-3839.
    [33] Q. A. Pankhurst, J. Connolly, S. K. Jones, J. Dobson, Applications of magnetic nanoparticles in biomedicine [J]. J. Phys. D: Appl. Phys., 2003, 36(13): R167-R181.
    [34] T. V. Murzina, T. V. Misuryaev, A. F. Kravets, J. Güdde, D. Schuhmacher, G. Marowsky, A. A. Nikulin, O. A. Aktsipetrov, Nonlinear nagneto-optical Kerr effect and plasmon-assisted SHG in magnetic nanomaterials exhibiting giant magnetoresistance [J]. Surface Science, 2001, 482-485(2): 1101-1106.
    [35] B. H. Liu, Y. Cao, D. D. Chen, J. L. Kong, J. Q. Deng, Amperometric biosensor based on a nanoporous ZrO2 matrix [J]. Anal. Chim. Acta, 2003, 478(1): 59-66.
    [36] S. Iijima, Helical microtubules of graphite carbon [J]. Nature, 1991, 354(6348): 56-58.
    [37]徐琴,李丽花,胡效亚.水合肼在多壁碳纳米管修饰电极上的电化学行为及测定[J].分析试验室, 2008, 27(5): 20-23.
    [38]郑志祥,孙玉琴,高作宁.亚硝酸盐在碳纳米管修饰玻碳电极上的电催化氧化及电分析方法研究[J].分析测试学报, 2008, 27(5): 509-512.
    [39]任超超,高作宁,苦参碱在多壁碳纳米管修饰玻碳电极上的电催化氧化及其电分析方法[J].分析试验室, 2009, 28(8): 47-50.
    [40]张东东,漆红兰,李小蓉.碳纳米管组装电化学免疫传感器测定IgG抗体的研究[J].传感技术学报, 2008, 21(5): 719-723.
    [41]刘润,郝玉翠,康天放.基于碳纳米管修饰电极检测有机磷农药的生物传感器[J].分析试验室, 2007, 26(9): 9-12.
    [42]王酉,徐惠,李光.基于碳纳米管修饰丝网印刷碳糊电极的葡萄糖和尿酸生物传感器[J].传感技术学报, 2006, 19(5): 2076-2080.
    [43]蔡称心,陈静.碳纳米管促进氧化还原蛋白质和酶的直接电子转移[J].电化学, 2004, 10(2): 159-167.
    [44] X. Q. Lin, Y. X. Li, A sensitive determination of estrogens with a Ptnano-clusters/multiwalled carbon nanotubes modified glassy carbon electrode [J]. Biosens. Bioelectron., 2006, 22(2): 253-259.
    [45] G. Z. Hu, L. Chen, Y. Guo, S. J. Shao, X. L. Wang, Selective electrochemical sensing of calcium dobesilate based on the nano-Pd/CNTs modified pyrolytic graphite electrode [J]. Talanta, 2009, 78(3): 1211-1214.
    [46] M. A. Abdel Rahim, H. B. Hassan, Titanium and platinum modified titanium electrodes as catalysts for methanol electro-oxidation [J]. Thin Solid Films, 2009, 517(11): 3362-3369.
    [47] Q. F. Yi, W. Q. Yu, Nanoporous gold particles modified titanium electrode for hydrazine oxidation [J]. J. Electroanal. Chem., 2009, 633(1): 159-164.
    [48] J. Tashkhourian, M. R. Hormozi Nezhad, J. Khodavesi, S. Javadi, Silver nanoparticles modified carbon nanotube paste electrode for simultaneous determination of dopamine and ascorbic acid [J]. J. Electroanal. Chem., 2009, 633(1): 85-91.
    [49] C. Fenster, A. J. Smith, A. Abts, S. Milenkovic, A. W. Hassel, Single tungsten nanowires as pH sensitive electrodes [J]. Electrochem. Commun., 2008, 10(8): 1125-1128.
    [50] S. Y. Ai, M. N. Gao, W. Zhang, Q. J. Wang, Y. F. Xie, L. T. Jin, Preparation of Ce-PbO2 modified electrode and its application in detection of anilines [J]. Talanta, 2004, 62(3): 445-450.
    [51] H. Y. Ding, Y. Zhou, S. J. Zhang, X. B. Yin, Y. J. Li, X. W. He, Preparation of nano-copper modified glassy carbon electrode and its catalytic oxidation to glucose [J]. Chin. J. Anal. Chem., 2008, 36(6): 839-842.
    [52]李金花,胡劲波,丁小勤,李启隆.功能化纳米金放大的DNA电化学传感器研究[J].高等学校化学学报, 2005, 26(8): 1432-1436.
    [53]许媛媛,边超,陈绍凤,夏善红.基于微机电系统技术和纳米金自组装膜的安培型免疫传感器研究[J].分析化学, 2006, 34(5): 608-612.
    [54]李春香,阳明辉,沈国励,俞汝勤.基于2,6-吡啶二甲酸聚合膜固定纳米金胶的过氧化氢传感器的研究[J].化学学报, 2004, 62(17): 1663-1667.
    [55] Q. Xu, C. Mao, N. N. Liu, J. J. Zhu, J. Sheng, Direct electrochemistry of horseradish peroxidase based on biocompatible carboxymethyl chitosan-gold nanoparticle nanocomposite [J]. Biosens. Bioelectron., 2006, 22(5): 768-773.
    [56] S. Q. Liu, L. Peng, X. D. Yang, Y. F. Wu, L. He, Electrochemistry of cytochrome P450 enzyme on nanoparticle containing membrane-coated electrode and its applications for drug sensing [J]. Anal. Biochem., 2008, 375(2): 209-216.
    [57]李玲,向航.功能材料与纳米技术[M].北京:化学工业出版社,2002: 175.
    [58]李海波,宫杰,郑伟涛,左云彤,陈岗.制备条件对Fe3O4超微粒粒度和纯度的影响[J].吉林大学(自然科学学报), 1997, 1(1): 47-50.
    [59] C. J. Liu, Y. Shan, Y. L. Zhu, K. Z. Chen, Magnetic monolayer film of oleic acid-stabilized Fe3O4 particles fabricated via Langmuir-Blodgett technique [J]. Thin Solid Films, 2009, 518(1): 324-327.
    [60] M. Arturo, Q. Lopcz, R. Josc, Magnetic iron oxide nanoparticles synthesized via microemulsions [J]. J. Colloid Interface Sci., 1993, 158(2): 446-451.
    [61] C. B. Murray, S. H. Sun, W. Gaschler, H. Doyle, T. A. Betley, C. R. Kagan, Colloidal synthesis of nanocrystals and nanocrystal superlattices [J]. IBM J. Res. & Dev., 2001, 45(1): 47-56.
    [62] S. H. Sun, C. B. Murray, Synthesis of monodisperse cobalt nanocrystals and their assembly into magnetic superlattices [J]. J. Appl. Phys., 1999, 85(8): 4325-4330.
    [63] J. P. Ge, Y. X. Hu, M. Biasini, W. P. Beyermann, Y. D. Yin, Superparamagnetic magnetite colloidal nanocrystal clusters [J]. Angew. Chem. Int. Ed., 2007, 46(23): 4342-4345.
    [64]邹大香,王海燕,杨晓辉,李新建.影响水热合成纳米Fe3O4晶粒纯度和平均粒径的因素[J].科学技术与工程, 2003, 3(3): 253-256.
    [65] X. Q. Liu, J. M. Xing, Y. P. Guan, G. B. Shan, H. Z. Liu, Synthesis of amino-silane modified superparamagnetic silica support and their use for protein immobilization [J]. Colloids Sur., A, 2004, 238(1-3): 127-131.
    [66] T. Sen, S. Sebastianelli, I. J. Bruce, Mesoporous silica-magnerite nanocomposite: Fabrication and applications in magnetic bioseparations [J]. J. Am. Chem. Soc., 2006, 128(22): 7130-7131.
    [67]车仁超,李永清,陈朝辉,程海峰,林红吉,杨孚标.钴铁氧体微粉的化学法制备工艺及其磁特性研究[J].功能材料, 1999, 30(6): 615-616.
    [68] C. B. Murray, D. J. Norris, M. G. Bawendi, Synthesis and characterization of nearly monodisperse CdE (E=sulfur, selenium, tellurium) semiconductor nanocrystallites [J]. J. Am. Chem. Soc., 1993, 115(19): 8706-8715.
    [69] Z. A. Peng, X. G. Peng, Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor [J]. J. Am. Chem. Soc., 2001, 123(1): 183-184.
    [70] V. K. LaMer, R. H. Dinegar, Theory, production and mechanism of formation of monodispersed hydrosols [J]. J. Am. Chem. Soc., 1950, 72(11): 4847-4854.
    [71] R. Rossetti, J. L. Ellison, J. M. Gibson, L. E. Brus, Size effects in the excited electronic states of small colloidal CdS crystallites [J]. J. Chem. Phys., 1984, 80(9): 4464-4469.
    [72] R. Rossetti, R. Hull, J. M. Gibson, L. E. Brus, Excited electronic states and opticalspectra of ZnS and CdS crystallites in the~15 to 50 (?) size range: Evolution from molecular to bulk semiconducting properties [J]. J. Chem. Phys., 1985, 82(1): 552-559.
    [73] J. J. Zhu, O. Palchik, S. G. Chen, A. Gedanken, Microwave assisted preparation of CdSe, PbSe, and Cu2-xSe nanoparticles [J]. J. Phys. Chem., B, 2000, 104(31): 7344-7347.
    [74] A. A. Rownaghi, Y. H. Taufiq-Yap, F. Rezaei, Solvothermal synthesis of vanadium phosphate catalysts for n-butane oxidation [J]. Chem. Eng. J., 2009, 155(1-2): 514-522.
    [75] Y. Y. Yang, F. L. Du, C. Miao, Controllable synthesis and growth of flower-like ZnSe microstructures [J]. Mater. Lett., 2008, 62(8-9): 1333-1335.
    [76] B. I. Lemon, R. M. Crooks, Preparation and characterization of dendrimer-encapsulated CdS semiconductor quantum dots [J]. J. Am. Chem. Soc., 2000, 122(51): 12886-12887.
    [77] M. Y. Han, X. H. Gao, J. Z. Su, S. M. Nie, Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules [J]. Nat. Biotechnol., 2001, 19, 631-635.
    [78] W. C. W. Chan, S. M. Nie, Quantum dot bioconjugates for ultrasensitive nonisotopic detection [J]. Science, 1998, 281(5385): 2016-2018.
    [79]黄珊,肖琦,何治柯,刘义. CdSe量子点探针共振光散射法检测溶菌酶[J].高等学校化学学报, 2009, 30(10): 1951-1955.
    [80] E. Morag, E. A. Bayer, M. Wilchek, Reversibility of biotin-binding by selective modification of tyrosine in avidin [J]. Biochem. J., 1996, 316, 193-199.
    [81] L. Zhu, S. Ang, W. T. Liu, Quantum dots as a novel immunofluorescent detection system for Cryptosporidium parvum and Giardia Iamblia [J]. Appl. Environ. Microbiol., 2004, 70(1): 597-598.
    [82] W. J. E. Beek, M. M. Wienk, R. A. J. Janssen, Efficient hybrid solar cells from zinc oxide nanoparticles and a conjugated polymer [J]. Adv. Mater., 2004, 16(12): 1009-1013.
    [83] L. Wang, E. Wang, A novel hydrogen peroxide sensor based on horseradish peroxidase immobilized on colloidal Au modified ITO electrode [J]. Electrochem. Commun., 2004, 6(2): 225-229.
    [84] C. X. Lei, S. Q. Hu, G. L. Shen, R. Q. Yu, Immobilization of horseradish peroxidase to a nano-Au monolayer modified chitosan-entrapped carbon paste electrode for the detection of hydrogen peroxide [J]. Talanta, 2003, 59(5): 981-988.
    [85] R. Gabbianelli, A. M. Santroni, D. Fedeli, A. Kantar, Muscle remodeling in relation to blood supply: implications for seasonal changes in hemoglobin [J]. Biochem. Biophys. Res. Commun., 1998, 242(5): 560-564.
    [86] C. Ruan, F. Yang, C. Lei, J. Deng, A Spontaneous Growth of a hemoglobin Layer over agold electrode for the catalytic reductior of NAD+ [J]. Anal. Chem., 1998, 70(3): 1721-1728.
    [87] Y. Song, L. Wang, C. Ren, G. Zhua, Z. Li, A novel hydrogen peroxide sensor based on horseradish peroxidase immobilized in DNA films on a gold electrode [J]. Sens. Actuators, B, 2006, 114(2):1001-1006.
    [88] B. H. Liu, Z. J. Liu, D. D. Chen, J. L. Kong, J. Q. Deng, An amperometric biosensor based on the coimmobilization of horseradish peroxidase and methylene blue on aβ-type zeolite modified electrode [J]. Fresenius’J. Anal. Chem., 2000, 367(6):539-544.
    [89] D. F. Cao, P. L. He, N. F. Hu, Electrochemical biosensors utilizing electron transfer in heme proteins immobilized on Fe3O4 nanoparticles [J]. Analyst, 2003, 128(10): 1268-1274.
    [90] U. Bora, P. Sharma, K. Kannan, P. Nahar, Photoreactive cellulose membrane-A novel matrix for covalent immobilization of biomolecules [J]. J. Biotechnol., 2006, 126(2): 220-229.
    [91] S. Kumar, P. Nahar, Sunlight-induced covalent immobilization of proteins [J]. Talanta, 2007, 71(3): 1438-1440.
    [92] S. Qu, F. Huang, G.Chen, S. N. Yu, J. L. Kong, Magnetic assembled electrochemical platform using Fe2O3 filled carbon nanotubes and enzyme [J]. Electrochem. Commun., 2007, 9(12): 2812-2816.
    [93] J. W. Wang, M. Gu, J. W. Di, Y. S. Gao, Y. Wu, Y. F. Tu, A carbon nanotube/silica sol-gel architecture for immobilization of horseradish peroxidase for electrochemical biosensor [J]. Bioprocess Biosyst. Eng., 2007, 30(4): 289-296.
    [94] A. Morrin, F. Wilbeer, O. Ngamna, S. E. Moulton, A. J. Killard, G. G. Wallace, M. R. Smyth, Novel biosensor fabrication methodology based on processable conduction polyaniline nanoparticles [J]. Electrochem. Commun., 2005, 7(3): 317-322.
    [95] Y. Shao, Y. D. Jin, J. L. Wang, L. Wang, F. Zhao, S. J. Dong, Conducting polymer polypyrrole supported bilayer lipid membranes [J]. Biosens. Bioelectron., 2005, 20(7): 1373-1379.
    [96] F. C. Wang, R Yuan, Y. Q. Chai, D. P. Tang, Probing traces of hydrogen peroxide by use of a biosensor based on mediator-free DNA and horseradish peroxidase immobilized on silver nanoparticles [J]. Anal. Bioanal. Chem., 2007, 387(2): 709-717.
    [97] S. R. Cao, R. Yuan, Y. Q. Chai, L. Y. Zhang, X. L. Li, F. X. Gao, A mediator-free amperometric hydrogen peroxide biosensor based on HRP immobilized on a nano-Au/poly 2,6-pyridinediamine-coated electrode.Bioprocess Biosyst. Eng., 2007, 30(2): 71-78.
    [98] J. Cheng, S. M. Yu, P. Zuo, Horseradish peroxidase immobilized on alumiunm-pillared interlayered clay for the catalytic oxidation of phenolic wastwater [J]. Water Res., 2006, 40(2): 283-290.
    [99] R. H. Carvalho, F. Lemos, J. M. S. Cabral, F. R. Ribeiro, Influence of the presence of NaY zeolite on the activity of horseradish peroxidase in the oxidation of phenol [J]. J. Mol. Catal. B: Enzym., 2007, 44(2): 39-47.
    [100] M. Br(?)hler, R. Georgieva, N. Buske, A. Müller, S. Müller, J. Pinkernelle, U. Teichgr(?)ber, A. Voigt, H. B(?)umler, Magnetite-loaded carrier erythrocytes as contrast agents for magnetic resonance imaging [J]. Nano Lett., 2006, 6(11):2505-2509.
    [101] I. J. M. de Vries, W. J. Lesterhuis, J. O. Barentsz, P. Verdijk, J. H. van Krieken, O. C. Boerman, W. J. G. Oyen, J. J. Bonenkamp, J. B. Boezeman, G. J. Adema, J. W. M. Bulte, T. W. J. Scheenen, C. J. A. Punt, A. Heerschap, C. G. Figdor, Magnetic resonance tracking of dendritic cells in melanoma patients for monitoring of cellular therapy [J]. Nat. Biotechnol., 2005, 23(11): 1407-1413.
    [102] M. C. Denis, U. Mahmood, C. Benoist, D. Mathis, R. Weissleder, Imaging inflammation of the pancreatic islets in type 1 diabetes [J]. Proc. Natl. Acad. Sci. USA, 2004, 101(34): 12634-12639.
    [103] L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, J. L. West, Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance [J]. Proc. Natl. Acad. Sci. USA, 2003, 100(23): 13549-13554.
    [104] N. Morishita, H. Nakagami, R. Morishita, S. I. Takeda, F. Mishima, B. Terazono, S. Nishijima, Y. Kaneda, N. Tanaka, Magnetic nanoparticles with surface modification enhanced gene delivery of HVJ-E vector [J]. Biochem. Biophys. Res. Commun., 2005, 334(4): 1121-1126.
    [105] C. Bergemann, D. Müller-Schulte, J. Oster, L.àBrassard, A. S. Lübbe, Magnetic ion-exchange nano- and microparticles for medical, biochemical and molecular biological applications [J]. J. Magn. Magn. Mater., 1999, 194(1-3): 45-52.
    [106] I. Safarik, M. Safarikova, Magnetic techniques for the isolation and purification of proteins and peptides [J]. Biomagn. Res. Technol., 2004, 2(7): 7-11.
    [107] Y. R. Chemla, H. L. Grossman, Y. Poon, R. McDermott, R. Stevens, M. D. Alper, J. Clarke, Ultrasensitive magnetic biosensor for homogeneous immunoassay [J]. Proc. Natl. Acad. Sci. USA, 2000, 97(26): 14268-14272.
    [108] X. L. Luo, J. J. Xu, Q. Zhang, G. J. Yang, H. Y. Chen, Electrochemically deposited chitosan hydrogel for horseradish peroxidase immobilization through goldnanoparticles self-assembly [J]. Biosens. Bioelectron., 2005, 21(1): 190–196.
    [109] G. H. Lu, X. Yao, X. G. Wu, T. Zhan, Determination of the total iron by chitosan-modified glassy carbon electrode [J]. Microchem. J., 2001, 69(1): 81-87.
    [110] X. Z. Ye, Q. H. Yang, Y. Wang, N. Q. Li, Electrochemical behaviour of gold, silver, platinum and palladium on the glassy carbon electrode modified by chitosan and its application [J]. Talanta, 1998, 47(5): 1099-1106.
    [111] G. Wang, J. J. Xu, H. Y. Chen, Z. H. Lu, Amperometric hydrogen peroxide biosensor with sol-gel/chitosan network-like film as immobilization matrix [J]. Biosens. Bioelectron., 2003, 18(4): 335-343.
    [112] X. C. Tan, Y. X. Tian, P. X. Cai, X. Y. Zou, Glucose biosensor based on glucose oxidase immobilized in sol-gel chitosan/silica hybrid composite film on Prussian blue modified glass carbon electrode [J]. Anal. Bioanal. Chem., 2005, 381(2): 500-507.
    [113] X. C. Tan, M. J. Li, P. X. Cai, L. J. Luo, X. Y. Zou, An amperometric cholesterol biosensor based on multiwalled carbon nanotubes and organically modified sol-gel/chitosan hybrid composite film [J]. Anal. Biochem., 2005, 337(1): 111–120.
    [114] H. Peniche, A. Osorio, N. Acosta, A. Campa, C. Peniche, Preparation and characterization of superparamagnetic chitosan microspheres: Application as a support for the immobilization of tyrosinase [J]. J. Appl. Polym. Sci., 2005, 98(2): 651-657.
    [115] D. S. Jiang, S. Y. Long, J. Huang, H. Y. Xiao, J. Y. Zhou, Immobilization of Pycnoporus sanguineus laccase on magnetic chitosan microspheres [J]. Biochem. Eng. J., 2005, 25(1): 15-23.
    [116] K. R. Reddy, K. P. Lee, A. L. Gopalan, Self-assembly approach for the synthesis of electro-magnetic functionalized Fe3O4/polyaniline nanocomposites: Effect of dopant on the properties [J]. Colloids Surf., A, 2008, 320(1-3): 49-56.
    [117] G. S. Lai, H. L. Zhang, D. Y. Han, A novel hydrogen peroxide biosensor based on hemoglobin immobilized on magnetic chitosan microspheres modified electrode [J]. Sens. Actuators, B, 2008, 129(2): 497-503.
    [118] R. A. Kamin, G. S. Willson, Rotating ring-disk enzyme electrode for biocatalysis kinetic studies and characterization of the immobilized enzyme layer [J]. Anal. Chem., 1980, 52(8): 1198-1205.
    [119] H. J. Chen, S. J. Dong, Direct electrochemistry and electrocatalysis of horseradish peroxidase immobilized in sol–gel-derived ceramic–carbon nanotube nanocomposite film [J]. Biosens. Bioelectron., 2007, 22(8): 1811-1815.
    [120] E. S. Forzani, G. A. Rivas, V. M. Solis, Amperometric determination of dopamine on an enzymatically modified carbon paste electrode [J]. J. Electroanal. Chem., 1995,382(1-2), 33-40.
    [121] J. Kulys, L. Gorton, E. Domingues, J. Emnéus, H. Jarskog, Electrochemical characterization of carbon pastes modified with proteins and polycations [J]. J. Electroanal. Chem., 1994, 372(1), 49-55.
    [122] J. Kulys, L. Z. Wang, A. Maksimoviene, L-Lactate oxidase electrode based on methylene green and carbon paste [J]. Anal. Chim. Acta, 1993, 274(1): 53-58.
    [123] V. S. Tripathi, V. B. Kandimalla, H. X. Ju, Amperometric biosensor for hydrogen peroxide based on ferrocene-bovine serum albumin and multiwall carbon nanotube modified ormosil composite [J]. Biosens. Bioelectron., 2006, 21(8): 1529-1535.
    [124] Z. Zhang, S. Chouchane, R. S. Magliozzo, J. F. Rusting, Direct voltammetry and catalysis with mycobacterium tuberculosis catalase-peroxidase, peroxidases and catalase in lipid films [J]. Anal. Chem., 2002, 74(1): 163-170.
    [125] R. S. Wade, C. E. Castro, Oxidation of heme proteins by alkyl halides [J]. J. Am. Chem. Soc., 1973, 95(1): 231-234.
    [126] D. Schlereth, W. Mantele, Redox-Induced Conformational Changes in Myoglobin and Hemoglobin: Electrochemistry and Ultraviolet-Visible and Fourier Transform Infrared Difference Spectroscopy at Surface-Modified Gold Electrodes in an ultra-Thin-Layer Spectroelectrochemical Cell [J]. Biochemistry, 1992, 31(33): 7494-7502.
    [127] J. Ye, R. P. Baldwin, Catalytic reduction of myoglobin and hemoglobin at chemically modified electrodes containing methylene blue [J]. Anal. Chem., 1988, 60(20): 2263-2268.
    [128] D. E. Reed, F. M. Hawkridge, Direct electron transfer reactions of cytochrome c at silver electrodes [J]. Anal. Chem., 1987, 59(19): 2334-2339.
    [129] C. H. Fan, H. Y. Wang, S. Sun, D. X. Zhu, G. Wagner, G. X. Li, Electron-transfer reactivity and enzymatic activity of hemoglobin in a SP sephadex membrane [J]. Anal. Chem., 2001, 73(13): 2850-2854.
    [130] H. Sun, N. F. Hu, H. Y. Ma, Direct electrochemistry of hemoglobin in polyacrylamide hydrogel films on pyrolytic graphite electrodes [J]. Electroanalysis, 2000, 12(13): 1064-1070.
    [131] S. Q. Liu, Z. H. Dai, H. Y. Chen, H. X. Ju, Immobilization of hemoglobin on zirconium dioxide nanoparticles for preparation of a novel hydrogen peroxide biosensor [J]. Biosens. Bioelectron., 2004, 19(9): 963-969.
    [132] Q. W. Li, G. A. Luo, J. Feng, Direct electron transfer for heme proteins assembled on nanocrystalline TiO2 film [J]. Electroanalysis, 2001, 13(5): 359-363.
    [133] A. K. M. Kafi, D. Y. Lee, S. H. Park, Y. S. Kwon, A hydrogen peroxide biosensor based on peroxidase activity of hemoglobin in polymeric film [J]. J. Nanosci. Nanotechnol., 2007, 7(11), 4005–4008.
    [134] Z. Q. Lu, Q. D. Huang, J. F. Rusling, Films of hemoglobin and didodecyldimethylammonium bromide with enhanced electron transfer rates [J]. J. Electroanal. Chem., 1997, 423(1-2): 59–66.
    [135] S. A. Kumar, P. H. Lo, S. M. Chen, Electrochemical analysis of H2O2 and nitrite using copper nanoparticles/poly(o-phenylenediamine) film modified glassy carbon electrode [J]. J. Electrochem. Soc., 2009, 156(7), E118–E123.
    [136] P. H. Lo, S. A. Kumar, S. M. Chen, Amperometric determination of H2O2 at nano-TiO2/DNA/thionin nanocomposite modified electrode [J]. Colloids Surf. B, 2008, 66(2): 266–273.
    [137] S. A. Kumar, P. H. Lo, S. M. Chen, Electrochemical synthesis and characterization of TiO2 nanoparticles and their use as a platform for flavin adenine dinucleotide immobilization and efficient electrocatalysis [J]. Nanotechnology 2008, 19(25): 255501:1–255501:7.
    [138] M. Vázquez, C. Luna, M. P. Morales, R. Sanz, C. J. Serna, C. Mijangos, Magnetic nanoparticles: synthesis, ordering and properties [J]. Phys. B, 2004, 354(1-4): 71-79.
    [139] A. H. Lu, E. L. Salabas, F. Schüth, Magnetic nanoparticles: synthesis protection, functionalization and application [J]. Angew. Chem., Int. Ed., 2007, 46(8): 1222-1244.
    [140] T. Osaka, T. Matsunaga, T. Nakanishi, A. Arakaki, D. Niwa, H. Iida, Synthesis of magnetic nanoparticles and their application to bioassays [J]. Anal. Bioanal. Chem., 2006, 384(3): 593-600.
    [141] Q. A. Pankhurst, J. Connolly, S. K. Jones, J. Dobson, Applications of magnetic nanoparticles in biomedicine [J]. J. Phys. D: Appl. Phys., 2003, 36(13): 167-181.
    [142] M. Koneraacká, P. Kopcansky, M. Antalik, M. Timko, C. N. Ramchand, D. Lobo, R. V. Mehta, R. V. Upadhyay, Immobilization of proteins and enzymes to fine magnetic particles [J]. J. Magn. Magn. Mater., 1999, 201(1-3): 427-430.
    [143] H. T. Chan, Y. Y. Do, P. L. Huang, P. L. Chien, T. S. Chan, R. S. Liu, C. Y. Huang, S. Y. Yang, H. E. Horng, Preparation and properties of bio-compatible magnetic Fe3O4 nanoparticles [J]. Magn. Magn. Mater., 2006, 304(1): 415-417.
    [144] J. M. Gong, X. Q. Lin, Facilitated electron transfer of hemoglobin embedded in nanosized Fe3O4 matrix based on paraffin impregnated graphite electrode and electrochemical catalysis for trichloroacetic acid [J]. Microchem. J., 2003, 75(1): 51-57.
    [145] A. P. Fan, C. W. Lau, J. Z. Lu, Magnetic based-based chemiluminescent metalimmunoassay with a colloidal gold label [J]. Anal. Chem., 2005, 77(10): 3238-3242.
    [146] G. K. Kouassi, J. Irudayaraj, Magnetic and gold-coated magnetic nanoparticles as a DNA sensor [J]. Anal. Chem., 2006, 78(10): 3234-3241.
    [147] Y. J. Cho, H. Song, K. Lee, K. Kim, J. Kwak, S. Kim, J. T. Park, The first observation of four-electron reduction in [60]fullerene-metal cluster self-assembled monolayers(SAMs) [J]. Chem. Commun., 2002, 2(24): 2966-2967.
    [148] J. D. Qiu, H. P. Peng, R. P. Liang, Ferrocene-modified Fe3O4@SiO2 magnetic nanoparticles as building block for construction of reagentless enzyme-based biosensosr [J]. Electrochem. Commun., 2007, 9(11): 2734–2738.
    [149] A. T. Paulino, L. B. Santos, J. Nozaki, Removal of Pb2+, Cu2+, and Fe3+ from battery manufacture wastewater by chitosan produced from silkworm chrysalides as a low-cost adsorbent [J]. React. Funct. Polym., 2008, 68(2): 634-642.
    [150] G. H. Lu, X. Yao, X. G. Wu, T. Zhang, Determination of the total iron by chitosan-modified glassy carbon electrode [J]. Microchem. J., 2001, 69(1): 81–87.
    [151] X. Z. Ye, Q. H. Yang, Y. Wang, N. Q. Li, Electrochemical behaviour of gold, sliver, platinum and palladium on the glass carbon electrode modified by chitosan and its application [J]. Talanta, 1998, 47(5): 1099–1106.
    [152] G. Wang, J. J. Xu, H. Y. Chen, Z. H. Lu, Amperometric hydrogen peroxide biosensor with sol-gel/chitosan network-like film as immobilization matrix [J]. Biosens. Bioelectron., 2003, 18(4), 335–343.
    [153] X. D. Zeng, W. Z. Wei, X. F. Li, J. X. Zeng, L. Wu, Direct electrochemistry and electrocatalysis of hemoglobin entrapped in semi-interpenetrating polymer network hydrogel based on polyacrylamide and chitosan [J]. Bioelectrochemistry, 2007, 71(2): 135-141.
    [154] Y. Xiao, H. X. Ju, H. Y. Chen, Hydrogen peroxide sensor based on horseradish peroxidase-labeled Au colloids immobilized on gold electrode surface by cysteamine monolayer [J]. Anal. Chim. Acta, 1999, 391(1), 73–82.
    [155] H. L. Zhang, X. Z. Zou, D. Y. Han, Hydrogen peroxide sensor based on hemoglobin immobilized on glassy carbon electrode with SiO2 nanoparticles/Chitosan film as immobilization matrix [J]. Anal. Lett., 2007, 40(4), 661–676.
    [156] A. B. Kharitonov, L. Alfonta, E. Katz, I. Willner, Probing of bioaffinity interactions at interfaces using impedance spectroscopy and chronopotentiometry [J]. J. Electroanal. Chem., 2000, 487(2): 133–141.
    [157] H. Y. Xiong, T. Chen, X. H. Zhang, S. F. Wang, High performance and stability of a hemoglobin-biosensor based on an ionic liquid as nonaqueous media for hydrogenperoxide monitoring [J]. Electrochem. Commun., 2007, 9(11): 2671–2675.
    [158] D. Shan, S. X. Wang, H. G. Xue, S. Cosnier, Direct electrochemistry and electrocatalysis of hemoglobin entrapped in composite matrix based on chitosan and CaCO3 nanoparticles [J]. Electrochem. Commun., 2007, 9(4): 529–534.
    [159] Q. L. Wang, G. X. Lu, B. J. Yang, Direct electrochemistry and electrocatalysis of hemoglobin immobilized on carbon paste electrode by silica sol–gel film [J]. Biosens. Bioelectron., 2004, 19(10): 1269–1275.
    [160] C. X. Lei, S. Q. Hu, N. Gao, G. L. Shen, R. Q. Yu, An amperometric hydrogen peroxide biosensor based on immobilizing horseradish peroxidase to a nano-Au monolayer supported by sol–gel derived carbon ceramic electrode [J]. Bioelectrochemistry, 2004, 65(1), 33–39.
    [161] T. L. Kline, Y. H. Xu, Y. Jing, J. P. Wang, Biocompatible high-moment FeCo-Au magnetic nanoparticles for magnetic hyperthermia treatment optimization [J]. J. Magn. Magn. Mater., 2009, 321(10), 1525-1528.
    [162] H. L. Wang, Y. Huang, Y. Zhang, G. C. Hadjipanayis, D. Weller, A. Simopoulos, Effects of annealing on the magnetic and structural properties of FePt nanoparticles prepared by chemical synthesis [J]. J. Magn. Magn. Mater., 2007, 310(1): 22-27.
    [163] Y. Wu, Y. J. Wang, G. S. Luo, Y. Y. Dai, In situ preparation of magnetic Fe3O4-chitosan nanoparticles for lipase immobilization by cross-linking and oxidation in aqueous solution [J]. Bioresour. Technol., 2009, 100(14): 3459-3464.
    [164] G. F. Cheng, C. H. Huang, J. Zhao, X. L. Tan, P. G. He, Y. Z. Fang, A novel electrochemical biosensor for deoxyribonucleic acid detection based on magnetite nanoparticles [J]. Chin. J. Anal. Chem., 2009, 37(2): 169-173.
    [165] S. J. Guo, D. Li, L. X. Zhang, J. Li, E. K. Wang, Monodisperse mesoporous superparamagnetic single-crystal magnetite nanoparticles for drug delivery [J]. Biomaterials, 2009, 30(10): 1881-1889.
    [166] M. Koneraacká, P. Kopcansky, M. Antalik, M. Timko, C. N. Ramchand, D. Lobo, R. V. Mehta, R. V. Upadhyay, Immobilization of proteins and enzymes to fine magnetic particles [J]. J. Magn. Magn. Mater., 1999, 201(1-3): 427-430.
    [167] H. T. Chan, Y. Y. Do, P. L. Huang, P. L. Chien, T. S. Chan, R. S. Liu, C. Y. Huang, S. Y. Yang, H. E. Horng, Preparation and properties of bio-compatible magnetic Fe3O4 nanoparticles [J]. J. Magn. Magn. Mater., 2006, 304(1): 415-417.
    [168] J. M. Gong, X. Q. Lin, Facilitated electron transfer of hemoglobin embedded in nanosized Fe3O4 matrix based on paraffin impregnated graphite electrode and electrochemical catalysis for trichloroacetic acid [J]. Microchem. J., 2003, 75(1): 51-57.
    [169] Y. Zhuo, P. X. Yuan, R. Yuan, Y. Q. Chai, C. L. Hong, Bienzyme functionalized three-layer composite magnetic nanoparticles for electrochemical immunosensors [J]. Biomaterials, 2009, 30(12): 2284-2290.
    [170] A. C. A. Roque, S. Bispo, A. R. N. Pinheiro, J. M. A. Antunes, D. Goncalves, H. A. Ferreira, Antibody immobilization on magnetic particles [J]. J. Mol. Recognit., 2009, 22(2): 77-82.
    [171] X. C. Tan, J. L. Zhang, S. W. Tan, D. D. Zhao, Z. W. Huang, Y. Mi, Z. Y. Huang, Amperometric hydrogen peroxide biosensor based on horseradish peroxidase immobilized on Fe3O4/Chitosan modified glassy carbon electrode [J]. Electroanalysis, 2009, 21(13): 1514-1520.
    [172] X. L. Mao, L. J. Yang, X. L. Su, Y. B. Li, A nanoparticle amplification based quartz crystal microbalance DNA sensor for detection of Escherichia coli O157:H7 [J]. Biosens. Bioelectron., 2006, 21(7): 1178-1185.
    [173] L. H. Zhang, Y. M. Zhai, N. Gao, D. Wen, S. J. Dong, Sensing H2O2 with layer-by-layer assembled Fe3O4-PDDA nanocomposite film [J]. Electrochem. Commun., 2008, 10(10): 1524-1526.
    [174] J. D. Qiu, M. Xiong, R. P. Liang, H. P. Peng, F. Liu, Synthesis and characterization of ferrocene modified Fe3O4@Au magnetic nanoparticles and its application [J]. Biosens. Bioelectron., 2009, 24(8): 2649-2653.
    [175] H. Y. Wang, X. J. Li, Structural and capacitive humidity sensing properties of nanocrystal magnetite/silicon nanoporous pillar array [J]. Sens. Actuators, B, 2005, 110(2): 260-263.
    [176] E. C. Jalil, Nimesulide as a promising neuroprotectant in brain ischemia: New experimental evidences [J]. Pharm. Res., 2008, 57(4): 266-273.
    [177] A. Maltese, F. Maugeri, C. Bucolo, Rapid determination of nimesulide in rabbit aqueous humor by liquid chromatography [J]. J. Chromatogr., B, 2004, 804(2), 441-443.
    [178] C. K. Zacharis, P. D. Tzanavaras, M. Notou, A. Zotou, D. G. Themelis, Separation and determination of nimesulide related substances for quality control purposes by micellar electrokinetic chromatography [J]. J. Pharm. Biomed. Anal., 2009, 49(2), 201-206.
    [179] C. Y. Wang, X. Q. Shao, Q. X. Liu, Q. S. Qu, G. J. Yang, X. Y. Hu, Differential pluse voltammetric determination of nimesulide in pharmaceutical formulation and human serum at glassy carbon electrode modified by cysteic acid/CNTs based on electrochemical oxidation of l-cysteine [J]. J. Pharm. Biomed. Anal., 2006, 42(2),237-244.
    [180] B. Hemmateenejad, K. Javidnia, M. Saeide-Boroujeni, Spectrophotometric monitoring of nimesulide photodegradation by a combined hard-soft multivariate curve resolution-alternative least square method [J]. J. Pharm. Biomed. Anal., 2008, 47(3), 625-630.
    [181] S. Furlanetto, S. Orlandini, G. Aldini, R. Gotti, E. Dreassi, S. Pinzauti, Designing experiments to optimise and validate the adsorptive stripping voltammetric determination of nimesulide [J]. Anal. Chim. Acta, 2000, 413(1-2): 229-239.
    [182] R. I. L. Catarino, A. C. L. Conceic(?)o, M. B. Q. Garcia, M. L. S. Gon(?)alves, J. L. F. C. Lima, M. M. Correia dos Santos, Flow amperometric determination of pharmaceuticals with on-line electrode surface renewal [J]. J. Pharm. Biomed. Anal., 2003, 33(4): 571-580.
    [183] C. Y. Wang, X. Q. Shao, Q. X. Liu, Q. S. Qu, G. J. Yang, X. Y. Hu, Differential pulse voltammetric determination of nimesulide in pharmaceutical formulation and human serum at glassy carbon electrode modified by cysteic acid/CNTs based on electrochemical oxidation of L-cysteine [J]. J. Pharm. Biomed. Anal., 2006, 42(2): 237-244.
    [184] X. C. Tan, J. B. Hu, Q. L. Li, Adsorptive stripping voltammetry of bleomycin [J]. Analyst, 1997, 122(9): 991-994.
    [185] M. G. Weimuller, M. Zeisberger, K. M. Krishnan, Size-dependant heating rates of iron oxide nanoparticles for magnetic fluid hyperthermia [J]. J. Magn. Magn. Mater., 2009, 321(13): 1947-1950.
    [186] M. J. Iqbal, M. N. Ashiq, P. H. Gomez, Effect of doping of Zr-Zn binary mixtures on structural, electrical and magnetic properties of Sr-hexaferrite nanoparticles [J]. J. Alloys Compd., 2009, 478(1-2): 736-740.
    [187] K. Can, M. Ozmen, M. Ersoz, Immobilization of albumin on aminosilane modified superparamagnetic magnetite nanoparticles and its characterization [J]. Colloids Surf., B 2009, 71(1): 154-159.
    [188] W. M. Hassen, C. Chaix, A. Abdelghani, F. Bessueille, D. Leonard, N. J. Renault, An impedimetric DNA sensor based on functionalized magnetic nanoparticles for HIV and HBV detection [J]. Sens. Actuators, B 2008, 134(2): 755-760.
    [189] B. Chertok, B. A. Moffat, A. E. David, F. Q. Yu, C. Bergemann, B. D. Ross, V. C. Yang, Iron oxide nanoparticles as a drug delivery vehicle for MRI monitored magnetic targeting of brain tumors [J]. Biomaterials, 2008, 29(4): 487-496.
    [190] W. C. Shih, M. C. Yang, M. S. Lin, Development of disposable lipid biosensor forthe determination of total cholesterol [J]. Biosens. Bioelectron., 2009, 24(6): 1679-1684.
    [191] J. D. Qiu, M. Xiong, R. P. Liang, H. P. Peng, F. Liu, Synthesis and characterization of ferrocene modified Fe3O4@Au magnetic nanoparticles and its application [J]. Biosens. Bioelectron., 2009, 24(8): 2649-2653.
    [192] D. Oukil, L. Makhloufi, B. Saidani, Preparation of polypyrrole films containing ferrocyanide ions deposited onto thermally pre-treated and untreated iron substrate: Application in the electroanalytical determination of ascorbic acid [J]. Sens. Actuators, B 2007, 123(2): 1083-1089.
    [193] J. Andrieux, D. Swierczynski, L. Laversenne, A. Garron, S. Bennici, C. Goutaudier, P. Miele, A. Auroux, B. Bonnetot, A multifactor study of catalyzed hydrolysis of solid NaBH4 on cobalt nanoparticles: Thermodynamics and kinetics [J]. Int. J. Hydrogen Energy, 2009, 34(2): 938-951.
    [194] W. Weber, C. Lienhart, M. D. Baba, R. N. Grass, T. Kohler, R. Müller, W. J. Stark, M. Fussenegger, Magnet-guided transduction of mammalian cells and mice using engineered magnetic lentiviral particles [J]. J. Biotechnol., 2009, 141(3-4): 118-122.
    [195] S. Shahrokhian, M. Ghalkhani, M. Adeli, M. K. Amini, Multi-walled carbon nanotubes with immobilized cobalt nanoparticle for modification of glassy carbon electrode: Application to sensitive voltammetric determination of thioridazine [J]. Biosens. Bioelectron., 2009, 24(11): 3235-3241.
    [196] M. F. W. Festing, P. Diamanti, J. A. Turton, Strain differences in haematological response to chloroamphenicol succinate in mice: implications for toxicological research [J]. Food Chem. Toxicol., 2001, 39(4): 375-383.
    [197] F. Ding, G. Y. Zhao, S. C. Chen, F. Liu, Y. Sun, L. Zhang, Chloramphenicol binding to human serum albumin: Determination of binding constants and binding sites by steady-state fluorescene [J]. J. Mol. Struct., 2009, 929(1-3): 159-166.
    [198] A. Posyniak, J. Zmudzki, J. Niedzielska, Evaluation of sample preparation for control of chloramphenicol residues in porcine tissues by enzyme-linked immunosorbent assay and liquid chromatography [J]. Anal. Chim. Acta, 2003, 483(1-2): 307-311.
    [199] J. Z. Shen, Z. Zhang, Y. Yao, W. M. Shi, Y. B. Liu, S. X. Zhang, A monoclonal antibody-based time-resolved fluoroimmunoassay for chloramphenicol in shrimp and chicken muscle [J]. Anal. Chim. Acta, 2006, 575(2): 262-266.
    [200] M. C. V. Mamani, F. G. Reyes, S. Rath, Multiresidue determination of tetracyclines, sulphonamides and chloramphenicol in bovine milk using HPLC-DAD [J]. Food Chem.,2009, 117(3): 545-552.
    [201] S. X. Zhang, Z. W. Liu, X. Guo, L. L. Cheng, Z. H. Wang, J. Z. Shen, Simultaneous determination and confirmation of chloramphenicol, thiamphenicol, florfenicol and florfenicol amine in chicken muscle by liquid chromatography-tandem mass spectrometry [J]. J. Chromatogr., B 2008, 875(2): 399-404.
    [202] F. Xiao, F. Q. Zhao, J. W. Li, R. Yan, J. J. Yu, B. Z. Zeng, Sensitive voltammetric determination of chloramphenicol by using single-wall carbon nanotube-gold nanoparticle-ionic liquid composite film modified glassy carbon electrodes [J]. Anal. Chim. Acta, 2007, 596(1): 79-85.
    [203] A. Sonavane MS, S. Sharma MD, N. Gangopadhyay MS, A. K. Bansal MS, Clinico-microbiological correlation of suture-related graft infection following penetrating keratoplasty [J]. J. Ophthalmol., 2003, 135(1): 89-91.
    [204] L. Agüí, A. Guzmán, P. Yá(?)ez-Sede(?)o, J. M. Pingarrón, Voltammetric determination of chloramphenicol in milk at electrochemically activated carbon fibre microelectrodes [J]. Anal. Chim. Acta, 2002, 461(1): 65-73.
    [205] C. Y. Chai, M. G. Xu, G. Y. Liu, Effect of cationic surfactant on the voltammetric determination of chloramphenicol residue in milk [J]. Chin. J. Anal. Chem., 2006, 34(12): 1715-1718.
    [206] Y. Li, Y. Umasankar, S. M. Chen, Multiwalled carbon nanotubes with poly(NDGAChi) biocomposite film for the electrocatalysis of epinephrine and norepinephrine [J]. Anal. Biochem., 2009, 388(2): 288-295.
    [207] Y. Zhang, J. B. Zheng, Direct electrochemistry and electrocatalysis of cytochrome c based on chitosan-room temperature ionic liquid-carbon nanotubes composite [J]. Electrochim. Acta, 2008, 54(2): 749-754.
    [208] U. Yogeswaran, S. M. Chen, Multi-walled carbon nanotubes with poly(methylene blue) composite film for the enhancement and separation of electroanalytical responses of catecholamine and ascorbic acid [J]. Sens. Actuators, B 2008, 130(2): 739-749.
    [209] B. Ge, Y. M. Tan, Q. J. Xie, M. Ma, S. Z. Yao, Preparation of chitosan-dopamine-multiwalled carbon nanotubes nanocomposite for electrocatalytic oxidation and sensitive electroanalysis of NADH [J]. Sens. Actuators, B 2009, 137(2): 547-554.
    [210] L. Zheng, J. F. Song, Curcumin multi-wall carbon nanotubes modified glassy carbon electrode and its electrocatalytic activity towards oxidation of hydrazine [J]. Sens. Actuators, B 2009, 135(2): 650-655.
    [211] D. A. Geraldo, C. A. Togo, J. Limson, T. Nyokong, Electrooxidation of hydrazinecatalyzed by noncovalently functionalized single-walled carbon nanotubes with CoPc [J]. Electrochim. Acta, 2008, 53(27): 8051-8057.
    [212] J. H. Lin, C. Y. He, Y. Zhao, S. S. Zhang, One-step synthesis of silver nanoparticles/carbon nanotubes/chitosan film and its application in glucose biosensor [J]. Sens. Actuators, B 2009, 137(2): 768-773.
    [213] H. Y. Zhao, W. Zheng, Z. X. Meng, H. M. Zhou, X. X. Xu, Z. Li, Y. F. Zheng, Bioelectrochemistry of hemoglobin immobilized on a sodium alginate-multiwall carbon nanotubes composite film [J]. Biosens. Bioelectron., 2009, 24(8): 2352-2357.
    [214] A. K. Upadhyay, T. W. Ting, S. M. Chen, Amperometric biosensor for hydrogen peroxide based on coimmobilized horseradish peroxidase and methylene green in ormosils matrix with multiwalled carbon nanotubes [J]. Talanta, 2009, 79(1): 38-45.
    [215] A. Ray, M. Feng, H. Tachikawa, Direct Electrochemistry and Raman Spectroscopy of Sol-Gel-Encapsulated Myoglobin [J]. Langmuir, 2005, 21(16): 7456-7460.
    [216] A. P. Alivisatos, Semiconductor Clusters, Nanocrystals and Quantum Dots [J]. Science, 1996, 271(5251): 933-937.
    [217] M. Bruchez, Jr., M. Moronne, P. Gin, S. Weiss, A. Paul Alivisatos, Semiconductor nanocrystals as fluorescent biological labels [J]. Science, 1998, 281(5385): 2013-2016.
    [218] W. J. Jin, J. M. Costa-Fernández, R. Pereiro, A. Sanz-Medel, Surface-modified CdSe quantum dots as luminescent probes for cyanide determination [J]. Anal. Chim. Acta, 2004, 522(1): 1-8.
    [219] Y. Ishihama, T. Funatsu, Single molecule tracking of quantum dot-labeled mRNAs in a cell nucleus [J]. Biochem. Biophys. Res. Commun., 2009, 381(1): 33-38.
    [220] R. J. Cui, H. C. Pan, J. J. Zhu, H. Y. Chen, Versatile Immunosensor Using CdTe Quantum Dots as Electrochemical and Fluorescent Labels [J]. Anal. Chem., 2007, 79(22): 8494-8501.
    [221] F. Erogbogbo, K. T. Yong, I. Roy, G. X. Xu, P. N. Prasad, M. T. Swihart, Biocompatible Luminescent Silicon Quantum Dots for Imaging of Cancer Cells [J]. ACS Nano, 2008, 2(5): 873-878.
    [222] T. J. Daou, L. Li, P. Reiss, V. Josserand, I. Texier, Effect of Poly(ethylene glycol) Length on the in Vivo Behavior of Coated Quantum Dots [J]. Langmuir, 2009, 25(5), pp 3040-3044.
    [223] C. Y. Chen, C. T. Cheng, J. K. Yu, S. C. Pu, Y. M. Cheng, P. T. Chou, Spectroscopy and Femtosecond Dynamics of Type-ⅡCdSe/ZnTe Core-Shell Semiconductor Synthesized via the CdO Precursor [J]. J. Phys. Chem. B, 2004, 108(30): 10687-10691.
    [224] A. Gole, N. R. Jana, S. T. Selvan, J. Y. Ying, Langmuir-Blodgett Thin Films ofQuantum Dots: Synthesis, Surface Modification, and Fluorescence Resonance Energy Transfer (FRET) Studies [J]. Langmuir, 2008, 24(15): 8181-8186.
    [225] L. Gorton, A. Lindgren, T. Larsson, F. D. Munteanu, T. Ruzgas, I. Gazaryan, Direct electron transfer between heme-containing enzymes and electrodes as basis for third generation biosensors [J]. Anal. Chim. Acta, 1999, 400(1-3): 91-108.
    [226] J. X. Li, L. H. Zhou, X. Han, H. L. Liu, Direct electrochemistry of hemoglobin based on Gemini surfactant protected gold nanoparticles modified glassy carbon electrode [J]. Sens. Actuators, B 2008, 135(1): 322-326.
    [227] D. Shan, E. Han, H. G. Xue, S. Cosnier, Self-Assembled Films of Hemoglobin/Laponite/Chitosan: Application for the Direct Electrochemistry and Catalysis to Hydrogen Peroxide [J]. Biomacromolecules, 2007, 8(10): 3041-3046.
    [228] C. X. Cai, J. Chen, Direct electron transfer and bioelectrocatalysis of hemoglobin at a carbon nanotube electrode [J]. Anal. Biochem., 2004, 325(2): 285-292.
    [229] J. W. Shie, U. Yogeswaran, S. M. Chen, Hemoglobin immobilized on nafion modified multi-walled carbon nanotubes for O2, H2O2 and CCl3COOH sensors [J]. Talanta, 2009, 78(3): 896-902.
    [230] Y. H. Ni, H. Q. Hao, X. F. Cao, S. Su, Y. Z. Zhang, X. W. Wei, Preparation, Characterization, and Optical, Electrochemical Property Research of CdS/PAM Nanocomposites [J]. J. Phys. Chem. B, 2006, 110(35): 17347-17352.
    [231] G. F. Jie, B. Liu, H. C. Pan, J. J. Zhu, H. Y. Chen, CdS Nanocrystal-Based Electrochemiluminescence Biosensor for the Detection of Low-Density Lipoprotein by Increasing Sensitivity with Gold Nanoparticle Amplification [J]. Anal. Chem., 2007, 79(15): 5574-5581.
    [232] Y. H. Wang, H. Y. Gu, Hemoglobin co-immobilized with silver-silver oxide nanoparticles on a bare silver electrode for hydrogen peroxide electroanalysis [J]. Microchim. Acta, 2009, 164(1-2): 41-47.
    [233] A. M. Bond, Modern polarographic methods in analytical chemistry [M]. New York: Marcel Dekker Inc., 1980: 27-45.
    [234] W. Sun, X. Q. Li, Y. Wang, R. J. Zhao, K. Jiao, Electrochemistry and electrocatalysis of hemoglobin on multi-walled carbon nanotubes modified carbon ionic liquid electrode with hydrophilic EMIMBF4 as modifier [J]. Electrochim. Acta, 2009, 54(17): 4141-4148.
    [235] C. H. Fan, X. J. Liu, J. T. Pang, G. X. Li, H. Scheer, Highly sensitive voltammetric biosensor for nitric oxide based on its high affinity with hemoglobin [J]. Anal. Chim. Acta, 2004, 523(2): 225-228.
    [236] H. Y. Zhao, W. Zheng, Z. X. Meng, H. M. Zhou, X. X. Xu, Z. Li, Y. F. Zheng, Bioelectrochemistry of hemoglobin immobilized on a sodium alginate-multiwall carbon nanotubes composite film [J]. Biosens. Bioelectron., 2009, 24(8): 2352-2357.
    [237] C. X. Guo, F. P. Hu, C. M. Li, P. K. Shen, Direct electrochemistry of hemoglobin on carbonized titania nanotubes and its application in a sensitive reagentless hydrogen peroxide biosensor [J]. Biosens. Bioelectron., 2008, 24(4): 819-824.
    [238] R. Y. Zhang, X. M. Wang, K. K. Shiu, Accelerated direct electrochemistry of hemoglobin based on hemoglobin-carbon nanotube (Hb-CNT) assembly [J]. J. Colloid Interface Sci., 2007, 316(2): 517-522.
    [239] G. C. Zhao, Z. Z. Yin, L. Zhang, X. W. Wei, Direct electrochemistry of cytochrome c on a multi-walled carbon nanotubes modified electrode and its electrocatalytic activity for the reduction of H2O2 [J]. Electrochem. Commun., 2005, 7(3): 256-260.
    [240] C. G. Shi, J. J. Xu, H. Y. Chen, Electrogenerated chemiluminescence and electrochemical bi-functional sensors for H2O2 based on CdS nanocrystals/hemoglobin multilayers [J]. J. Electroanal. Chem., 2007, 610(2): 186-192.
    [241] H. Zhou, X. Gan, T. Liu, Q. L. Yang, G. X. Li, Effect of nano cadmium sulfide on the electron transfer reactivity and peroxidase activity of hemoglobin [J]. J. Biochem. Biophys. Methods, 2005, 64(1): 38-45.
    [242] D. W. Pan, J. H. Chen, W. Y. Tao, L. H. Nie, S. Z. Yao, Polyoxometalate-Modified Carbon Nanotubes: New Catalyst Support for Methanol Electro-oxidation [J]. Langmuir, 2006, 22(13): 5872-5876.
    [243] J. J. Feng, J. J. Xu, H. Y. Chen, Direct electron transfer and electrocatalysis of hemoglobin adsorbed onto electrodeposited mesoporous tungsten oxide [J]. Electrochem. Commun., 2006, 8(1): 77-82.
    [244] Y. Z. Xian, Y. Xian, L. H. Zhou, F. H. Wu, Y. Ling, L. T. Jin, Encapsulation hemoglobin in ordered mesoporous silicas: Influence factors for immobilization and bioelectrochemistry [J]. Electrochem. Commun., 2007, 9(1): 142-148.
    [245]吴延晖,李文军,邵广洲.新型非甾体抗炎药-尼美舒利[J].中国医院药学杂志, 1999, 19(5): 44-46.
    [246] M. Starek, J. Krzek, A review of analytical techniques for determination of oxicams, nimesulide and nabumetone [J]. Talanta, 2009, 77(3): 925-942.
    [247] C. Ravelet, A. Geze, A. Villet, C. Grosset, A. Ravel, D. Wouessidjewe, E. Peyrin, Chromatographic determination of the association constants between nimesulide and native and modifiedβ-cyclodextrins [J]. J. Pharm. Biomed. Anal., 2002, 29(3): 425-430.
    [248] V. B. Patravale, S. D’Souza, Y. Narkar, HPLC determination of nimesulide from pharmaceutical dosage forms[J]. J. Pharm. Biomed. Anal., 2001, 25(3-4): 685-688.
    [249] S. Altin(?)z, (?). (?). Dursun, Determination of nimesulide in pharmaceutical dosage forms by second order derivative UV spectrophotometry [J]. J. Pharm. Biomed. Anal., 2000, 22(1): 175-182.
    [250] M. Carini, G. Aldini, R. Stefani, C. Marinello, R. M. Facino, Mass spectrometric characterization and HPLC determination of the main urinary metabolites of nimesulide in man [J]. J. Pharm. Biomed. Anal., 1998, 18(1-2): 201-211.
    [251] P. R. B. Fallavena, E. E. S. Schapoval,pKa determination of nimesulide in methanol—water mixtures by potentiometric titrations [J]. Int. J. Pharm., 1997, 158(1): 109-112.
    [252]黄华龙,林军.容量法测定尼美舒利含量[J].中国现代应用药学, 1998, 15(4): 55-56.
    [253] S. Lijima, Helical micro-tublules of graphitic carbon [J]. Nature, 1991, 354: 56-58.
    [254] H. W. Zhu, C. L. Xu, D. H. Wu, B. Q. Wei, R. Vajtai, P. M. Ajayan, Direct Synthesis of Long Single-Walled Carbon Nanotube Strands [J]. Science, 2002, 296(5569): 884-886.
    [255] V. N. Popov, Carbon nanotubes: properties and application [J]. Mater. Sci. Eng. R, 2004, 43(3): 61-102.
    [256] M. C. Daniel, D. Astruc, Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties and applications toward biology, catalysis, and nanotechnology [J]. Chem. Rev., 2004, 104(1): 293-346.
    [257] J. Wang, Carbon-nanotube based electrochemical biosensors: a review [J]. Electroanalysis, 2005, 17 (1): 7-14.
    [258]董绍俊,车广礼,谢远武.化学修饰电极(修订版)[M].北京:科学出版社, 2003: 319.
    [259] W. S. Huang, W. B. Hua, J. C. Song, Adsorptive stripping voltammetric determination of 4-aminophenol at a single-wall carbon nanotubes film coated electrode [J]. Talanta, 2003, 61(3): 411-416.
    [260] J. Wang, M. Musameh, Enzyme-dispersed carbon-nanotube electrodes: a needle microsensor for monitoring glucose [J]. Analyst, 2003, 128(11): 1382-1385.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700