微通道制备纳米粒子及沸石膜微反应器的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微化工系统具有传递性能好、混合时间短、可实现流体间的快速均匀混合等特点而引起了众多学者和生产者的极大关注。针对传统方法不易控制纳米粒子的粒径分布及形貌等缺点,本论文利用微反应器合成纳米分子筛和MOFs粒子。微通道流动法操作简单且连续,安全方便,通过改变反应温度、停留时间等参数,可以精确的调控所合成粒子的性能。同时可以将颗粒的成核及生长过程分开进行,为研究纳米颗粒的形成过程提供了一个良好的途径;沸石分子筛膜具有较好的热稳定性、化学稳定性和催化等性能,将微反应器和沸石分子筛膜结合起来,构建高效微反应器,实现反应器内催化分离一体化,可以用于精细化学品的高效合成。
     (1)采用毛细管微通道反应器,研究了清液合成体系流动法条件下纳米NaA和Silicalite-1沸石分子筛的合成。考察了反应温度、陈化时间、停留时间等条件对其粒径大小、分布和形貌的影响。研究结果表明:降低反应温度,增加陈化时间和减少停留时间都能使分子筛的粒径变小。当反应温度为343K、陈化时间为72h、停留时间为5.8h时,可成功获得平均粒径约为60nm的NaA分子筛,且晶粒均匀呈椭球形;反应温度为371K,陈化时间为24h,停留时间为10h时,可获得平均粒径约为50nm的Silicalite-1分子筛。
     (2)采用毛细管微通道反应器,以DMF作为溶剂,研究了ZIF-8纳米粒子的合成,考察了不同温度、停留时间对产物的影响。研究发现当停留时间为1min、温度控制在353K时,制备的ZIF-8粒子平均粒径为50nm,且具有典型的六方晶形结构;采用水作为溶剂,在温度为303K时,考察了不同反应物配比、停留时间对产物的影响。优化的合成参数是:停留时间为0.5min,前驱液配方是Zn2+:2-甲基咪唑:H2O=1:70:1240。在同样的合成条件下,分别用微通道和传统反应器制备ZIF-8,研究发现微通道的合成速率优于传统反应器。
     (3)采用AP-TMS作为偶联剂,通过连续流动法在不锈钢微通道内表面组装了NaX分子筛晶种,然后通过流动法二次生长NaX沸石膜并进行质子化处理。将膜组装微反应器用于咪唑烷基化反应,并考察了反应条件对主产物N-丁基咪唑收率的影响。结果表明反应温度为333K,咪唑:溴代正丁烷=1:2,在膜组装微反应器中停留30min时,N-丁基咪唑的平均收率为92%,选择性为100%。膜组装微反应器不仅实现连续化制备,同时显示出比传统反应器更好的催化性能。
Micro-chemical system has so many advantages such as excellent transitivity, short mixing time and ability to achieve rapid and uniform mixing between the fluids that it attracts great concern of scholars and producers. Traditional synthesis methods have difficulties in controlling particle size distribution and morphology of nanoparticles. In this paper we investigate the use of microchannel to synthesize zeolite and MOFs nanoparticles. Microchannel continuous flow method is simple, convenient and safe, it can precisely control the properties of synthesized particles by changing reaction temperature, residence time and other parameters. Meanwhile, particle nucleation and particle growth process separately, which provides a good way to study the formation of nanoparticles. Zeolite membranes have good thermal, chemical and catalytic stabilities, which can combine the characteristics of the microreactor and zeolite membrane to construct efficient microreactor to separate catalysis and integration in the reactor and prepare fine chemicals.
     (1) Continuous synthesis of NaA and Silicalite-1 Nanoparticles was conducted in a capillary microchannel reactor from clear solutions, and the effects of reaction temperature, aging time and residence time on the particle size distribution and morphology. It was indicated that smaller mean particle size and narrower particle size distribution of the products was obtained with lower reaction temperature, longer aging time and shorter residence time during the synthesis process. At the synthesis temperature of 343K, aging time of 72h and residence time of 5.8h, the NaA zeolite crystal with mean particle size of around 60nm was produced. And at the synthesis temperature of 371K, aging time of 24h and residence time of 1 Oh, the Silicalite-1 zeolite crystal with a mean particle size of around 50nm was obtained.
     (2) Using DMF as the solvent, we investigated the influence of temperature and the residence time on the products prepared in a capillary microchannel reactor and found that ZIF-8 particles with an average diameter of 50 nm and a typical hexagonal crystal structure could be obtained at the residence time of 1min and the reaction temperature at 353K. We also explored the effects of different reactants ratios and residence times on the products employing water as solvent at 303K. Optimized synthesis parameters are:reaction temperature (303K), retention time (0.5 min), precursor liquid (Zn2+:2-methylimidazole:H2O=1:70:1240). We compared the microchannel flow method with the traditional synthesis method using the same reaction conditions. It was found that the synthesis speed of micro channel reactor is superior to that of a traditional one.
     (3) NaX zeolites were assembled onto the internal surface of stainless steel multichannel microreactors using AP-TMS covalent linker. NaX Membrane was regrown in the channel on assembled reactor by continuous flow method. The hydrogen ion exchange was taken by the similar flow method, too. The performance of the synthesized membrane was tested by the alkylation of 1-bromobutane with imidazole, we studied the influences of reaction factors on N-alkylimidazoles yield (%). N-alkylimidazoles were obtained in high yields (average yield=92%) as main product (100% selectivity) under the following conditions:reaction temperature (333 K), molar ratio of imidazole to 1-bromobutane (1:2) and at the residence time of 30min. Assembled membrane microreactors not only make the production process continuous but also exhibit better catalytic property than that of conventional reactor.
引文
[1]黑毖尔·沃尔克,勒韦·霍尔格.微反应器研究与应用新进展[J].现代化工 2004,07,9-16+18.
    [2]陈光文,袁权.微化工技术[J].化工学报2003,54(4),13.
    [3]Dummann G, Quittmann U, Groschel L, et al. The capillary-microreactor:a new reactor concept for the intensification of heat and mass transfer in liquid-liquid reactions[J]. Catalysis Today,2003,79-80, 433-439.
    [4]骆广生,王凯,吕阳成,等.微反应器研究最新进展[J].现代化工 2009,05,27-31.
    [5]石春燕,蒋晖,张雄福.微型反应器中沸石及其膜的制备与性能研究[J].2006,26:30-33+36
    [6]Arnold J, Dasbach U, Ehrfeld W, et al. Combination of excimer laser micromachining and replication processes suited for large scale production[J]. Applied Surface Science 1995,86 (1-4),251-258.
    [7]王亚军,唐颐,王星东.纳米沸石的合成、性质、组装及应用[J].2002,31(3):217-223.
    [8]魏刚,黄海燕,熊蓉春.微反应器法纳米颗粒制备技术[J].功能材料 2002,5:471-472+476.
    [9]唐林生,苏明阳.利用微通道反应器制备纳米粒子的最新研究进展[J].现代化工 2009,29(7):22-26.
    [10]Ju J X, Zeng C F, Zhang L X, et al. Continuous synthesis of zeolite NaA in a microchannel reactor[J]. Chemical Engineering Journal,2006,116(2),115-121.
    [11]Pan Y C, Yao J F, Zhang L X, et al. Rapid Crystallization of silicalite nanocrystals in a capillary microreactor[J]. Chemical Engineering & Technology,2009,32(5),732-737.
    [12]Wang H Z, Nakamura H, Uehara M, et al. Highly luminescent CdSe/ZnS nanocrystals synthesized using a single-molecular ZnS source in a microfluidic reactor[J]. Advanced Functional Materials, 2005,15(4):603-608.
    [13]Toyota A, Nakamura H, Ozono H, et al. Combinatorial Synthesis of CdSe Nanoparticles Using Microreactors[J]. Journal of Physical Chemistry C,2010,114(17):7527-7534.
    [14]Bruchez M, Moronne M, Gin P, et al. Semiconductor nanocrystals as fluorescent biological labels[J]. Science,1998,281(5385):2013-2016.
    [15]Wang H Z, Li X Y, Uehara M, et al. Continuous synthesis of CdSe-ZnS composite nanoparticles in a microfluidic reactor[J]. Chemical Communications,2004,1:48-49.
    [16]Cottam B F, Krishnadasan S, deMello A J, et al. Accelerated synthesis of titanium oxide nanostructures using microfluidic chips[J]. Lab on a Chip,2007,7(2):167-169.
    [17]Takagi M, Maki T, Miyahara M, et al. Production of titania nanoparticles by using a new microreactor assembled with same axle dual pipe[J]. Chemical Engineering Journal,2004,101(1-3):269-276.
    [18]Shiba K, Ogawa M. Microfluidic syntheses of well-defined sub-micron nanoporous titania spherical particles[J]. Chemical Communications,2009,44:6851-6853.
    [19]Yguerabide J, Yguerabide E E. Light-scattering submicroscopic particles as highly fluorescent analogs and their use as tracer labels in clinical and biological applications:I. Theory[J]. Analytical Biochemistry,1998,262(2):137-156.
    [20]Wagner J, Tshikhudo T R, Kohler J M. Microfluidic generation of metal nanoparticles by borohydride reduction[J]. Chemical Engineering Journal,2008,135 (Supplement 1):S104-S109.
    [21]Shalom D, Wootton R C R, Winkle R F, et al. Synthesis of thiol functionalized gold nanoparticles using a continuous flow microfluidic reactor[J]. Materials Letters,2007,61(4-5):1146-1150.
    [22]Wagner J, Kohler J M. Continuous synthesis of gold nanoparticles in a microreactor[J]. Nano Letters, 2005,5(4):685-691.
    [23]Xue Z L, Terepka A D, Hong Y. Synthesis of silver nanoparticles in a continuous flow tubular microreactor[J]. Nano Letters,2004,4(11):2227-2232.
    [24]Sue K, Kimura K, Arai K. Hydrothermal synthesis of ZnO nanocrystals using microreactor[J]. Materials Letters,2004,58(25):3229-3231.
    [25]赵华,刘洪杰,朱建伟,等.微反应器制备纳米硫酸钡研究[J].无机盐工业,2008,40(1):29-31.
    [26]赵风云,刘洪杰,赵华,等.微反应器制备纳米碱式碳酸锌研究[J].无机盐工业,2009,41(3):35-39.
    [27]Zhu X, Zhang Q, Li Y, et al. Redispersible and water-soluble LaF3:Ce,Tb nanocrystals via a microfluidic reactor with temperature steps[J]. Journal of Materials Chemistry,2008,18(42): 5060-5062.
    [28]鞠景喜,曾昌凤,张利雄,等.微通道反应器在微-纳米材料合成中的应用研究进展[J].化工进展,2006,2:152-158.
    [29]Zhao C X, He L Z, Qiao S Z, et al. Nanoparticle synthesis in microreactors[J]. Chemical Engineering Science,2011,66(7):1463-1479.
    [30]刘冠颖,方玉诚,郭辉进,等.微反应器发展概况[J].当代化工,2010,3:315-318.
    [31]Jahnisch K, Hessel V, Lowe H, et al. Chemistry in microstructured reactors[J]. Angewandte Chemie-International Edition,2004,43(4):406-446.
    [32]Aljbour S, Yamada H, Tagawa T. Ultrasound-assisted phase transfer catalysis in a capillary microreactor[J]. Chemical Engineering and Processing:Process Intensification,2009,48(6): 1167-1172.
    [33]Tosheva L, Valtchev V P. Nanozeolites:Synthesis, crystallization mechanism, and applications [J]. Chemistry of Materials,2005,17(10):2494-2513.
    [34]Perot G, Guisnet M. Advantages and disadvantages of zeolites as catalysts in organic chemistry[J]. Journal of Molecular Catalysis,1990,61(2):173-196.
    [35]Davis M E. Ordered porous materials for emerging applications [J]. Nature,2002,417(6891):813-821.
    [36]Mintova S, Olson N H, Valtchev V, et al. Mechanism of zeolite a nanocrystal growth from colloids at room temperature[J]. Science,1999,283(5404):958-960.
    [37]Tokay B, Somer M, Erdem-Senatalar A, et al. Nanoparticle silicalite-1 crystallization from clear solutions:Nucleation[J]. Microporous and Mesoporous Materials,2009,118(1-3):143-151.
    [38]Liang D, Follens L R A, Aerts A, et al. TEM observation of aggregation steps in room-temperature Silicalite-1 zeolite formation[J]. The Journal of Physical Chemistry C,2007,111(39):14283-14285.
    [39]Zhang W P, Bao X H, Guo X W, et al. A high-resolution solid-state NMR study on nano-structured HZSM-5 zeolite[J]. Catalysis Letters,1999,60(1-2):89-94.
    [40]Rajagopalan K, Peters A W, Edwards G C. Influence of zeolite particle-size on selectivity during fluid catalytic cracking[J]. Applied Catalysis,1986,23(1):69-99.
    [41]Camblor M A, Corma A, Valencia S. Characterization of nanocrystalline zeolite Beta[J]. Microporous and Mesoporous Materials,1998,25(1-3):59-74.
    [42]Cundy C S, Cox P A. The hydrothermal synthesis of zeolites:history and development from the earliest days to the present time[J]. Chemical Reviews,2003,103(3):663-702.
    [43]Schoeman B J. Analysis of the nucleation and growth of TPA-silicalite-1 at elevated temperatures with the emphasis on colloidal stability[J]. Microporous and Mesoporous Materials,1998,22(1-3):9-22.
    [44]Zhan B Z, White M A, Robertson K N, et al. A novel, organic-additive-free synthesis of nanometer-sized NaX crystals[J]. Chemical Communications,2001,13:1176-1177.
    [45]Castagnola N B, Dutta P K. Nanometer-sized zeolite X crystals:use as photochemical hosts[J]. The Journal of Physical Chemistry B,1998,102(10):1696-1702.
    [46]Zhan B Z, White M A, Lumsden M, et al. Control of particle size and surface properties of crystals of NaX zeolite[J]. Chemistry of Materials,2002,14(9):3636-3642.
    [47]Madsen C, Jacobsen C J H. Nanosized zeolite crystals-convenient control of crystal size distribution by confined space synthesis[J]. Chemical Communications,1999,8:673-674.
    [48]Hosokawa H, Oki K. Synthesis of nanosized A-type zeolites from sodium silicates and sodium aluminates in the presence of a crystallization inhibitor[J]. Chemistry Letters,2003,32(7):586-587.
    [49]Wang H, Holmberg B A, Yan Y. Synthesis of template-free zeolite nanocrystals by using in situ thermoreversible polymer hydrogels[J]. Journal of the American Chemical Society,2003,125(33): 9928-9929.
    [50]Chen Z, Li S, Yan. Synthesis of template-Free zeolite nanocrystals by reverse microemulsion-microwave Method[J]. Chemistry of Materials,2005,17(9):2262-2266.
    [51]Huang Y, Ho J, Wang Z, et al. Mesoporous carbon confined conversion of silica nanoparticles into zeolite nanocrystals[J]. Microporous and Mesoporous Materials,2009,117(1-2):490-496.
    [52]Qiu L G, Li Z Q, Wu Y, et al. Facile synthesis of nanocrystals of a microporous metal-organic framework by an ultrasonic method and selective sensing of organoamines[J]. Chemical Communications,2008,31:3642-3644.
    [53]Cravillon J, Munzer S, Lohmeier S J, et al. Rapid room-temperature synthesis and characterization of nanocrystals of a prototypical zeolitic imidazolate framework[J]. Chemistry of Materials,2009,21(8): 1410-1412.
    [54]Ni Z, Masel R I. Rapid production of Metal-Organic Frameworks via microwave-assisted solvothermal synthesis[J]. Journal of the American Chemical Society,2006,128(38):12394-12395.
    [55]Nune S K, Thallapally P K, Dohnalkova A, et al. Synthesis and properties of nano zeolitic imidazolate frameworks[J]. Chemical Communications,2010,46(27):4878-4880.
    [56]Rieter W J, Taylor K M L, An H, et al. Nanoscale Metal-Organic Frameworks as potential multimodal contrast enhancing agents[J]. Journal of the American Chemical Society,2006,128(28): 9024-9025.
    [57]Banerjee R, Phan A, Wang B, et al. High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture[J]. Science,2008,319(5865):939-943.
    [58]Huang X C, Lin Y Y, Zhang J P, et al. Ligand-directed strategy for zeolite-type Metal-Organic Frameworks:Zinc(Ⅱ) Imidazolates with unusual zeolitic topologies[J]. Angewandte Chemie International Edition,2006,45(10):1557-1559.
    [59]Park K S, Ni Z, C6t6 A P, et al. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks[J]. Proceedings of the National Academy of Sciences,2006,103(27):10186-10191.
    [60]Pan Y C, Liu Y Y, Zeng G F, et al. Rapid synthesis of zeolitic imidazolate framework-8 (ZIF-8) nanocrystals in an aqueous system[J]. Chemical Communications,2011,47(7):2071-2073.
    [61]Louis B, Reuse P, Kiwi-Minsker L, et al. Synthesis of ZSM-5 coatings on stainless steel grids and their catalytic performance for partial oxidation of benzene by N2O[J]. Applied Catalysis A:General, 2001,210(1-2):103-109.
    [62]Li G, Kikuchi E, Matsukata M. The control of phase and orientation in zeolite membranes by the secondary growth method[J]. Microporous and Mesoporous Materials,2003,62(3):211-220.
    [63]Conant T, Karim A, Rogers S, et al. Wall coating behavior of catalyst slurries in non-porous ceramic microstructures[J]. Chemical Engineering Science,2006,61(17):5678-5685.
    [64]Yuan Y H, Zhou X G, Wu W, et al. Propylene epoxidation in a microreactor with electric heating[J]. Catalysis Today,2005,105(3-4):544-550.
    [65]Zamaro J M, Miro E E. Confined growth of thin mordenite films into microreactor channels[J]. Catalysis Communications,2009,10(12):1574-1576.
    [66]Sebastian V, de la Iglesia O, Mallada R, et al. Preparation of zeolite films as catalytic coatings on microreactor channels[J]. Microporous and Mesoporous Materials,2008,115(1-2):147-155.
    [67]Wan Y S S, Yeung K L, Gavriilidis A. TS-1 oxidation of aniline to azoxybenzene in a microstructured reactor[J]. Applied Catalysis a-General,2005,281(1-2):285-293.
    [68]Kataoka S, Endo A, Oyama M, et al. Enzymatic reactions inside a microreactor with a mesoporous silica catalyst support layer[J]. Applied Catalysis A:General,2009,359(1-2):108-112.
    [69]Wan Y S S, Chau J L H, Gavriilidis A, et al. Design and fabrication of zeolite-based microreactors and membrane microseparators[J]. Microporous and Mesoporous Materials,2001,42(2-3):157-175.
    [70]Lai S M, Ng C P, Martin-Aranda R, et al. Knoevenagel condensation reaction in zeolite membrane microreactor[J]. Microporous and Mesoporous Materials,2003,66(2-3):239-252.
    [71]Rebrov E V, Seijger G B F, Calis H P A, et al. The preparation of highly ordered single layer ZSM-5 coating on prefabricated stainless steel microchannels[J]. Applied Catalysis a-General,2001,206(1): 125-143.
    [72]Mateo E, Lahoz R, de la Fuente G F, et al. Preparation of silicalite-1 micromembranes on laser-perforated stainless steel sheets[J]. Chemistry of Materials, 2004,16(24):4847-4850.
    [73]Zampieri A, Colombo P, Mabande G T P, et al. Zeolite coatings on microcellular ceramic foams:A novel route to microreactor and microseparator devices[J]. Advanced Materials,2004,16(9-10): 819-823.
    [74]Zhang X, Man Lai E S, Martin-Aranda R, et al. An investigation of Knoevenagel condensation reaction in microreactors using a new zeolite catalyst[J]. Applied Catalysis A:General,2004,261(1): 109-118.
    [75]Yeung K L, Zhang X, Lau W N, et al. Experiments and modeling of membrane microreactors[J]. Catalysis Today,2005,110(1-2):26-37.
    [76]Lau W N, Zhang X F, Yeung K L, et al. Zeolite membrane microreactor for fine chemical synthesis. In Studies in Surface Science and Catalysis,2005,158(2):1335-1342.
    [77]蔡红丽,张雄福,刘海鸥,等.微通道反应器内”就地”合成沸石膜催化层及其性能[J].催化学报,2007,28(9):758-760.
    [78]杨国辉,张雄福,刘海鸥,等.一种简单组装纳米沸石粒f层的方法及其二次法成膜研究[J].高等学校化学学报,2006,27(9):1597-1598.
    [79]Brar T,France P,Smirniotis P G.Control of crystal size and distribution of zeolite A[J].Industrial & Engineering Chemistry Research,2001,40(4):1133-1139.
    [80]Khan S A,Gunther A,Schmidt M A,et al.Microfluidic synthesis of colloidal silica[J].Langmuir, 2004,20(20):8604-8611.
    [81]Venna S R,Carreon M A.Highly permeable Zeolite Imidazolate Framework-8 Membranes for CO2/CH4 separation[J].Journal of the American Chemical Society,2010,132(1):76-78.
    [82]Lerou J J,Ng K M.Chemical reaction engineering:A multiscale approach to a multiobjective task[J]. Chemical Engineering Science,1996,51(10):1595-1614.
    [83]Haswell S J,Middleton R J,O'Sullivan B,et al.The application of micro reactors to synthetic chemistry[J].Chemical Communications,2001,5:391-398.
    [84]徐如人,庞文琴等.分子筛与多孔材料化学[M].北京:科学出版社,2005.
    [85]Smith K,Butters M,Paget W E,et al.Selective mono-chlorination of aromatic compounds under mild conditions by tert-butyl hypochlorite in the presence of zeolites[J].Green Chemistry,1999,1(2): 83-90.
    [86]Gawande M B,Jayaram R V.A novel catalyst for the Knoevenagel condensation of aldehydes with malononitrile and ethyl cyanoacetate under solvent free conditions[J].Catalysis Communications, 2006,7(12):931-935.
    [87]张雄福,刘海鸥,王安杰,等.沸石品种层形成的影响因素及其对Silicalite-1型沸石膜生长的影 响[J].高校化学工程学报,2006,204:520-526.
    [88]尹志岚,袁媛,刘昌盛.硅烷偶联剂对不锈钢表面基膜结合强度的影响[J].功能高分子学报,2004,17,298-302.
    [89]蔡红丽.沸石膜组装微反应器的制备及催化性能研究[D].大连:大连理工大学化工学院,2007.
    [90]Zhou J L,Zhang X F,Zhang J,et al.Preparation of alkali-resistant,Sil-1 encapsulated nickel catalysts for direct internal reforming-molten carbonate fuel cell[J].Catalysis Communications,2009,10(14): 1804-1807.
    [91]Calvino-Casilda V,Martin-Aranda R M,Lopez-Peinado A J,et al.Sonocatalysis and zeolites:An efficient ronte to prepare N-alkylimidazoles:Kinetic aspects[J].Applied Catalysis A:General 2008, 338(1-2):130-135.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700