金属有机化合物IRMOF-3、ZIF-7的制备及成膜研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金属-有机骨架材料(MOFs)作为一种新型的无机多孔材料,因其优异的性能使其得到国际材料学、化学与物理学界的高度重视,并迅速发展成为跨学科的研究热点之一,作为功能材料在选择性催化、气体吸附、光电材料和磁性材料等领域显示了迷人的应用前景,也成为了新一代优异的膜材料。在气体分离如H2/CH4、O2/N2、CO2/CH4分离及手性催化分离等方面具有潜在的用途,其晶体的制备及成膜化均具有重要的科学研究价值及潜在的工业应用价值。目前金属有机骨架材料(MOFs)的成膜化研究刚刚起步,很多机理及条件还不完善,使得这种材料的成膜化尤其是在管状载体上的成膜化研究成为一大热点及难点。
     本文研究了IRMOF-3晶体合成的反应条件对晶体形貌、结构等物理化学性能的影响,利用SEM、XRD进行表征分析。研究结果表明:在Zn2+:ABDC= 2:1、403 K下制备的晶体结晶度较高,并通过对加热方式的考察,确定微波加热可以有效减小晶粒尺寸,同时将制备时间缩短至30 min。其次开展了在α-Al203管状载体上IRMOF-3的成膜研究,实验结果表明,用微波辅助晶种法在CZn2+= 0.05 mol/L时制备的IRMOF-3膜层较连续,经过重复合成,能有效提高膜层质量,在0.1MPa测试压力下氢气渗透速率为4.39×10-7 mol/m2·s·Pa, H2/CO2、H2/N2、H2/CH4分离比分别达到4.12、3.48、2.56,接近努森扩散值。
     鉴于IRMOF-3膜的性能还不完善,在实验的基础上,选取孔径为3(?)的ZIF-7体系,对其进行了晶体制备及成膜研究,创新性的用动态晶化的方法,在Zn2+:BIM=1:2.,CZn2+= 0.05 mol/L,393 K的条件下晶化120 min制备出了与载体相匹配的晶体作为二次生长的晶种。然后用微波辅助的二次生长法,将成膜时间缩短至30 min,通过重复合成,提高膜层质量,其氢气渗透速率为8.93×10-7 mol/m2·s·Pa, H2/N2、H2/CO2、H2/CH4的理想分离比也分别达到了4.04、4.86、2.05。
Metal-Organic Frameworks (MOFs) as a new inorganic porous material, because of their excellent performance catch much attention in the international materials science, chemistry and physics, and quickly developed into one of the hot cross-disciplinary research. As an selective catalytic functional materials, MOFs shows a fascinating prospect in gas adsorption, optical materials and magnetic fields, also has become a new generation of excellent membrane material, in gas separation, such as H2/CH4, O2/N2, CO2/CH4 isolation and separation of chiral catalysis. Its preparation and made to membrane has great scientific values and potential industrial applications. At present, the study of the preparation of MOFs membrane has just started, many mechanisms and conditions are not perfect, makes it especiallyon the tubular carrier to be a research hot topic and difficulty.
     In this paper, we studied the influence of synthesis reaction conditions of IRMOF-3 crystal on the crystal morphology, structure and other physical chemical properties, used SEM, XRD to characterize the results. Studies have shown that:IRMOF-3 crystals which showed higher crystallinity were obtain under the following conditions:Zn2+:ABDC=2:1, synthesis temperature of 403 K. Through the study of heating, proved that IRMOF-3 crystals whose crystal particles were smaller and more uniform, were obtained under the microwave heating used only 30 min. Then we carried out the preparation of IRMOF-3 membrane onα-Al2O3 tubular carrier, the experimental results show that, used the microwave-assisted seed method get more continuous film at CZn2+= 0.05 mol/L, after repeated synthesis, can effectively improve the film quality, at 0.1 MPa psid hydrogen penetration rate of 4.39×10-7 mol/m2·s·Pa, the separation ratio of H2/CO2, H2/N2, H2/CH4 were 4.12,3.48,2.56, close to Knudsen diffusion value.
     In view of IRMOF-3 membrane performance was not perfect, based on experiment, we selected the ZIF-7 system whose aperture was about 3 A, carried out the preparation of crystal and membrane. We prepared out the crystal which matched carrier can used as the seed of secondary growth with dynamic crystallization method, under the following conditions: synthesis temperature of 393 K, reaction time of 120 min, and Zn2+:BIM= 1:2.8, CZn2+= 0.05 mol/L. Then use microwave-assisted seed method reduced the preparation time to 30 min, through repeated synthesis, improve the coating quality, the hydrogen penetration rate of 8.93×10-7 mol/m2·s·Pa, and the ideal separation ratio of H2/N2,H2/CO2,H2/CH4 achieved respectively to 4.04,4.86,2.05.
引文
[1]BAUR W H. Microporous materials:Frameworks under pressure[J]. Nat Mater. 2003,2:17-8.
    [2]SUN T, YING J Y. Synthesis of microporous transition-metal-oxide molecular sieves by a supramolecular templating mechanism[J]. Nature.1997,389:704-706.
    [3]WIRNSBERGER G, YANG P, SCOTT B J, et al. Mesostructured materials for optical applications:from low-k dielectrics to sensors and lasers[J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy.2001,57:2049-2060.
    [4]SCH TH F, SCHMIDT W. Microporous and Mesoporous Materials [J]. Advanced Materials. 2002,14:629-638.
    [5]KRESGE C T, LEONOWICZ M E, ROTH W J, et al. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism[J]. Nature.1992,359:710-712.
    [6]YING J Y, MEHNERT C P, WONG M S. Synthesis and Applications of Supramolecular-Templated Mesoporous Materials[J]. Angewandte Chemie International Edition.1999,38:56-77.
    [7]MATSUDA R, KITAURA R, KITAGAWA S, et al. Highly controlled acetylene accommodation in a metal-organic microporous material[J]. Nature.2005,436:238-241.
    [8]SEO J S, WHANG D, LEE H, et al. A homochiral metal-organic porous material for enantioselective separation and catalysis[J]. Nature.2000,404:982-986.
    [9]张雄福,王金渠.沸石分子筛膜的合成与应用研究进展[J].石油化工1999.28:266-270.
    [10]徐南平,邢卫红,赵宜江.无机膜技术及其应用[M].北京:北学工业出版社;2003.
    [11]张雄福,王金渠,刘长厚.ZSM-5型沸石膜的合成及应用于乙苯脱氢反应研究进展[J].膜科学与技术.2001:55-61.
    [12]徐南平,邢卫红,王沛.无机膜在工业废水处理中的应用与展望[J].膜科学与技术.2000:23-28.
    [13]AFONSO M D, B RQUEZ R. Review of the treatment of seafood processing wastewaters and recovery of proteins therein by membrane separation processes—prospects of the ultrafiltration of wastewaters from the fish meal industry[J]. Desalination. 2002,142:29-45.
    [14]ISMAIL A F, DAVID L I B. A review on the latest development of carbon membranes for gas separation[J]. Journal of Membrane Science.2001,193:1-18.
    [15]MCLEARY E E, JANSEN J C, KAPTEIJN F. Zeolite based films, membranes and membrane reactors:Progress and prospects[J]. Microporous and Mesoporous Materials. 2006,90:198-220.
    [16]AHMAD M I, ZAIDI S M J, RAHMAN S U. Proton conductivity and characterization of novel composite membranes for medium-temperature fuel cells[J]. Desalination. 2006,193:387-397.
    [17]HENG S, YEUNG K L, DJAFER M, et al. A novel membrane reactor for ozone water treatment[J]. Journal of Membrane Science.2007,289:67-75.
    [18]李浩宏,陈之荣,李俊籛,等.有机-无机杂化配位聚合物{[C12H28N2][(Pb3I8)(DMF)2]·2DMF}n的晶体及电子结构[J].化学学报.2005:697-702+666.
    [19]马卫兴,高健,钱保华,等.配位聚合物{[Zn (CF3COO)2(C5H5ON)·]H2O}n的合成、晶体结构及表征[J].无机化学学报.2005:749-752+615.
    [20]杨明莉,武凯,鲜学福.金属-有机络合聚合物(MOCPs)的研究进展[J].功能材料.2006:1697-1699+702.
    [21]尹作娟,高翔,孙兆林,等.金属有机骨架的合成及应用[J].化学与粘合.2009:61-65.
    [22]YOKOYAMA Y, RICCO T. Toughening of polypropylene by different elastomeric systems[J]. Polymer.1998,39:3675-3681.
    [23]HUANG L M, WANG H T, CHEN J X, et al. Synthesis, morphology control, and properties of porous metal-organic coordination polymers[J]. Microporous and Mesoporous Materials.2003,58:105-114.
    [24]YIN Z, YANG J, COOMBS N, et al. Quantitative probing the interfacial structure of TPO/CPO blends by transmission electron microscopy via EDX[J]. Polymer. 2007,48:1297-1305.
    [25]MIRABELLA F M, DIOH N, ZIMBA C G. Theoretical analysis and experimental characterization of the TPO/adhesion promoter/paint interface of painted thermoplastic polyolefins (TPO)[J]. Polymer Engineering & Science. 2000,40:2000-2006.
    [26]HORCAJADA P, SERRE C, VALLET-REG M, et al. Metal-Organic Frameworks as Efficient Materials for Drug Delivery[J]. Angewandte Chemie International Edition. 2006,45:5974-5978.
    [27]ROWSELL J L C, YAGHI 0 M. Strategies for Hydrogen Storage in Metal-Organic Frameworks[J]. Angewandte Chemie International Edition.2005,44:4670-4679.
    [28]ROSSEINSKY M J. Recent developments in metal-organic framework chemistry:design, discovery, permanent porosity and flexibility[J]. Microporous and Mesoporous Materials.2004,73:15-30.
    [29]CHUI S S-Y, LO S M-F, CHARMANT J P H, et al. A Chemically Functionalizable Nanoporous Material [Cu3(TMA)2(H20)3]n[J]. Science.1999,283:1148-1150.
    [30]LONG J R, YAGHI O M. The pervasive chemistry of metal-organic frameworks[J]. Chemical Society Reviews.2009,38:1213-1214.
    [31]YAGHI O M, LI II L, DAVIS C, et al. Synthetic strategies, structure patterns, and emerging properties in the chemistry of modular porous solids[J]. Accounts of Chemical Research.1998,31:474-1484.
    [32]孙福兴.新型多孔金属有机羧酸骨架化合物的设计合成,结构与性质[D]:吉林大学;2010.
    [33]LI H, EDDAOUDI M,O'KEEFFE M, et al. Design and synthesis of an exceptionally stable and highly porous metal-organic framework[J]. Nature.1999,402:276-279.
    [34]EDDAOUDI M, KIM J, ROSI N, et al. Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage[J]. Science. 2002,295:469-472.
    [35]CHAE H K, SIBERIO-PEREZ D Y, KIM J, et al. A route to high surface area, porosity and inclusion of large molecules in crystals[J]. Nature.2004,427:523-527.
    [36]WANG X-S, MA S, SUN D, et al. A Mesoporous Metal-Organic Framework with Permanent Porosity[J]. Journal of the American Chemical Society.2006,128:16474-16475.
    [37]F REY G, SERRE C, MELLOT-DRAZNIEKS C, et al. A Hybrid Solid with Giant Pores Prepared by a Combination of Targeted Chemistry, Simulation, and Powder Diffraction[J]. Angewandte Chemie International Edition.2004,43:6296-6301.
    [38]F REY G, MELLOT-DRAZNIEKS C, SERRE C, et al. A Chromium Terephthalate-Based Solid with Unusually Large Pore Volumes and Surface Area[J]. Science. 2005,309:2040-2042.
    [39]HUANG X C, LIN Y Y, ZHANG J P, et al. Ligand-directed strategy for zeolite-type metal-organic frameworks:Zinc(Ⅱ) imidazolates with unusual zeolitic topologies[J]. Angew Chem Int Edit.2006,45:1557-1559.
    [40]PARK K S, NI Z, COTE A P, et al. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks [J]. Proc Natl Acad Sci U S A.2006,103:10186-10191.
    [41]BANERJEE R, PHAN A, WANG B, et al. High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture[J]. Science. 2008,319:939-943.
    [42]TIAN Y-Q, CAI C-X, JI Y, et al. [Co5(im)10·2 MB]∞:A Metal-Organic Open-Framework with Zeolite-Like Topology[J]. Angewandte Chemie International Edition. 2002,41:1384-1386.
    [43]LI K, OLSON D H, SEIDEL J, et al. Zeolitic Imidazolate Frameworks for Kinetic Separation of Propane and Propene[J]. Journal of the American Chemical Society. 2009,131:10368-10369.
    [44]YU Q, ZENG Y-F, ZHAO J-P, et al. Zeolite-like Metal-Organic Framework Based on a Flexible 2-(1H-benzimidazol-2-ylthio)acetic Ligand:Synthesis, Structures, and Properties[J]. Crystal Growth & Design.2010,10:1878-1884.
    [45]魏文英.新型金属有机骨架的合成、结构表征及催化性能[D]:天津大学;2005.
    [46]占文慧.类沸石金属有机骨架M-ZIF的微波合成及其促进THF水合物生成[D]:华南理工大学;2010.
    [47]YAN Y, DAVIS M E, GAVALAS G R. Preparation of Zeolite ZSM-5 Membranes by In-Situ Crystallization on Porous α-Al2O3[J]. Industrial & Engineering Chemistry Research. 1995,34:1652-1661.
    [48]赵祯霞.金属有机骨架MOF-5膜的制备及其CO2气体渗透分离性能[D]:华南理工大学;2009.
    [49]DONG J, LIN Y S, KANEZASHI M, et al. Microporous inorganic membranes for high temperature hydrogen purification[J]. J Appl Phys.2008,104:121301-121315.
    [50]LIU Y, NG Z, KHAN E A, et al. Synthesis of continuous MOF-5 membranes on porous α-alumina substrates [J]. Microporous and Mesoporous Materials.2009,118:296-301.
    [51]BUX H, LIANG F, LI Y, et al. Zeolitic Imidazolate Framework Membrane with Molecular Sieving Properties by Microwave-Assisted Solvothermal Synthesis[J]. Journal of the American Chemical Society.2009,131:16000-6001.
    [52]AGUADO S, NICOLAS OH, MOIZAN-BASLE V, et al. Facile synthesis of an ultramicroporous MOF tubular membrane with selectivity towards CO2[J]. New Journal of Chemistry.2011,35:41-44.
    [53]XOMERITAKIS G, LAI Z P, TSAPATSIS M. Separation of xylene isomer vapors with oriented MFI membranes made by seeded growth[J]. Industrial & Engineering Chemistry Research.2001,40:544-552.
    [54]NEGISHI H, IMURA T, KITAMOTO D, et al. Preparation of Tubular Silicalite Membranes by Hydrothermal Synthesis with Electrophoretic Deposition as a Seeding Technique[J]. Journal of the American Ceramic Society.2006,89:124-130.
    [55]STERTE J, HEDLUND J, CREASER D, et al. Application of the seed-film method for the preparation of structured molecular sieve catalysts[J]. Catalysis Today. 2001,69:323-329.
    [56]LIN X, KITA H,OKAMOTO K-I. A novel method for the synthesis of high performance silicalite membranes[J]. Chem Commun.2000:1889-1890.
    [57]HEDLUND J, STERTE J, ANTHONIS M, et al. High-flux MFI membranes [J]. Microporous and Mesoporous Materials.2002,52:179-189.
    [58]BALKUS K J, SCOTT A S. Zeolite Coatings on Three-Dimensional Objects via Laser Ablation[J]. Chemistry of Materials.1999,11:189-191.
    [59]GASCON J, AGUADO S, KAPTEIJN F. Manufacture of dense coatings of Cu3(BTC)2(HKUST-1) on α-alumina[J]. Microporous and Mesoporous Materials.2008,113:132-138.
    [60]VENNA S R, CARREON M A. Highly Permeable Zeolite Imidazolate Framework-8 Membranes for CO2/CH4 Separation[J]. Journal of the American Chemical Society. 2010,132:76-78.
    [61]LI Y S, LIANG F Y, BUX H, et al. Molecular Sieve Membrane:Supported Metal-Organic Framework with High Hydrogen Selectivity[J]. Angew Chem Int Edit.2010,49:548-551.
    [62]GUERRERO V V, Y00 Y, MCCARTHY M C, et al. HKUST-1 membranes on porous supports using secondary growth[J]. Journal of Materials Chemistry.2010,20:3938-3943.
    [63]HERMES S, SCHRODER F, CHELMOWSKI R, et al. Selective Nucleation and Growth of Metal-Organic Open Framework Thin Films on Patterned COOH/CF3 Terminated Self-Assembled Monolayers on Au(111) [J]. Journal of the American Chemical Society. 2005,127:13744-13745.
    [64]BIEMMI E, SCHERB C, BEIN T. Oriented Growth of the Metal Organic Framework Cu3(BTC)2(H2O)3·xH2O Tunable with Functionalized Self-Assembled Monolayers[J]. Journal of the American Chemical Society.2007,129:8054-8055.
    [65]HUANG A, DOU W, CARO J. Steam-stable zeolitic imidazolate framework ZIF-90 membrane with hydrogen selectivity through covalent functionalization[J]. J Am Chem Soc.2010,132:15562-15564.
    [66]ARSTAD B, FJELLV G H, KONGSHAUG K, et al. Amine functionalised metal organic frameworks(MOFs)as adsorbents for carbon dioxide[J]. Adsorption. 2008,14:755-762.
    [67]MILLWARD A R, YAGHI 0 M. Metal-Organic Frameworks with Exceptionally High Capacity for Storage of Carbon Dioxide at Room Temperature[J]. Journal of the American Chemical Society.2005,127:17998-17999.
    [68]YAGHI O M,O'KEEFFE M, OCKWIG N W, et al. Reticular synthesis and the design of new materials[J]. Nature.2003,423:705-714.
    [69]BRITT D, TRANCHEMONTAGNE D, YAGHI O M. Metal-organic frameworks with high capacity and selectivity for harmful gases [J]. Proc Natl Acad Sci U S A. 2008,105:11623-11627.
    [70]石秀敏.几种过渡金属有机配位化合物的光谱研究[D]:吉林大学:2010.
    [71]ROWSELL J L C, YAGHI O M. Effects of Functionalization, Catenation, and Variation of the Metal Oxide and Organic Linking Units on the Low-Pressure Hydrogen Adsorption Properties of Metal-Organic Frameworks[J]. Journal of the American Chemical Society.2006,128:1304-1315.
    [72]LIN Y S, KUMAKIRI I, NAIR B N, et al. Microporous inorganic membranes[J]. Separ Purif Method.2002,31:229-379.
    [73]肖伟,孔春龙,赵庆宇,等. Silicalite-1/TiO2复合层上Silicalite-1膜的合成与表征[J].石油学报(石油加工).2009:53-58.
    [74]徐晓春,杨维慎,刘杰,等.微波场中NaA型分子筛膜的快速合成[J].科学通报.2000:835-838.
    [75]XIAO W, YANG J H, LU J M, et al. A novel method to synthesize high performance silicalite-1 membrane[J]. Sep Purif Technol.2009,67:58-63.
    [76]M LLER U N, LUINSTRA, GERRIT, YAGHI, OMAR M. Process for producing polyalkylene carbonates United States:BASF Aktiengesellschaft, University of Michigan (Ann Arbor, MI);2003.
    [77]CRAVILLON J, MU NZER S, LOHMEIER S-J, et al. Rapid Room-Temperature Synthesis and Characterization of Nanocrystals of a Prototypical Zeolitic Imidazolate Framework[J]. Chemistry of Materials.2009,21:1410-412.
    [78]陈敬中.现代晶体化学:理论与方法[M]:高等教育出版社;2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700