IM-5和Ti-IM-5分子筛的合成及催化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于具有独特的孔道结构、高水热稳定性及酸性可调等特点,IM-5分子筛的合成及催化性能研究成为近期分子筛合成及催化领域中的热点问题之一
     在水热法合成IM-5的过程中,通常需要先合成并提纯得到吡咯类双季铵盐模板剂,然后再进行分子筛的合成,存在着合成步骤多、效率较低等问题。本论文采用原位模板法合成IM-5分子筛,即在分子筛合成溶胶的制备过程中,将合成模板剂的原料(N-甲基吡咯、1,5-二溴戊烷)以一定比例加入,然后利用原位形成的双季铵盐模板剂导向合成IM-5分子筛。本文系统考察了各种因素(包括体系碱硅比、钠硅比及硅铝比以及晶化时间等)对IM-5分子筛合成的影响,优化了合成工艺条件。该方法将模板剂的合成与分子筛的制备步骤相互融合,简化了IM-5分子筛的合成流程,在一定程度上提高了IM-5的合成效率。
     另外,以拓宽IM-5分子筛应用范围为目的,进行了含钛IM-5分子筛的合成。分别尝试采用不同方法,如直接水热合成法、TiCl4气相后处理法和钛-硅前驱体制备的方法,进行了Ti-IM-5分子筛的合成。在本文探索的合成条件下,采用直接水热合成法并没有得到高结晶度的Ti-IM-5分子筛;而采用TiCl4气相后处理法和钛-硅前驱体法均能得到含钛的IM-5分子筛材料。
     此外,以所制备的氢型IM-5和由TiCl4气相后处理法制备得到的Ti-IM-5分子筛为催化剂,分别考察了其在生物质转化及烯烃环氧化反应中的催化性能。在蔗糖催化转化反应中,IM-5表现出了较高的催化活性和对乳酸乙酯的选择性,这可能是由于IM-5分子筛中存在的适量Lewis酸中心所致。在1-辛烯的环氧化反应中,IM-5分子筛对1-辛烯的环氧化反应基本没有反应活性,而经TiC14气相后处理法制备的Ti-IM-5则表现了一定的催化活性和很高的环氧产物的选择性(接近100%)。上述结果表明,对IM-5分子筛进行杂原子取代或修饰,能够进一步扩大IM-5分子筛在催化领域中的应用。
Zeolites are the most popular porous materials. The uniform pore distribution, high stability and high BET surface make the zeolites good catalysts in some catalytic reaction. With the expansion of the application, the demand for the zeolites with new structure and properties grows rapidly, and the study of zeolites was transformed to the synthesis of the ones with new structure, and the synthesis of the new multidimensional porous zeolites using diquaternary ammonium compounds attract the interests. The diquaternary ammonium compounds have many advantages that small rigidity molecules don't, just like the rich flexibilities and the higher charge density of the skeleton.
     IM-5 is a kind of microporous zeolite with 2-dimensional intercommunicated pore structure. It was usually synthesized using MPPB as the structure directing-agent (SDA) under the kinetic hydrothermal conditions in which the synthesis of SDA and the zeolites was separately. In this method, there exist some problems such as narrow synthetic distribution, long synthetic cycle and low efficiency. In our work, the in-situ template method was used in which the mixture of DBP and NMP was replaced the SDA so that two synthesis step become one. During the preparation of the synthesis gel. the DBP and NMP were reacted to generate the MPPB which lead to the crystallization of IMF structure. With the new method, the synthesis route was streamlined and the synthetic efficiency was improved during the synthesis of IM-5 zeolite.
     We investigated the relationship between the synthetic factors including NaOH/Si ratio. Na/Si ratio. Si/Al ration and the results of the synthesis under the in-situ template system. It was found that the suitable Si/Al ratio for the synthesis of IM-5 was between 10~30. The proper NaOH/Si ratio for the synthesis of IM-5 zeolite may be 0.65. and the lower NaOH/Si ratio would lead to the MTW structure while the MOR structure was the main phase in the higher NaOH/Si ratio condition. With the increase of Na/Si ratio, the quartz appears first followed by the IMF phase, and the MTW. MOR appeared in the high Na/Si ratio condition.
     After that, we try to synthesis the Ti doped IM-5 zeolite, three different methods was used including direct hydrothermal synthesis, atom-planting method and the Si-Ti precursor method. The product gained from different routes shows different in somewhere. The direct hydrothermal method could only be applied when the Si/Ti>500. so that the product is meaningless because of the extremely low Ti content. There exist 3 Ti species in the product gained from the atom-planting method including the tetrahedral coordinated Ti. the 5-8 coordinated Ti and the crystal TiO2 separately, and the TiO2 in these materials could not be removed by the acid treatment. In addition, the calcination could affect the status of the Ti species in the product. The Ti existed in the product gained from the Si-Ti precursor method was mainly in the form of tetrahedral coordinated Ti. and the inducing of Ti atom to the framework change the lattice parameters of the IM-5 zeolite.
     In order to investigate the catalytic properties of the IM-5 and Ti-IM-5 zeolite, the protonated IM-5 zeolite was used as the catalyst in the reaction of the transformation of the sucrose while the Ti-IM-5 was applied in the epoxidation of the 1-octene reaction. In the reaction of the transformation of the sucrose, the IM-5 showed a good reaction activity, according to the reported relative literatures, there exits some Lewis acid center in the protonated IM-5 zeolite. In the epoxidation reaction, the H2O2 was used as the oxidant, when the CH3CN was used as the solvent, Ti-IM-5 showed good selectivity (close to 100%) to the hexyloxirane (HO) which is wanted product of the epoxidation reaction while the IM-5 zeolite showed no activity in this reaction. When the CH3OH and Ti-IM-5 were used as the solvent and the catalyst separately, the 1.1-dimethoxyheptane (DMH) and the 1,2-octanediol (OTD) became the products instead of HO. So solvent is important in the epoxidation reaction, and the aprotic solvents like CH3CN may the suitable choice when the Ti-IM-5 was selected as the catalyst.
引文
[1]Anastas PT. Kirchhoff MM. Williamson TC. Catalysis as a foundational pillar of green chemistry[J]. Applied Catalysis A:General,2001.221(1-2):3-13.
    [2]Choi S. Coronas J. Jordan E. et al. Layered Silicates by Swelling of AMH-3 and Nanocomposite Membranes[J]. Angewandte Chemie International Edition, 2008,47(3):552-555.
    [3]Galownia J. Martin J. Davis ME. Aluminophosphate-based, microporous materials for blood clotting[J]. Microporous and Mesoporous Materials,2006,92(1-3):61-63.
    [4]Schwenn H, Wark M, Schulz-Ekloff G, et al. Electrical and optical properties of zeolite y supported SnO2 nanoparticles[J]. Colloid & Polymer Science,1997,275(1): 91-95.
    [5]Sebastian V. Irusta S. Mallada R, et al. Microreactors with Pt/zeolite catalytic films for the selective oxidation of CO in simulated reformer streams[J]. Catalysis Today.2009,147(Supplement 1):S10-S16.
    [6]Urbiztondo MA, Pellejero I, Villarroya M, et al. Zeolite-modified cantilevers for the sensing of nitrotoluene vapors[J]. Sensors and Actuators B:Chemical. 2009.137(2):608-616.
    [7]Tsapatsis M. Molecular sieves in the nanotechnology era[J]. AIChE Journal. 2002.48(4):654-660.
    [8]Coronas J. Present and future synthesis challenges for zeolites[J]. Chemical Engineering Journal,2010.156(2):236-242.
    [9]Framework Type Code. http://izasc-mirror.la.asu.edu/fmi/xsl/IZA-SC/ft.xsl
    [10]Matsukata M, Ogura M. Osaki T, et al. Conversion of dry gel to microporous crystals in gas phase[J]. Topics in Catalysis,1999,9(1):77-92.
    [11]Xu XC, Yang WS. Liu J. et al. Synthesis of a high-permeance NaA zeolite membrane by microwave heating[J]. Advanced Materials,2000,12(3):195-+.
    [12]Xu YP, Tian ZJ. Wang SJ. et al. Microwave-enhanced ionothermal synthesis of aluminophosphate molecular sieves[J]. Angewandte Chemie-International Edition, 2006.45(24):3965-3970.
    [13]Cundy CS. Cox PA. The hydrothermal synthesis of zeolites:Precursors, intermediates and reaction mechanism[J]. Microporous and Mesoporous Materials, 2005.82(1-2):1-78.
    [14]de Moor P-PEA. Beelen TPM. Komanschek BU, et al. Imaging the Assembly Process of the Organic-Mediated Synthesis of a Zeolite[J]. Chemistry-A European Journal.1999.5(7):2083-2088.
    [15]Corma A. Davis ME. Issues in the Synthesis of Crystalline Molecular Sieves: Towards the Crystallization of Low Framework-Density Structures [J]. ChemPhysChem.2004.5(3):304-313.
    [16]Ravishankar R, Kirschhock CEA, Knops-Gerrits P-P, et al. Characterization of Nanosized Material Extracted from Clear Suspensions for MFI Zeolite Synthesis[J]. The Journal of Physical Chemistry B.1999.103(24):4960-4964.
    [17]Davis TM. Drews TO. Ramanan H. et al. Mechanistic principles of nanoparticle evolution to zeolite crystals[J]. Nature Materials,2006,5(5):400-408.
    [18]Meza LI, Anderson MW, Agger JR. et al. Controlling Relative Fundamental Crystal Growth Rates in Silicalite:AFM Observation[J]. Journal of the American Chemical Society.2007.129(49):15192-15201.
    [19]Agger JR. Pervaiz N, Cheetham AK. et al. Crystallization in Zeolite A Studied by Atomic Force Microscopy [J]. Journal of the American Chemical Society, 1998,120(41):10754-10759.
    [20]Anderson MW. Surface microscopy of porous materials[J]. Current Opinion in Solid State and Materials Science,2001.5(5):407-415.
    [21]Wilkenhoner U. Langhendries G, van Laar F, et al. Influence of Pore and Crystal Size of Crystalline Titanosilicates on Phenol Hydroxylation in Different Solvents[J]. Journal of Catalysis.2001,203(1):201-212.
    [22]Ruthven DM, Kaul BK. Adsorption of aromatic hydrocarbons in NaX zeolite.2. Kinetics[J]. Industrial & Engineering Chemistry Research,1993,32(9):2053-2057.
    [23]Chung T-S, Jiang LY. Li Y. et al. Mixed matrix membranes (MMMs) comprising organic polymers with dispersed inorganic fillers for gas separation[J]. Progress in Polymer Science,2007,32(4):483-507.
    [24]Yang G-Y, Sevov SC. Zinc Phosphate with Gigantic Pores of 24 Tetrahedra[J]. Journal of the American Chemical Society,1999,121(36):8389-8390.
    [25]Eimer GA, Diaz I, Sastre E, et al. Mesoporous titanosilicates synthesized from TS-1 precursors with enhanced catalytic activity in the [alpha]-pinene selective oxidation[J]. Applied Catalysis A:General,2008,343(1-2):77-86.
    [26]Linssen T. Cassiers K, Cool P, et al. Mesoporous templated silicates:an overview of their synthesis, catalytic activation and evaluation of the stability[J]. Advances in Colloid and Interface Science,2003,103(2):121-147.
    [27]Prokesova P, Mintova S, Cejka J, et al. Preparation of nanosized micro/mesoporous composites via simultaneous synthesis of Beta/MCM-48 phases[J]. Microporous and Mesoporous Materials.2003.64(1-3):165-174.
    [28]Verhoef MJ, Kooyman PJ, van der Waal JC, et al. Partial Transformation of MCM-41 Material into Zeolites:Formation of Nanosized MFI Type Crystallites[J]. Chemistry of Materials,2001,13(2):683-687.
    [29]Jirapongphan SS, Warzywoda J, Budil DE, et al. Molecular modeling of chiral-modified zeolite HY employed in enantioselective separation[J]. Chirality, 2007,19(6):508-513.
    [30]Davis ME, Lobo RF. Zeolite and molecular sieve synthesis[J]. Chemistry of Materials,1992,4(4):756-768.
    [31]Gier TE, Bu X, Feng P, et al. Synthesis and organization of zeolite-like materials with three-dimensional helical pores[J]. Nature,1998,395(6698):154-157.
    [32]Liu Z-H. Yang P. Li P. K2[Ga(B5O10)]·4H2O:The First Chiral Zeolite-like Galloborate with Large Odd 11-Ring Channels[J]. Inorganic Chemistry,2007,46(8): 2965-2967.
    [33]Fireman-Shoresh S, Marx S. Avnir D. Enantioselective Sol-Gel Materials Obtained by Either Doping or Imprinting with a Chiral Surfactant[J]. Advanced Materials,2007,19(16):2145-2150.
    [34]Li Y. Yu J. Wang Z. et al. Design of Chiral Zeolite Frameworks with Specified Channels through Constrained Assembly of Atoms[J]. Chemistry of Materials, 2005.17(17):4399-4405.
    [35]Lawton SL, Leonowicz ME, Partridge RD. et al. Twelve-ring pockets on the external surface of MCM-22 crystals[J]. Microporous and Mesoporous Materials, 1998,23(1-2):109-117.
    [36]Schreyeck L, Caullet P, Mougenel J-C, et al. A layered microporous aluminosilicate precursor of FER-type zeolite[J]. Journal of the Chemical Society, Chemical Communications,1995,(21):2187-2188.
    [37]Zanardi S, Alberti A, Cruciani G, et al. Crystal Structure Determination of Zeolite Nu-6(2) and Its Layered Precursor Nu-6(1)[J]. Angewandte Chemie International Edition.2004.43(37):4933-4937.
    [38]Corma A, Fornes V, Pergher SB. et al. Delaminated zeolite precursors as selective acidic catalysts[J]. Nature,1998,396(6709):353-356.
    [39]Maheshwari S. Jordan E. Kumar S. et al. Layer structure preservation during swelling, pillaring, and exfoliation of a zeolite precursor[J]. Journal of the American Chemical Society,2008,130(4):1507-1516.
    [40]Frontera P, Testa F, Aiello R, et al. Transformation of MCM-22(P) into ITQ-2: The role of framework aluminium[J]. Microporous and Mesoporous Materials, 2007,106(1-3):107-114.
    [41]Caro J, Noack M, Kolsch P, et al. Zeolite membranes-state of their development and perspective[J]. Microporous and Mesoporous Materials.2000,38(1):3-24.
    [42]Coronas J. Santamaria J. State-of-the-Art in Zeolite Membrane Reactors[J]. Topics in Catalysis.2004.29(1):29-44.
    [43]McLeary EE. Jansen JC, Kapteijn F. Zeolite based films, membranes and membrane reactors:Progress and prospects[J]. Microporous and Mesoporous Materials.2006,90(1-3):198-220.
    [44]Caro J. Noack M. Zeolite membranes-Recent developments and progress[J]. Microporous and Mesoporous Materials,2008,115(3):215-233.
    [45]Navajas A, Mallada R, Tellez C, et al. Study on the reproducibility of mordenite tubular membranes used in the dehydration of ethanol[J]. Journal of Membrane Science,2007,299(1-2):166-173.
    [46]Lassinantti M, Jareman F, Hedlund J, et al. Preparation and evaluation of thin ZSM-5 membranes synthesized in the absence of organic template molecules[J]. Catalysis Today,2001.67(1-3):109-119.
    [47]Bernal MP. Coronas J. Menendez M. et al. On the effect of morphological features on the properties of MFI zeolite membranes[J]. Microporous and Mesoporous Materials,2003,60(1-3):99-110.
    [48]Hedlund J, Noack M, Kolsch P, et al. ZSM-5 membranes synthesized without organic templates using a seeding technique[J]. Journal of Membrane Science, 1999.159(1-2):263-273.
    [49]Lai Z, Bonilla G, Diaz I, et al. Microstructural Optimization of a Zeolite Membrane for Organic Vapor Separation[J]. Science,2003,300(5618):456-460.
    [50]Choi J, Ghosh S, Lai Z, et al. Uniformly a-Oriented MFI Zeolite Films by Secondary Growth[J]. Angewandte Chemie International Edition,2006,45(7): 1154-1158.
    [51]Hang Chau JL, Tellez C, Yeung KL, et al. The role of surface chemistry in zeolite membrane formation[J]. Journal of Membrane Science,2000,164(1-2): 257-275.
    [52]Au LTY, Yin Mui W, Sze Lau P, et al. Engineering the shape of zeolite crystal grain in MFI membranes and their effects on the gas permeation properties[J]. Microporous and Mesoporous Materials,2001,47(2-3):203-216.
    [53]Jackowski A, Zones SI, Hwang SJ, et al. Diquaternary Ammonium Compounds in Zeolite Synthesis:Cyclic and Polycyclic N-Heterocycles Connected by Methylene Chains[J]. Journal of the American Chemical Society,2009,131(3):1092-1100.
    [54]Afeworki M, Dorset DL, Kennedy GJ, et al. Synthesis and Characterization of a New Microporous Material.1. Structure of Aluminophosphate EMM-3[J]. Chemistry of Materials,2006,18(6):1697-1704.
    [55]Afeworki M, Kennedy GJ, Dorset DL, et al. Synthesis and Characterization of a New Microporous Material.2. AlPO and SAPO Forms of EMM-3[J]. Chemistry of Materials.2006.18(6):1705-1710.
    [56]Maple MJ, Williams CD. Synthesis and characterisation of aluminophosphate-based zeotype materials prepared with alpha.omega-bis(N-methyl pyrrolidinium) alkane cations as structure-directing agents[J]. Dalton Transactions. 2007:4175-4181.
    [57]Zones SI. Burton AW. Diquaternary structure-directing agents built upon charged imidazolium ring centers and their use in synthesis of one-dimensional pore zeolites[J]. Journal of Materials Chemistry,2005,15(39):4215-4223.
    [58]Paik WC, Shin C-H, Lee JM, et al. Host-Guest Interactions in P1, SUZ-4. and ZSM-57 Zeolites Containing N,N,N,N',N',N'-Hexaethylpentanediammonium Ion as a Guest Molecule[J]. The Journal of Physical Chemistry B,2001,105(41): 9994-10000.
    [59]Lee SH, Shin CH, Choi GJ, et al. Zeolite synthesis in the presence of flexible diquaternary alkylammonium ions (C2H5)3N+(CH2)nN+(C2H5)3 with n=3-10 as structure-directing agents[J]. Microporous and Mesoporous Materials,2003,60(1-3): 237-249.
    [60]Moini A, Schmitt KD, Valyocsik EW. et al. The role of diquaternary cations as directing agents in zeolite synthesis[J]. Zeolites,1994,14(7):504-511.
    [61]Lee S-H, Shin C-H, Yang D-K. et al. Reinvestigation into the synthesis of zeolites using diquaternary alkylammonium ions (CH3)3N+(CH2)nN+(CH3)3 with n=3-10 as structure-directing agents[J]. Microporous and Mesoporous Materials, 2004.68(1-3):97-104.
    [62]Baerlocher C, Xie D, McCusker LB, et al. Ordered silicon vacancies in the framework structure of the zeolite catalyst SSZ-74[J]. Nature Materials,2008,7(8): 631-635.
    [63]Benazzi E, Guth J-L, Rouleau L. IM-5 Zeolite, method of preparation and catalytic applications thereof.WO9817581 [P],1998-4-30.
    [64]Hong SB, Min H-K, Shin C-H, et al. Synthesis. Crystal Structure. Characterization, and Catalytic Properties of TNU-9[J]. Journal of the American Chemical Society,2007.129(35):10870-10885.
    [65]Zones S. Santilli D. Ziemer J. et al. Zeolite SSZ-26:US,4910006[P]. March 20, 1990.
    [66]Zones SI. Olmstead MM. Santilli DS. Guest/host relationships in the synthesis of large pore zeolite SSZ-26 from a propellane quaternary ammonium compound[J]. Journal of the American Chemical Society,1992.114(11):4195-4201.
    [67]Calabro D, Cheng J, Crane Jr R, et al. Synthetic porous crystalline MCM-68, its synthesis and use:US,6049018[P]. April 11,2000.
    [68]Dorset DL. Weston SC. Dhingra SS. Crystal Structure of Zeolite MCM-68:A New Three-Dimensional Framework with Large Pores [J]. The Journal of Physical Chemistry B,2006.110(5):2045-2050.
    [69]Castaneda R, Corma A, Fornes V, et al. Synthesis of a New Zeolite Structure ITQ-24. with Intersecting 10- and 12-Membered Ring Pores[J]. Journal of the American Chemical Society,2003,125(26):7820-7821.
    [70]Kirschhock C, Bons AJ, Mertens M, et al. Characterization of COK-5, Member of a New Family of Zeolite Material with Multiple Channel Systems[J]. Chemistry of Materials.2005.17(23):5618-5624.
    [71]Gramm F, Baerlocher C, McCusker LB, et al. Complex zeolite structure solved by combining powder diffraction and electron microscopy[J]. Nature,2006,444(7115): 79-81.
    [72]Baerlocher C, Gramm F, Massuger L, et al. Structure of the polycrystalline zeolite catalyst IM-5 solved by enhanced charge flipping[J]. Science,2007,315(5815): 1113-1116.
    [73]Benazzi E, Guth J-L, Rouleau L, IM-5 zeolite, A process for its preparation and catalytic applications thereof:U.S.6,136,290[P].2000.
    [74]Corma A, Chica A, Guil JM, et al. Determination of the pore topology of zeolite IM-5 by means of catalytic test reactions and hydrocarbon adsorption measurements[J]. Journal of Catalysis,2000,189(2):382-394.
    [75]Corma A, Martinez-Triguero J, Valencia S. et al. IM-5:A highly thermal and hydrothermal shape-selective cracking zeolite[J]. Journal of Catalysis,2002,206(1): 125-133.
    [76]Lee S-H, Lee D-K, Shin C-H, et al. Synthesis, characterization, and catalytic properties of zeolites IM-5 and NU-88[J]. Journal of Catalysis,2003.215(1):151-170.
    [77]Chen CY, Zones SI. Characterization of zeolites via vapor phase physisorption of hydrocarbons[J]. Microporous and Mesoporous Materials,2007,104(1-3):39-45.
    [78]Jansang B, Nanok T. Limtrakul J. Structures and Reaction Mechanisms of Cumene Formation via Benzene Alkylation with Propylene in a Newly Synthesized ITQ-24 Zeolite:An Embedded ONIOM Study[J]. The Journal of Physical Chemistry B,2006,110(25):12626-12631.
    [79]Serra JM, Guillon E, Corma A. A rational design of alkyl-aromatics dealkylation-transalkylation catalysts using C-8 and C-9 alkyl-aromatics as reactants[J]. Journal of Catalysis,2004,227(2):459-469.
    [80]Serra JM. Guillon E. Corma A. Influence of zeolite structure on the performance of heavy reformate transalkylation catalysts[J]. Molecular Sieves:From Basic Research to Industrial Applications, Pts a and B.2005,158:1757-1762.
    [81]Martinez A, Valencia S, Murciano R, et al. Catalytic behavior of hybrid CO/SiO2-(medium-pore) zeolite catalysts during the one-stage conversion of syngas to gasoline[J]. Applied Catalysis a-General,2008,346(1-2):117-125.
    [82]Palomares AE, Marquez F, Valencia S, et al. On the researching of a new zeolite structure for the selective catalytic reduction of NO:The possibilities of Cu-exchanged IM5[J]. Journal of Molecular Catalysis A:Chemical,2000,162(1-2): 175-189.
    [83]陈强,王永睿.孙敏,et al. IM-5和TNU-9分子筛在甲苯醇烷基化反应中的催化性能[J].石油学报.2010.26(2):165-170.
    [84]Corma A. Rey F, Valencia S, et al. A zeolite with interconnected 8-,10-and 12-ring pores and its unique catalytic selectivity[J]. Nature Materials,2003.2(7): 493-497.
    [85]Shan Z, Lu Z, Wang L, et al. Stable Bulky Particles Formed by TS-1 Zeolite Nanocrystals in the Presence of H2O2[J]. Chem. Cat. Chem.,2010.2(4):407-412. [86] Zones SI. Chen CY, Corma A, et al. Indirect assessment of unknown zeolite structures through inference from zeolite synthesis comparisons coupled with adsorption and catalytic selectivity studies[J]. Journal of Catalysis,2007,250(1): 41-54.
    [87]汪玲玲. Ti-MWW钛-硅分子筛的后处理改性、表征及催化性能[D].上海:华东师范大学,2008.
    [88]Khouw CB, Davis ME. Catalytic Activity of Titanium Silicates Synthesized in the Presence of Alkali-Metal and Alkaline-Earth Ions[J]. Journal of Catalysis, 1995.151(1):77-86.
    [89]Taramasso M, Perego G, Notari B. Preparation of porous crystalline synthetic material comprised of silicon and titanium oxides:U.S.[P].
    [90]Reddy JS. Kumar R, Ratnasamy P. Titanium silicalite-2:Synthesis, characterization and catalytic properties [J]. Applied Catalysis,1990,58(1):L1-L4.
    [91]Wu P, Komatsu T, Yashima T. Characterization of Titanium Species Incorporated into Dealuminated Mordenites by Means of IR Spectroscopy and 180-Exchange Technique[J]. The Journal of Physical Chemistry,1996,100(24): 10316-10322.
    [92]Camblor MA. Corma A. Martinez A. et al. Synthesis of a Titaniumsilicoaluminate lsomorphous to Zeolite Beta and its Application as a Catalyst for the Selective Oxidation of Large Organic Molecules[J]. Journal of the Chemical Society-Chemical Communications.1992,(8):589-590.
    [93]Corma A. Navarro MT. Perez Pariente J. Synthesis of an ultralarge pore titanium silicate isomorphous to MCM-41 and its application as a catalyst for selective oxidation of hydrocarbons[J]. Journal of the Chemical Society, Chemical Communications,1994,(2):147-148.
    [94]Wu P. Miyaji T. Liu YM. et al. Synthesis of Ti-MWW by a dry-gel conversion method[J]. Catalysis Today.2005.99(1-2):233-240.
    [95]Torres JC. Cardoso D. Pereira R., The influence of Si/Al and Si/Ti molar ratios of different [Ti. Al]-beta catalysts in the partial oxidation of cyclohexene with hydrogen peroxide[J]. Microporous and Mesoporous Materials,2010.136(1-3): 97-105.
    [96]张海娇,姚明恺,谢伟,et al.TS-1分子筛的无机法合成及其催化苯酚羟基化性能[J].催化学报,2007,28(10):895-899.
    [97]Ratnasamy P. Srinivas D. Knozinger H. Active sites and reactive intermediates in titanium silicate molecular sieves[J]. Advances in Catalysis,2004,48:1-169.
    [98]Smit B. Maesen TLM. Towards a molecular understanding of shape selectivity[J]. Nature,2008,451(7179):671-678.
    [99]Corma A. State of the art and future challenges of zeolites as catalysts[J]. Journal of Catalysis,2003,216(1-2):298-312.
    [100]Venuto PB., Organic catalysis over zeolites:A perspective on reaction paths within micropores[J]. Microporous Materials,1994,2(5):297-411.
    [101]Denayer JF, Ocakoglu AR, Huybrechts W. et al. Pore mouth versus intracrystalline adsorption of isoalkanes on ZSM-22 and ZSM-23 zeolites under vapour and liquid phase conditions[J]. Chemical Communications,2003,(15): 1880-1881.
    [102]Cundy CS. Cox PA., The hydrothermal synthesis of zeolites:History and development from the earliest days to the present time[J]. Chemical Reviews, 2003,103(3):663-701.
    [103]Coronas J., Santamaria J. Separations using zeolite membranes[J]. Separation and Purification Methods,1999,28(2):127-177.
    [104]Huber GW, Iborra S, Corma A. Synthesis of Transportation Fuels from Biomass:Chemistry. Catalysts, and Engineering[J]. Chemical Reviews,2006,106(9): 4044-4098.
    [105]Holm MS, Saravanamurugan S, Taarning E. Conversion of Sugars to Lactic Acid Derivatives Using Heterogeneous Zeotype Catalysts[J]. Science, 2010,328(5978):602-605.
    [106]Langhendries G, De Vos DE, Sels BF, et al. Clean catalytic technology for liquid phase hydrocarbon oxidation[J]. Clean Products and Processes,1998,1(1): 21-29.
    [107]Sheldon RA, Wallau M, Arends IWCE, et al. Heterogeneous Catalysts for Liquid-Phase Oxidations:Philosophers' Stones or Trojan Horses?[J]. Accounts of Chemical Research,1998,31(8):485-493.
    [108]Sheldon RA. Arends IWCE. Lempers HEB. Liquid phase oxidation at metal ions and complexes in constrained environments[J]. Catalysis Today,1998,41(4): 387-407.
    [109]Clerici MG. TS-1 and propylene oxide,20 years later[J]. Oil Gas-European Magazine,2006,32(2):77-82.
    [110]Lianhe Shu and Yian Shi. Asymmetric epoxidation using hydrogen peroxide (H2O2) as primary oxidant[J]. Tetrahedron Letters,1999,40(50):8721-8724.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700