三轴向电容式矢量水听器的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
矢量水听器由于其体积小、质量轻、灵敏度高、工作频带宽、单只“8”字形指向性等诸多优点,在小型声纳、声纳浮标、拖曳阵及解决左右舷模糊问题的应用上具有很大优势。同时矢量水听器还有许多未被开发的潜力,因此将新型的传感器技术用于矢量水听器的开发很有前景。
     本文利用声学理论分析了同振球形组合式矢量水听器的检测原理,给出同振球形组合式矢量水听器设计的理论依据以及制约条件。采用电容式加速度传感器构成矢量水听器的矢量通道,分析了电容式振动传感器的测量原理,针对矢量水听器检测的声波信号引起的水质点振动具有小幅值的特点,利用ANSYS软件设计了适合于矢量水听器的,灵敏度分别为0.12pF/g、0.12pF/g、0.116pF/g的三轴向加速度传感器。根据仿真结果,借助MEMS工艺得到三维加速度传感器样本。在此基础上,设计、制作了工作频带为0~500Hz、直径为64mm的三维复合式矢量水听器,并在驻波声管中进行了性能测试,矢量水听器三个通道灵敏度分别为-201dB、-201dB、-200dB(0dB=1V/μPa,500Hz),指向性分辨率均大于20dB,声压通道灵敏度-202dB。
With so many excellences such as low profile,light weight,high sensitivity, wide bandwidth,good directionality,the vector hydrophone has many advantages in sonar system,sonobuoy,tow array,and solving cyclically ambiguous.And there is a lot of potential still need to be developed,so new kinds of sensor will be widely used in the development of vector hydrophone.
     Base on the acoustics theory,the measuring method of a kind of sphere, resonant-column vector hydrophone has been researched,and the velocity pickup condition for particle velocity hydrophone also been analyzed.The theory for the designing of vector hydrophone and the constrain condition are obtained.The paper adopts the capacitive accelerometer as the vector channel,and the measuring method of capacitive accelerometer is analyzed.With the character of low amplitude of underwater particle,the finite-element software-ANSYS is applied to design the sensitive element of the accelerometer.The result of the designed three-dimensional sensitivity are respective as 0.12pF/g,0.12pF/g and 0.116pF/g.And the sample is presented by MEMS technology.A tri-axis vector hydrophone with a diameter of 64ram was constructed and measured in the standing wave filed,having an essentially flat response between 0~500Hz with three-dimensional sensitivity respectively as-201 dB,-201 dB,-200dB (0dB=1V/μPa,500Hz ).The average resolving power of the directivity is bigger than 20dB,and sensitivity of the pressure channel is-202dB.
引文
[1]贾志富.三维同振球型矢量水听器的设计及其结构特性.应用学.2001,20(4):15-20页
    [2]陈丽洁,张鹏,徐兴烨,王福江.矢量水听器综述.传感器与微系统.2006,25(6):5-8页
    [3]陈洪娟.矢量传感器.第一版.哈尔滨工程大学出版社,2006(6):8页
    [4]孙贵青,李启虎.声矢量传感器研究进展.声学学报.2004(11):481-489页
    [5]Robert L.Townsend,Amherst.N.H.,Tilt Compensation For Acoustic Transducing System,United States Patent.4179682,Dec.18,1979
    [6]Thomas E.Woodruff,Nashua.N.H.,Underwater Direction Finding System,UnitedStates Patent,3987404,1976
    [7]V.A.Shchurov.The interaction of energy flows of underwater ambient noise and alocal source.JASA.1991,90(2):1002-1004P
    [8]V.A.Shchurov.Coherent and diffusive fields of underwater acoustic ambient noise.JASA.1991,90(2):991-1000P
    [9]C.B.Leslie,J.M.Kendall,J.L.Jones.Hydrophone for Measuring Particle Velocity.JASA.1956,3(5):711-715P
    [10]Brue M.Abraham,Low-cost Dipole Hydrophone for use in Towed Arrays Acoustic Particle Velocity Sensors.Design Performance and Application,1995:189P
    [11]Thomas B.Gabrielson,David L.Gardner.A Simply Neutrally Buoyant sensor for Direct Measurement of Particle Velocity and Intensity in water.JASA.1995
    [12]Kevin J.Bastyr and Gerald C.Lauchle.Development of a velocity gradient underwater acoustic intensity sensor.JASA,1999:106P
    [13]孙贵青,杨德森,张揽月.基于矢量水听器的水下目标低频辐射噪声测量方法研究.声学学报.2002(9):429-434页
    [14]陈克棠,胡嘉忠著.声纳和水下观测.第一版.上海科学技术出版社,1981:1-2页
    [15]Howard K R,Thomas W K,Pafrick J K et al.A Microfabricated Electron-Tunneling Accelerometer as a Directional Underwater Acoustic Sensor.Americal Institute of Physics:Proceeding ofAPVS95,1995
    [16]Berliner M J,LindBerg J EAcoustic particle velocity sensor:design.performance and applications.WoodBury,N Y:AIP Press,1996:368P
    [17]吴祥兴.超低频矢量水听器技术研究.哈尔滨工程大学工程硕士学位论文.2005:4页
    [18]时胜国.矢量水听器及其在平台上的应用研究.哈尔滨工程大学工学博士学位论文.2006:20页,37-38页,41-45页
    [19]J.Clay Shipps and Brace M.Abraham.Vector sensors secure shore-based manufacturing plants.Sensors Defend the Plant.2004.10:39-40P
    [20]陈丽洁.微型矢量水听器研究.工学博士学位论文.2006:78页
    [21]孙淑珍.基于MEMS矢量水听器研究.硕士学位论文.2006:48页
    [22]Bucaro J A,Dardy H D,Carome E.J.Acoust.Soc.Am.1977,62(5):1302P
    [23]熊水东,罗洪,胡永明等.基于加速度传感的三维光纤矢量水听器实验研究.压电与声光.2005,27(5):483-485页
    [24]马敬广,刘建涛.矢量传感器的工程应用.声学与电子工程.2004.2:25-27页
    [25]李德胜,王冬红,孙金玮,金鹏.MEMS技术及其应用.哈尔滨工业大学出版社,2002:1-2页,42-47页,138-141页,168-170页
    [26]丁衡高.微型惯性测量组合.中国惯性技术学报.1996,4(1):1-5页
    [27]董景新等.微惯性仪表-为机械加速度计.清华大学出版社,2002:7-20页
    [28]王涛.三轴硅微加速度计的集成设计与实现.西北工业大学硕士学位论文.2006:4页
    [29]M.Elwenspoek,R.Wiegerink.陶家渠,李应选,万达等译.中国宇航出版社,2003:135页
    [30]何祚镛,赵玉芳.声学理论基础.第一版.国防工业出版社,1981:316页, 64页,334页
    [31]孙贵青等.矢量水听器在水下目标低频辐射噪声测量中的应用..哈尔滨工程大学学报.2001,22(5):5-6页
    [32]陈洪娟.中频小型矢量水听器设计研究.哈尔滨工程大学博士学位论文.2005
    [33]李科杰.新编传感器技术手册.国防工业出版社,2002:344页
    [34]曹新平,张大成,黄如,张兴,王阳元.一种大厚度的三轴差分电容式硅微加速度计.仪器仪表学报.2002,23(6):572-575页
    [35]莫喜平.用ANSYS有限元软件模拟分析声学换能器.中国科学院声学研究所
    [36]高晓蓉.传感器技术.第一版.西南交通大学出版社,2003:11页
    [37]洪连进,陈洪娟.电容式硅微加速度计变换方程的研究.仪器仪表与传感器.2002,6:1-3页
    [38]段进,倪栋,王国业.ANSYS10.0结构分析从入门到精通.第一版.兵器工业出版社,2006:225-230页
    [39]陈宏,鲍敏航.硅微结构加速度传感器空气阻尼的研究.半导体学报.1995,16(12):921-927页
    [40]栾桂东,张金铎,王仁乾.压电换能器和换能器阵上册.第一版.北京大学出版社,1990:218-225页
    [41]王文芝.水声换能器设计制作工艺讲义.哈尔滨工程大学水声工程学院.189-202页
    [42]贾志富.声学测量实验.第1版.国防工业出版社,1989:110-111页

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700