应用于汽车的温差式空气流量传感器的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
发动机电子控制燃油喷射系统的关键技术,是对发动机的空气进气量的准确测量,使得空气进气量与喷油量处于最佳比例。在车用空气流传感器中,由于热式流量传感器具有无机械传动,无需压力补偿,响应速度快,测试灵敏度高等优点。因此,热式空气流量传感器发展非常迅速,且在汽车领域开始得到广泛的应用。本文中研究的空气流量计为温差热膜式流量传感器。其主要内容如下:
     由于进气管中空气流速范围与热膜式流量传感器测试量程不匹配,并且在进气管中的空气流动状态为湍流,不能满足温差热膜式流量传感器的测试条件。研究中通过在内燃机进气管中设置取样流道,测试取样流道中的流速,间接反映进气管中空气质量流量。通过取样流道中的结构参数设计,可控制测试段的流速,使其满足温差流量传感器的测试流量要求。同时使整个流速范围内测试段保持层流。
     研究了传统热膜式流量传感器,通过商业软件对流量传感器在各种状态下的温度分布、测试范围和测试精度进行了模拟,得到了较为合理的测试电阻的位置及其布局和芯片的结构。其可测流速范围为0-5m/s。采用半导体工艺研制出了温差横膈膜式流量传感器芯片,控制电路和信号输出电路分别为两组惠斯通电桥,分别为保证加热电阻的加热温度和测试电阻信号输出。通过测试分析初步验证了理论分析的正确性。并在内燃机的进气质量流量为8~370Kg/h时,得到放大后信号电压为0V~3.1V,并且呈现很好的单调性。分析了加热电阻的温度和宽度对测试精度和测试范围的影响。本文中还针对带有横膈的膜热膜式流量传感器的测试范围较窄的问题,提出二次差分的测试方法,该方法大大扩大了流量的测试范围,但同时降低了其测试精度。
     提出了一种基于玻璃的流量传感器,由于玻璃的热导率较小,不需要构造横膈膜或隔热桥,可直接在玻璃衬底上溅射薄膜电阻,因此,该传感器具有制备工艺简单和耐流体冲击能力强的优点。但是其工作功耗大,测试精度也相应的降低。采用流体软件模拟了各种情况下的温度场,得到内燃机进气管的质量流量与输出信号电压的关系。在实验上验证了模拟趋势的正确性,确认该模拟具有一定实践指导性。芯片的流速测试范围可达到10m/s,在内燃机的进气质量流量为8~370Kg/h时,输出电压为0V~1.4V。
     创新性的提出了一种新颖的集成微沟道流量传感器,通过微沟道的导向作用,达到增加横膈膜上的强迫对流换热效果,从而提高传感器的测试精度。通过降低取样流道中的流速与内燃机进气管中的流速比,实现降低流体的击波压力,且保证了测试精度。模拟了流量传感器在各种状态下的温度分布、测试范围和测试精度,得到了理想的电阻布局方式和芯片结构。与传统热膜式流量传感器相比,其最大信号输出提高了25%,在内燃机的进气质量流量为370Kg/h时,输出信号电压可以达到3.86V。但其测试范围有一定程度的缩小,其芯片表面最大测试流速为3m/s。
     分析了各种流量传感器在测试过程中的动态特征。内燃机进气管中的流动处于非稳定状态,呈周期型变化。本文中模拟了正负阶跃脉冲气流下三种传感器的延迟特性。非稳态流动中,影响传感器响应时间的主要因素为流场稳定分布的延迟时间、衬底(或者横膈膜)热平衡分布的延迟时间和加热电阻温度补偿延迟时间。在正阶跃脉冲气流下,三种传感器的响应时间分别1.4ms,2.5ms和1.2ms。在负阶跃脉冲气流下,三种传感器的响应时间分别1.5ms,2.5ms和1.5ms。
     研究了环境温度对流量传感器的输出电压信号的影响。随着环境温度的增加,电压信号明显减弱,这会给流量计中作过程中带来很大的误差。随着环境温度的降低其饱和现象越显著,甚至影响到传感器的测试量程。本文中提出了环境温度的补偿方案,在传感器芯片最上游放置一根环境温度测试电阻R_k,通过电路控制使得加热电阻与进口空气之间的温差保持恒定值。通过模拟得到信号输出电压的误差大大减小,但不能完全避免误差。这是因为随着温度升高,流体的热导率越高,强迫对流越大,固体热导率小,导致信号电压越大。
The key to Electronic Fuel Injection System of automobile engine is the accurate measurement of air mass flux in manifold in order to maintain an optimal air-fuel ratio. For many air flow meters, the thermal film based air flow meter develops very rapidly and begins to be applied to automobile widely, due to its many advantages such as no mechanical transmission, no pressure compensation, quick response and high sensitivity. In this thesis, the main object of this study is the temperature difference thermal film based flow sensor. The main research contents of this thesis are as follows:
     Due to the fact that the air flow velocity range in manifold is inconsistent with the measurement range of thermal film flow sensor, and the flow condition in manifold is turbulent, which does not meet the measurement conditions of the thermal flow sensor. An especially small sampling channel is designed inside the manifold in this research, so that the laminar flow condition can be maintained throughout the measurement range in the small sampling channel. Through measurement of flow velocity in small sampling channel, the air mass flux in manifold can be obtained. By adjusting the structure parameter of small sampling channel, the flow velocity range in small sampling channel is maintained to be consistent with the measurement range of thermal film flow sensor.
     The traditional thermal film flow sensor is studied. Extensive CFD simulations using the software package FLUENT are performed throughout the design process, and the temperature distribution, measurement range and measurement precision are obtained. The optimal resistor layouts and structure parameter are obtained. The maximal measurable velocity is 5m/s. The temperature difference membrane flow sensor chip is fabricated by semiconductor technology. The heater temperature is maintained at a constants temperature by a Wheatstone bridge with the heater resistor as a bridge arm, and signal voltage is obtained by another Wheatstone bridge. The simulation is verified to be appropriate by experiment. When the air mass flux in manifold is 8-370 kg/h, the output signal voltage is 0V-3.1V after magnification. The effect of heater temperature and heater width on measurement precision and measurement range is investigated. In this study, a second difference scheme for the temperature is proposed. The maximal measurement range is broden largely, but the measurement precision decreases remarkably.
     A type of flow sensor based on glass substrate is proposed. Due to the low thermal conductivity of glass, the membrane does not need to be structured. Therefore the fabrication technology is simple, and it can work under large fluid press. On the other hand, the consumption of this flow sensor is large, and the measurement precision is low. The temperature field is simulated by software FLUENT under different conditions, and the temperature difference is calculated for different positions on the glass surface, the relationship of output signal voltage and income mass flux is obtained. The flow sensor based on glass is fabricated by semiconductor technology, and all of this simulation is verified to be correct. The maximal measurable velocity can reach 10m/s. When the intake air mass flux is 8~370Kg/h, the signal voltage is 0V-1.4V.
     A new type of novel flow sensor integrated with a micro channel is proposed. The uniqueness of this flow sensor is that there is thermal convection effect on both sides of diaphragm by flow guide of a micro channel, which results in a more sensitive temperature distribution. The temperature characteristics of the novel flow sensor are simulated at different flow rates, and the optimization positions of the test resistor pair on the membrane are obtained from the simulations. Compared with traditional flow sensors, this flow sensor has higher measurement precision, and the maximum output signal voltage improves 25%. When the air mass flux in manifold is 370 kg/h, the highest signal voltage is 3.86V. However, the measurement range is narrower than that of traditional flow sensor, and the maximal measurable velocity is 3m/s.
     Dynamic response properties of all types of flow sensors are studied. In the manifold of engine, flow is unsteady and periodical variety. The dynamic properties of three flow sensors have been simulated, and the main effects of dynamic response are the times of flow field and temperature field achieving a balance and heater temperature compensation time. Under positive step pulse flow, the response times are 1.4ms, 2.5ms and 1.2ms respectively for three flow sensors, and under negative step pulse flow, the response times are 1.5ms, 2.5ms and 1.5ms respectively for three flow sensors.
     The effects of ambient temperature on measurement signal of flow sensors are studied. With ambient temperature increasing, signal voltage of flow sensors decrease remarkably, which will bring a lager deviation. With ambient temperature decreasing, the saturation effect of temperature difference becomes more remarkable, and the measurement range becomes narrower. In this research, an ambient temperature compensation method is proposed. On the front of flow chip, ambient temperature is tested by a resistor R_k, and it is connected to Wheatstone bridge as a part of bridge arm. A constant temperature difference is maintained between heater temperature and ambience temperature. After this the signal deviations of flow sensor is decreased largely. There is still a small deviation, due to the material parameter varying with ambient temperature varying.
引文
[1]李令举,陈志和,汽车传感器,传感器技术,1992,(1):57-59
    [2]Docquier N,Candel S,Combustion control and sensors:A review,Progress in Energy and Combustion Science,2002,28(2):107-150
    [3]Wilson S A,Jourdain R P J,Zhang Q et al,New materials for micro-scale sensors and actuators:An engineering review,Materials Science and Engineering R:Reports,2007,56(1-6):1-129
    [4]简晓春,杜仕武.现代汽车技术及其应用,北京:人民交通出版社,2003,15-17
    [5]Miyaki M,Fujisawa H,Masuda A et al,Development of new electronically controlled fuel injection system ECD-U2 for diesel engines,SAE Trans,1991,100(3):312-328
    [6]Corcione F E,Siano D,Iadevaia M,Viscardi M,et al,Correlation between the acoustic intensity measurements with and without an electronically fuel injection system for a small single cylinder diesel engine,Acta Acustica(Stuttgart),2003,89:33-36
    [7]SmithD B,Lak S J,Electronic direct injection system for use in methanol fueled high speed engines,In:SAE Special Publications.International Congress and Exposition.USA:SAE,Warrendale,1993,185-192
    [8]Meyer A E,Shoemaker C R,High speed electronic fuel injection for direct injected rotary engine,In:SAE Special Publications.Proceedings of the Future Transportation Technology Conference and Exposition.USA:SAE,Warrendale,1995,153-165
    [9]Nakai H,Konishi Y,Fukushima A,Electronically controlled fuel injection system for new diesel engines,JSAE Review,1997,18(1):61-63
    [10]Lauvin P,Loffler A,Alfred Z W,et al,Electronically controlled high pressure unit injector system for diesel engines,SAE Transactions,1991,100:1565-1577
    [11]Schechter M M,Jary H E,Levin M B,High speed fuel injection system for 2-stroke D.I.gasoline engine,In:SAE Special Publications.SAE International Congress and Exposition.USA:Two-Stroke Engine Design and Development,1991,23-36
    [12]Ives A P,G.Frankl,P.David,Electronic fuel injection equipment for the light duty diesel engine[automobile engines],In:International Congress on Transportation Electronics Proceedings.USA:IEEE,1984,Ⅸ 25-33
    [13]Kim J S,HwanI C g,Ko Y S,et al,Design and computer control of a sliding mode fuel-injection controller for MPI gasoline engines,Proceedings of the 6th International Pacific Conference on Automotive Engingeering,1991,813-823
    [14]Yamane K,Shimamoto Y,Combustion and emission characteristics of direct-injection compression ignition engines by means of two-stage split and early fuel injection,Journal of Engineering for Gas Turbines and Power,2002,124(3):660-667
    [15]Song J,Lu X C,Li L X,et al,Combustion characteristics and emission of a two-stroke compression ignition engine with two-stage injection,Journal of Shanghai Jiaotong University(Science),2007,12(1):53-60
    [16]钱人一,轿车发动机电子控制系统的组成与基本原理分析,内燃机电脑应用,1995,(2):5-8
    [17]Kita T,Air flow sensor for engine control,In:Proceedings IECON '86.1986International Conference on Industrial Electronics,Control and Instrumentation.Industrial Applications of Mini,Micro and Personal Computers.USA:IEEE,1986,316-321
    [18]Anon,Air flow management in the engine system:Why and how? Pipeline and Gas Journal,2001,228(6):34
    [19]Legg R C,Vane anemometers and the measurement of air volume flow rate,Heating and Ventilating Engineer,1973,47(557):273-280
    [20]Joseph R,A flow analysis with a vane anemometer,Metal Finishing,2004,102(5):50-52
    [21]Miyoshi N,Vortex air flow sensor for electronically controlled engine,In:Proceedings-International Symposium on Automotive Technology & Automation,Wolfsburg,W Ger:Volkswagenwerk AG.1982,227-240
    [22]Salaymeh A A,Ashhab M S,Modelling of a novel hot-wire thermal flow sensor with neural nets under different operating conditions,Sensors and Actuators,A:Physical,2006,126(1):7-14
    [23]Salaymeh A A,Durst F,Development and testing of a novel single-wire sensor for wide range flow velocity measurements,Measurement Science and Technology,2004,15(5):777-788
    [24] Ashhab M S, Salaymeh A A, Optimization of hot-wire thermal flow sensor based on a neural net model, Applied Thermal Engineering, 2006,26(8-9): 948—955
    [25] Durst F, Haddad K, Salaymeh A A, Mass flow-rate control unit to calibrate hot-wire sensors, Experiments in Fluids, 2008,44:189—197
    [26] Putten van A F P, Middehoek S, Integrated silicon anemometer Electronic Letters, 1974,10(21): 425-426
    [27] van Putten, A F P, "An integrated silicon double bridge anemometer," Sensors and Actuators, 1983,14:387-396
    [28] Igarashi K, Kawashima K, Kagawa T, Development of simultaneous measurement system for instantaneous density, viscosity and flow rate of gases, Sensors and Actuators, A: Physical, 2007,140: 1—7
    [29] Kulkarni A, Patil S, Karekar R N, et al, Fabrication and characterization of innovative gas flow sensor, Sensors and Actuators, A: Physical, 2005,122:231—234
    [30] Chen J, Z F Fan, Zou J, et al, Two-dimensional micromachined flow sensor array for fluid mechanics studies, Journal of Aerospace Engineering, MEMS- Microelectromechanical Systems, 2003,16(2): 85—97
    [31] Mcguinn R S, Lauchle G C, Swanson D C, Low flow-noise microphone for active noise control applications, AIAA Journal, 1997, 35(1): 29—34
    [32] Miyawaki O, Akaike S, Yano T, et al, Adaptation of the hot-wire viscosity sensor to a flowing system using a shield of low thermal conductivity, Journal of Food Engineering, 1993,19(4): 353-363
    [33] Sturzebecher D, Anders S, Nitsche W, The surface hot wire as a means of measuring mean and fluctuating wall shear stress, Experiments in Fluids, 2001, 31(3): 294—301
    [34] Kielbasa J, Application of double hot-wire anemometer for the detection of the flow reversal, In: Proc SPIE Int Soc Opt Eng, Gliwice: Society of Photo-Optical Instrumentation Engineers 2001, 66—77
    [35] Benjamin S F, Liu Z, Roberts C A, A shielded hot-wire probe to detect flow reversals with one-dimensional pulsating flow, Journal of Mechanical Engineering Science, 2004,218(7): 797-801
    [36] Levitskii V N, Repik E U, Sosedko Y P, Influence of the temperature of a flow on the readings of a hot-wire anemometer, Journal of Engineering Physics (English Translation of Inzhenerno-Fizicheskii Zhurnal), 1985,49(3): 1013—1018
    [37] Salaymeh A A, On the convective heat transfer from circular cylinders with applications to hot-wire anemometry, International Journal of Heat and Technology, 2005,23(2)109-114
    [38] Doebbeling K, Lenze B, Leuckel W, Four-sensor hot-wire probe measurements of the isothermal flow in a model combustion chamber at different levels of swirl, Experimental Thermal and Fluid Science, 1992,5(3): 381—389
    [39] Ohyama Y, Hirasawa K, Nishimura Y, et al, Pulsating flow characteristics of hot-wire air flow meter for gasoline fuel-injection systems, JSME International Journal, Series B, 1995, 38(559): 143-148
    [40] Pietruske H, Prasser H M, Wire-mesh sensors for high-resolving two-phase flow studies at high pressures and temperatures, Flow Measurement and Instrumentation, 2007,18(2): 87-94
    [41] Buder U, Petz R, Kittel M, Nitsche W et al, AeroMEMS polyimide based wall double hot-wire sensors for flow separation detection, Sensors and Actuators, A: Physical, 2008,142(1): 130-137
    [42] Van Der Linden R J, Hoogendoorn C J, Transients in flow and local heat transfer due to a pressure wave in pipe flow, Applied Scientific Research (The Hague), 1994, 52(4): 371-399
    [43] Vukoslavcevic P, Wallace J M, 12-sensor hot-wire probe to measure the velocity and vorticity vectors in turbulent flow, Measurement Science & Technology, 1996,17(10): 1451-1461
    [44] Lakshminarayana B, Davino R, Sensitivity of three sensor hot wire probe to yaw and pitch angle variation, Journal of Fluids Engineering, Transactions of the ASME, 1988,110(2): 120-122
    [45] Sherif S A, Pletcher R H, Normal sensor hot-wire/film probe method for the analysis of three-dimensional flows, Flow Measurement and Instrumentation, 1994, 5(3): 150-154
    [46] Jorgensen F E, Chernoray V G, Bakchinov A A, L Lofdahl, A multi-sensor hot-wire anemometer system for investigation of wall-bounded flow structures, Experimental Thermal and Fluid Science, 2003,27(2): 207-214
    [47] Yang Y C, Pandya S, Chen J, Engel J, et al, Micromachined hot-wire boundary layer flow imaging array, In: Proceedings of MNT for Aerospace Applications, Toulouse, France: CANEUS2006,2006, 6p
    [48] Papadopoulos G, Otugen M V, Simple hot-wire sensor positioning technique for near-wall measurements, In: American Society of Mechanical Engineers, USA Fluids Engineering Division (Publication) FED, 1993,175—179
    [49] Jang C M, Sato D, Fukano T, Experimental analysis on tip leakage and wake flow in an axial flow fan according to flow rates, Journal of Fluids Engineering, Transactions of the ASME, 2005,127(2): 322-329
    [50] Li Y, Naguib A, An oscillating hot-wire technique for resolving the magnitude and direction of velocity measurements using single hot-wire sensors, Experiments in Fluids, 2003,34(5): 597-606
    [51] Arai N, Sekine Y, Nishimura Y, et al, Advanced design for bypass type of hot-wire air flow meter, SAE (Society of Automotive Engineers) Transactions, 1990, 99(3): 679-685
    [52] Malaczynski W Schroeder G, T, Ion-drag air mass-flow sensor for automotive applications, In: Conf Rec IAS Annu Meet. IEEE Industry Applications Society. USA: IEEE, Piscataway, 1989,2196-2202
    [53] Pfeffer J D, Tompkins W, Bathe D, et al, A study of multi-sensor flow measurements of unknown gas compositions, In: Proc Annu Conf Eng Med Biol. USA: IEEE, Piscataway, 1991,1668—1669
    [54] Teo C J, Khoo B C, Chew Y T, The dynamic response of a hot-wire anemometer: IV Sine-wavevoltage perturbation testing for near-wall hot-wire/film probes and the presence of low-high frequency response characteristics, Measurement Science and Technology, 2001,12(1): 37-51
    [55] Lakshminarayana B, Sruyavamshi N, J Prato et al, Experimental investigation of the flow field in a multistage axial flow compressor, In: Am Soc Mech Eng Pap, Proceedings of the International Gas Turbine and Aeroengine Congress and Exposition. Neth : ASME ,1994,1 — 16
    [56] N Shiplyuk A, Aniskin V M, Maslov A A, et al, Nano-fabricated hot-tubes for flow measurements, In: AIAA Aerospace Sciences Meeting, USA: Reno, 2005, 10631 — 10636
    [57] Lee T, Basu S, Nonintrusive measurements of the boundary layer developing on a single and two circular cylinders, Experiments in Fluids, 1997,23(3): 187—192.
    [58] Jin L W, Leong K C, Pressure drop and friction factor of steady and oscillating flows in open-cell porous media, Transport in Porous Media, 2008, 72(1): 37—52.
    [59] Takahashi K, Tsuruoka S, Nishimura Y, et al, Hot wire air flow meter for engine control systems, SAE Special Publications, Sensors and Actuators 1990,( 805): 1—5
    [60] Chen J, Engel J, Chen N et al, A monolithic integrated array of out-of-plane hot-wire flow sensors and demonstration of boundary-layer flow imaging, In: International Conference on Micro Electro Mechanical Systems. USA: Piscataway, 2005, : 299— 302
    [61] Furjes P, Legradi G, Ducso C, et al, "Thermal charaterisation of a direction dependent flow sensor," Sensors and Actuators A, 2004 115: 417—423,
    [62] Carey V P, Monte Carlo simulation of the operating characteristics of an ultraminiature hot-film sensor in a high-speed gas flow, In: ASME Heat Transfer Div Publ HTD. 28th National Heat Transfer Conference and Exhibition. USA: ASME. 1992,200: 45-54
    [63] Sherif S A, Pletcher R H, Normal sensor hot-wire/film probe method for the analysis of three-dimensional flows, Flow Measurement and Instrumentation, 1994, 5: 150— 154
    [64] Cole K D, Ling P W, Hot film sensors in unsteady air flow - analysis and experiment, In: American Society of Mechanical Engineers. Proceedings of the ASME Winter Conference USA: ASME , 1993, 1-10
    [65] Gurau B, Vassallo P, Keller K, Measurement of gas and liquid velocities in an air-water two-phase flow using cross-correlation of signals from a double sensor hot-film probe, Experimental Thermal and Fluid Science, 2004, 28(6): 495—504
    [66] Neda T, Saito T, Nukui K, Simple flow meter for undeveloped turbulent flow using multiple micro hot film flow sensors, In: ASME Fluids Eng Div Publ FED. USA: ASME 1997, 87-91
    [67] Cole K D, Shear stress from hot-film sensors in unsteady gas flow - numerical experiments, Heat Transfer in Unsteady Flows, 1991,158: 27—34
    [68] Sheplak M, Spina E F, McGinley C B, Progress in hot-film anemometry for hypersonic flow, Experimental Thermal and Fluid Science, 1996, 13(1) 21 —28
    [69] Fei H P, Zhu R, Zhou Z Y, et al, Aircraft flight parameter detection based on a neural network using multiple hot-film flow speed sensors, Smart Materials and Structures, 2007,16: 1239-1245
    [70] Kikuchi K, Kanzaki M, Neda T, et al, Novel and highly sensitive gas flow sensor using a hot spot on YBa_2Cu_3O_(7-δ) thin films, Japanese Journal of Applied Physics, Part 2: Letters, 1995,34 :L1311-1313
    [71] Moen M J, S P Schneider, Effect of sensor size on the performance of flush-mounted hot-film sensors, Trans. ASME, J. Fluids Eng. 1994,116(2): 273-277
    [72] Hamad F A, Bruun H H, Evaluation of bubble/drop velocity and slip velocity by a single normal hot-film probe placed in a two-phase flow, Measurement Science and Technology, 2000,11(1): 11-19
    [73] Liu T S, Campbell T B, Sullivan J P, Surface temperature of a hot film on a wall in shear flow, International Journal of Heat and Mass Transfer, 1994,37(17): 2809— 2814
    [74] Moen M J, Schneider S P, Effect of sensor size and substrate properties on the performance of flush-mounted hot-film sensors, In: ASME Fluids Eng Div Publ FED. USA: ASME. 1993,167: 249-261
    [75] Reda D C, Nicolaysen S D, Schlueter L L, Development of a facility for hot-film sensor calibration and unsteady viscous flow research, In: Energy Division (Publication) SED. USA: ASME. 1988, 5: 93-94
    [76] Roberts A S J, Ortgies K R, Gartenberg E, et al, Convective response of a wall-mounted hot-film sensor in a shock tube, American Society of Mechanical Engineers, In: ASME Fluids Eng Div Publ FED. USA: ASME, Fluids Engineering Div. 1990,253-258
    [77] Hausmann F, Schroder W, Coated hot-film sensors for transition detection in cruise flight, Journal of Aircraft, 2006,43(2): 456-465
    [78] Junglewitz A, Mueller V, Gust G, Calibration of a hot-film sensor for application in turbulent ship model testing, In: ASME Fluids Eng Div Publ FED. USA: ASME. 1997,5: 8
    [79] Lee L W, Hot-film flow measurement system for undergraduate laboratory education, In: ASME Fluids Eng Div Publ FED. USA: ASME. 1993,152: 49-52
    [80] Doiron M D, Zing D W, Turbulent flow measurements with a triple-split hot-film probe, AIAA Journal, 1994,32(9): 1929-1931
    [81] Lee T, and Basu S, Measurement of unsteady boundary layer developed on an oscillating airfoil using multiple hot-film sensors, Experiments in Fluids, 1998,25(2): 108-117
    [82] Meharg P F A, Ogryzlo E A, Thermal energy exchange between an ultraminiature hot-film sensor and a high-speed gas flow, In: Prog Astronaut Aeronaut. USA: AIAA, Washington. 1994,214
    [83] Kolb G, Detemple P, Latta D, et al, A novel and miniaturised thin film pellistor for carbon monoxide detection in hot gas flows, In: Nanochannels Microchannels and Minichannels, Ireland: Proceedings of the 4th International Conference on Nanochannels, Microchannels and Minichannels, ICNMM2006,2006 , 33—38
    [84] Tu J K, Miau J J, Chou J H, et al, Sensing flow separation on a circular cylinder by MEMS thermal-film sensors, In: Aeros. Sci. USA: 43rd AIAA Aerospace Sciences Meeting and Exhibit - Meeting Papers, 2005,12079—12087
    [85] Feyzi F, Kornberger M, Rachor N, et al, Development of two multi-sensor hot-film measuring techniques for free-flight experiments, In: ICIASF Record. USA: International Congress on Instrumentation in Aerospace Simulation Facilities, 1989, 443-449
    [86] Haselbach F, Nitsche W, Calibration of single-surface hot films and in-line hot-film arrays in laminar or turbulent flows, Measurement Science & Technology, 1996, 7(10): 1428-1438
    [87] Smolny A, Blaszczak J, Multiple hot film sensors for measurements of wall shear stress, In: Proc SPIE Int Soc Opt Eng ,Pol: Proceedings of SPIE - The International Society for Optical Engineering, 1995,2634: 99—102
    [88] Harbison W L, Petrie H L, Evaluation of flush mounted hot-film sensors for skin friction reduction measurements in viscoelastic polymer solutions, Experiments in Fluids, 1991,11(4): 243-246
    [89] Olson S D, Thomas F O, Quantitative detection of turbulent reattachment using a surface mounted hot-film array, Experiments in Fluids, 2004, 37(1): 75—79
    [90] Savory E, Gaudet L, Toy N, Laminar and turbulent shear stress measurement using surface hot-wire and film gauges, In: ICIASF Rec Int Congr Instrum Aerosp Simul Facil,USA: ICIASF Record, International Congress on Instrumentation in Aerospace Simulation Facilities, 1995, 51—56
    [91] Mahon R, Frawley P, Davies M R D, Investigation of hot film calibration for entropy generation rate calculations, American Society of Mechanical Engineers, Fluids Engineering Division (Publication) FED, 2002,257(1): 29—35
    [92] Kulkarni A, Patil S, Karekar R N et al, Fabrication and characterization of innovative gas flow sensor, Sensors and Actuators, A: Physical, 2005,122(2): 231-234
    [93] Chen J, Fan Z F, Zou J et al, Two-dimensional micromachined flow sensor array for fluid mechanics studies, Journal of Aerospace Engineering, 2003, MEMS - Microelectromechanical Systems, 16(2): 85—97
    [94] http://www.bosch.com.
    [95] http://www.heraeus.com.
    [96] Richard A, Richard G, and Aravind P, MEMS-Based rugged flow sensor for liquid and air media, www.honevwell.com/sensing, 1 —8
    [97] Tai Y C, Muller R S, Lightly-doped polysilicon bridge as a flow meter, Sensors and Actuators A, 1988,15(1): 63-75
    [98] Lofdahl L, Stemme G, Johansson B, Silicon based flow sensors for mean velocity and turbulence measurements, Exp Fluids, 1992,12(4-5): 391—393
    [99] Jiang F, Tai Y C, Karen R, et al, Theoretical and experimental studies of micromachined hot-wire anemometers, In: Caltech, Pasadena, CA, USA: Proceeding of International Electron Devices Meeting (IEDM), 1994, :139—142
    [100]Ebefors T R, Lvesten E K, Stemme G, Three dimensional silicon triple-hot-wire anemometer base on polyimide joints, In: MEMS. Heidelberg: IEEE 1998, 93—98
    [101]Carlsson F, Thunblom M, Johansson P, et al, Using silicon based hot-wires for turbulence measurements, http: //wwws3kthse/mst/research/publications/pdf/2000 /teexp-fluidmanuscriptpdf
    [102] Hung S T, Wong S C, Fang W, The development and application of microthermal sensors with a mesh -membrane supporting structure, Sensors and Actuators A, 2000, 84:70-75
    [103]Sabate N, Santander J, Fonseca L, et al "Multi-range silicon micromachined flow sensor," Sensors and actuators A, 2004, 110(1-3): 282—288
    [104]Kim S, Nam T Park S, Measurement of flow direction and velocity using a micromachined flow sensor, Sensor and Actuators A, 2004,114(2-3): 312—318
    [105]Sasaki S, Fujiwara T, Nozoe S, et al. A Micromachined Thermal Flow Sensor Applied to A PC Mouse Device, IEEJ Trans. Sens. Micromach, 2006, 126(11): 607-610
    [106]Omron to begin selling MEMS flow sensor aimed at medical and air-conditioning equipment,http://www.omron.com
    [107]Richard A,Richard G,Aravind P,MEMS-Based Rugged Flow Sensor for Liquid and Air Media http://www.honeywell.com/sensing,1-8
    [108]钱人一,电控发动机质量空气流量传感器及其环境空气温度补偿,汽车技术,1998,(6):13-16
    [109]任江、王子延和吴莜敏,利用动量变化率测量流体质量流量方法的研究,西安交通大学学报,1999,133(6):28-31
    [110]樊尚春,用于直接质量流量测量的U型管的频率特性,测控技术,1999,18(3):27-29
    [111]吴克刚,温差式热膜空气质量流量传感器,长安大学学报(自然科学版),2002,122:86-88
    [112]吴克刚,热膜空气质量流量传感器的动态响应,长安大学学报(自然科学版),2005,125:99-102
    [113]居钰生,金兴才,缪雪龙等,我国燃油喷射系统行业现状、人物与对策,现代车用动力,2007,(3)1-9
    [114]丹东,李巍,利用数据流检测时代超人空气流量计,汽车维修技师,38-41
    [115]王伯年,史绍熙院士对层流流量计和内燃机空气流量测量的贡献,内燃机学报,2001,19(6):531-534
    [116]虞益挺,宛伟政,乔大勇等,一种在线测量微机械薄膜残余应力的新结构,物理学报,2007,56(10):5691-5697
    [117]张立伟,马灵芝和唐祯安等,一种用于测量SiO_2薄膜热导率的测试方法,测控技术,2001,20(8):25-27
    [118]宋青林,夏善红和陈绍凤等,薄膜热导率测量结构的研究,仪器仪表学报,2004,125(4):228-229
    [119]Lammerink T S J,Tas N R,M Elwenspoek and J H J Fluitman,,Micro-liquid flow sensor,Sensors and Actuators A,1993,37/38(2):45-50
    [120]Noh S,Lee E,Seo J et al,Electrical properties of nickel oxide thin films for flow sensor application,Sensors and Actuators,2006,125(2):363-366
    [121]闫卫平,朱剑波和马灵芝等,金属薄膜加热器的研究,传感技术学报,2004,(4):615-618
    [122]Buchner R,Maiwald M,Sosna C et al,Miniaturised thermal flow sensors for rough environments,In:Proc.IEEE Int.Conf.Micro Electro Mech.Syst.MEMS,Turkey:IEEE,Piscataway,2006,2006,582-585

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700