咪达普利拉对白介素-1β诱导的心脏成纤维细胞基质金属蛋白酶-2和抑制剂-2的作用及其机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景
     炎症因子对心肌细胞外基质(extracellular matrix,ECM)的重构有重要的病理生理学作用。在调节ECM降解和合成中,基质金属蛋白酶(matrixmetalloproteinases,MMPs)是主要的酶类。心肌组织中MMP-2是最为广泛分布的MMP,MMP-2组织抑制剂(type 2 tissue inhibitor of matrixmetalloproteinases,TIMP-2)是MMP-2的内源性抑制剂,与MMP-2一起参与调节ECM的动态平衡。现有资料表明小鼠MMP-2、MMP-9基因敲除后,明显延缓了左室重构,心肌失代偿和心力衰竭的进展。
     白介素-1β(interleukin—1β,IL-1β)是心力衰竭中主要的炎症因子,它可影响心脏成纤维细胞血管紧张素受体1A的表达;诱导MMP-9、MMP-2的表达和活性增高,参与ECM的重构。一氧化氮(nitric oxide,NO)是体内重要的细胞内信号分子,它的合成受一氧化氮合酶(nitric oxide synthase,NOS)的调控。其中诱导型NOS(inducible NOS,iNOS)在正常情况下不表达,内毒素或炎症因子刺激时可被迅速诱导,促进NO的大量生成,从而诱发各种病理生理过程,其中包括促进心脏成纤维细胞MMP-2合成和活性增加。研究表明心脏成纤维细胞iNOS-NO系统也是IL-1β作用的靶点,但目前对于IL-1β是否能通过iNOS-NO系统影响心脏成纤维细胞MMPs以及TIMPs的表达还无相关报道。
     血管紧张素转换酶抑制剂(angiotensin-converting enzyme inhibitor,ACEI)是治疗慢性心力衰竭的基石药物,它具有明显的抗心肌重构作用,但详细机制仍有待进一步揭示。在盐敏感的Dah1大鼠上发现ACEI能抑制心肌iNOS的表达,延缓心肌重构进程和心力衰竭的发生,同样在自发性大鼠模型上ACEI减轻了MMPs的基因表达和活性增高,并缩小了左室内径。上述ACEI的抗心肌重构作用显然有别于传统机制,即通过阻滞组织和循环血管紧张素Ⅱ生成,抑制缓激肽降解发挥抗心肌重构作用,但目前对此机理研究鲜有报道。
     针对上述问题本研究拟探索炎症因子IL-1β是否能通过iNOS-NO系统影响心脏成纤维细胞MMPs/TIMPs的平衡;ACEI是否对心脏成纤维细胞MMPs/TIMP-2的失衡有纠正作用。
     目的
     (1)观察IL-1β对人心脏成纤维细胞MMP-2、MMP-9、TIMP-2的作用及相关机理;
     (2)观察ACEI制剂咪达普利拉(imidaprilat)对心脏成纤维细胞MMP-2、MMP-9和TIMP-2的影响及可能机理;
     (3)观察咪达普利拉对IL-1β诱导地心脏成纤维细胞MMP-2、MMP-9和TIMP-2的影响及可能机理。
     方法
     细胞培养将人心脏成纤维细胞以5×10~4/孔的密度接种于6孔培养板内,待实验选用的3-6代细胞群80-90%融合后用无血清完全培养基(CS-C medium,CSM)继续培养,24h后用PBS洗涤细胞2次并接受各种干预措施。
     RT-PCR待实验细胞接受干预12h后,提取细胞总RNA进行逆转录。根据基因库内GAPDH、MMP-2、TIMP-2、MMP-9基因全序列设计相应引物,进行PCR扩增。以特异性MMP-2、MMP-9和TIMP-2扩增条带灰度与对应GAPDH扩增条带灰度比值对mRNA表达量进行半定量分析。
     酶谱分析细胞约80-90%融合并用CSM孵育24h后,接受含IL-1β(1ng/ml~10ng/ml)和/或咪达普利拉(10~(-9)M~10~(-6)M)的CSM继续孵育24h。完成各种干预后,收集培养上清。通过凝胶酶谱进行MMP-2、MMP-9的活性检测,上样量通过对应细胞蛋白含量进行标化。MMPs显示为位于蓝色背景上的透亮带,采用条带密度分析仪进行图像分析并测定吸光度值。
     NO测定采用Griess法测定样品中的亚硝基(nitrite,NO_2)含量来衡量细胞上清中NO水平。取培养上清100μl与等量的Griess试剂(Griess试剂A和Griess试剂B各一份),室温反应10分钟后,用酶联仪测A540nm波长下吸光度值。用NANO_2作标准曲线。
     Western blot细胞接受各种刺激24h后,收集细胞总蛋白,采用Western blot法测定细胞iNOS蛋白的表达,用条带密度分析仪进行图像分析并测定吸光度值。
     数据分析每组实验重复4次。数据以均数±标准差表示。利用SPSS 11.5软件处理数据,多组间均数的比较采用方差分析,有显著差异者用LSD检验。两组间比较采用t检验。P<0.05为差异有统计学意义。
     结果
     1.通过凝胶酶谱分析表明人心脏成纤维细胞能分泌MMP-2,但我们的实验系统难以发现心脏成纤维细胞MMP-9的分泌。通过RT-PCR检测到MMP-2、TIMP-2的mRNA表达,但试用各种循环参数也难以发现MMP-9的mRNA表达,而同样的引物能在阳性对照(人巨噬细胞)上发现MMP-9的mRNA表达。
     2.人心脏成纤维细胞接受IL-1β刺激24h后,酶谱分析结果表明IL-1β促进了细胞MMP-2的活性增加,4ng/ml的IL-1β刺激作用达到高峰,与对照组相比活性增加了170.24±13.12%(P<0.01),而10ng/ml IL-1β刺激组与4ng/mlIL-1β刺激组相比,两者间MMP-2活性无明显差异(P>0.05)。
     3.IL-1β干预心脏成纤维细胞12h后,通过RT-PCR结果表明:与正常对照组相比,4ng/ml IL-1β组MMP-2 mRNA表达明显增加(P<0.01);10ng/ml IL-1β组MMP-2 mRNA表达与4ng/ml IL-1β组MMP-2 mRNA表达相比无明显差异(P>0.05)。
     4.心脏成纤维细胞接受IL-1β刺激24h后,通过酶谱分析结果表明IL-1β时间依赖性地促进心脏成纤维细胞MMP-2的活性增加,刺激24h作用达到高峰,与对照组相比有显著统计学差异(P<0.01)。
     5.心脏成纤维细胞接受IL-1β刺激24h后,提取其上清,通过Griess法检测表明IL-1β(4ng/ml)可以明显促进细胞NO水平升高(P<0.01),而iNOS抑制剂N~G-甲基—L-精氨酸(N~G-methyl L-Arginine,L-NMMA,10~(-3)M)显著抑制了IL-1β诱导的MMP-2 mRNA表达(P<0.01)、MMP-2活性(P<0.01)以及NO的升高(P<0.01)。通过Westen blot发现在生理水平的心脏成纤维细胞上未能检测到iNOS蛋白的表达,而不同浓度的IL-1β明显促进细胞iNOS的蛋白合成。
     6.通过酶谱分析和RT-PCR结果表明咪达普利拉在实验所选浓度范围内对心脏成纤维细胞MMP-2的活性(P>0.05)和mRNA表达(P>0.05)无明显影响。
     7.心脏成纤维细胞接受咪达普利拉(10~(-9)~10~(-6)M)和IL-1β(4ng/ml)联合作用后,通过酶谱分析结果表明咪达普利拉可以浓度依赖性地抑制IL-1β诱导地细胞MMP-2的活性增高(P<0.01)。
     8.心脏成纤维细胞在咪达普利拉(10~(-7)M)和IL-1β(4ng/ml)联合作用后,通过Griess法发现咪达普利拉抑制了IL-1β诱导地细胞上清NO水平的上升(P<0.01),通过Westen blot发现咪达普利拉抑制了IL-1β诱导地细胞iNOS蛋白的增加(P<0.01);而SNP顿挫了咪达普利拉的作用,包括对IL-1β诱导地MMP-2 mRNA表达(P<0.01)、MMP-2活性(P<0.01)的抑制和对IL-1β诱导地iNOS蛋白表达的抑制(P<0.01)。
     9.心脏成纤维细胞接受IL-1β(4ng/ml)和咪达普利拉(10~(-7)M)刺激12h后,通过RT-PCR发现它们对细胞TIMP-2 mRNA表达无明显影响(P>0.05)。
     10.通过体外鳌合实验发现咪达普利拉(10~(-7)M,主要实验浓度)未能通过对鳌合作用竞争性抑制MMP-2的活性(P>0.05),而EDTA明显抑制MMP-2的活性(P<0.01)。
     结论
     (1)IL-1β能促进心脏成纤维细胞MMP-2的mRNA表达和MMP-2活性增加,并提示其作用与细胞iNOS-NO水平相关。
     (2)咪达普利拉对未受干预的心脏成纤维细胞MMP-2 mRNA表达和活性无明显影响,但它能抑制IL-1β诱导地心脏成纤维细胞MMP-2 mRNA表达和活性的增加,其机理可能咪达普利拉抑制了IL-1β诱导地心脏成纤维细胞iNOS蛋白的合成以及NO水平升高,进而影响MMP-2表达与活性。
     (3)IL-1β和咪达普利拉对心脏成纤维细胞TIMP-2 mRNA表达无明显作用。
Background
     Inflammatory factor plays an important role in myocardial extracellular matrix (ECM)remodeling.The synthase and degradation of ECM are regulated by matrix metalloproteinases(MMPs).Among MMPs,MMP-2 has the widest distribution in the myocardium and type 2 tissue inhibitor of matrix metalloproteinase(TIMP-2)is an endogenous inhibitor of MMP-2.Inhibition or knockout of MMP-2 and MMP-9 in mouse suppressed ventricular remodeling,myocardial dysfunction and progression of heart failure
     Interleukin-1β(IL-1β)is a key pro-inflammatory cytokine during heart failure. It was testified that IL-1βstimulated the expression and transcription of type 1A angiotensin receptor in rat cardiac fibroblasts and induced protein synthase and activity of MMP-9 and MMP-2 of cardiac fibroblasts,leading to ECM remodeling. Nitric oxide(NO)is an important cellular messenger,produced by nitric oxide synthases.Inducible NOS(iNOS),one of NOS,isn't usually expressed in normal tissue,however,LPS or pro-inflammatory cytokines,such as IL-1β,can induce expression of iNOS that generates large quantities of NO,resulting in cardiac pathophysiological change including stimulating the expression and activity of MMP-2.It has been observed that IL-1βcould affect the iNOS-NOS system in cardiac fibroblasts.But up to now,there are no evidences whether IL-1βcan affect MMPs or TIMPs by intracellular iNOS-NOS pathway of cardiac fibroblasts.
     Angiotensin converting enzyme inhibitor(ACEI)is widely used in the treatment of heart failure because of the attenuation of ventricular remodeling. However,the respond mechanisms remain to be elucidated.Recently,Kobayasi et al found that ACEI depressed the ventricular remodeling and heart failure by inhibiting expression of iNOS protein in myocardium of salt-sensitive Dahl rat,meanwhile, ACEI suppressed the gene expression and activity of MMPs at the predilatation stage and prevented the transition to congestive heart failure in spontaneously hypertensive rat.These effects of ACEI against remodeling are difference from traditional mechanisms:blocking the release of tissue and circulatory angiotensinⅡand decreasing the breakdown of bradykinin.But it is little report about how ACEI regulates ventricular remodeling except traditional mechanisms.
     Corresponding questions mentioned,we are ready to explore whether IL-1βhas effects on MMPs /TIMPs balance by iNOS-NOS of cardiac fibroblasts;whether ACEI can regulate the unbalance of MMPs/TIMPs by iNOS-NOS system.
     Objective
     (1)Observe effects of IL-1βon the transcription and activity of MMP-2,MMP-9 and the transcription of TIMP-2 in cultured human cardiac fibroblasts;
     (2)Investigate effects of imidaprilat,an ACEI,on MMP-2,MMP-9 and TIMP-2 in cultured human cardiac fibroblasts;
     (3)Observe effects of imidaprilat,an ACEI,on MMP-2,MMP-9 and TIMP-2 in cultured human cardiac fibroblasts induced by IL-1βand the possible mechanism involved.
     Methods
     Culture of primary human cardiac fibroblasts Primary human cardiac fibroblasts were purchased at passage 2 from Cell Systems.It was plated in 6-well tissue culture plates(5×10~4 cells/well).All cells were harvested at passage 3 to 6 and used at 80% to 90%confluence for experiments.The culture medium was replaced with CS-C medium(CSM)without serum and growth factor for 24h.Cells were washed two times with PBS and then cells were cultured in CSM in the absence or the presence of various treatments.
     RT-PCR Subconfluent human cardiac fibroblasts were cultured in CSM in the absence or the presence of various treatments 12h later.Total RNA was isolated from cultured cells and one microgram of total RNA was reversely transcripted with Super ScriptⅡ~(TM)-reverse transcriptase.PCR amplification of cDNA was done using the primers of MMP-9,MMP-2,TIMP-2 and GAPDH respectively that were designed according to the sequence in GENEBANK.The resulting densities of the MMP-2, TIMP-2 and MMP-9 bands were expressed relative to the corresponding density of the GAPDH band from the same RNA sample.
     Zymography Subconfluent cells were serum deprived and treated with IL-1β(1ng/ml~10ng/ml)and/or imidaprilat(10~(-9)M~10~(-6)M)for 24h.Medium samples were harvested and the activity of MMPs was analyzed by zymography.Clear zones against the blue background indicated the presence of gelatinase.To quantify the amount of gelatinase production,the stained zymograms were scanned on a densitograph.
     NO assessment Assessment of NO production in the culture medium was performed using the Griess reagent that measures the level of nitrite(NO_2),100μl Griess reagent(a mixture of one part of Griess reagent A and one part of Griess reagent B)was added to 100μl of sample or standard(sodium nitrite served as the standard)in each well of a 96-well plate.After incubation at room temperature for 10 min,the optical density at 540 nm(OD540)was measured and the amount of nitrite was calculated from a standard curve.
     Western blot Cardiac fibroblasts were treated for 24h,the protein of cells were collected.The expression of iNOS protein level was detected by Western blot analysis.
     Statistical analysis Each experiment was repeated four times.Data are presented as means±standard deviation(SD).Statistical analysis was performed with the Statistical Package for the Social Sciences(SPSS version 11.5).Differences among all data were analyzed for significance by one-way analysis of variance(ANOVA) followed by unpaired Student t test.A probability level of P<0.05 were considered significant.
     Results
     (1)MMP-2 can be detected in human cardiac fibroblasts by zymography and RT-PCR.TIMP-2 can be also detected by RT-PCR;however,it was difficulty to detect MMP-9 in human cardiac fibroblasts even if we tried to maximal sample volumn during zymography and adjusted many protocols of PCR.
     (2)After cardiac fibroblasts were incubated with IL-βfor 24h,MMP activities in supernatant were measured using zymogrpahy.We observed that IL-1βincreased MMP-2 activity.4ng/ml IL-1βincreased more evidently MMP activity(foldchange versus control,170.24±13.12%,P<0.01).There was no significant difference between MMP-2 activity in 4ng/ml IL-1βgroup and 10ng/ml IL-1βgroup(P>0.05).
     (3)RT-PCR analysis demonstrated that expression of MMP-2 mRNA was increased after 12h incubation of IL-1β.The significant change in MMP-2 mRNA compared with control group was detectable at 4ng/ml concentration of IL-1β.There was no significant difference between MMP-2 mRNA expressions in 4ng/ml IL-1βgroup and 10ng/ml IL-1βgroup(P>0.05)
     (4)After cardiac fibroblasts were incubated with 4ng/ml IL-βfor 0.5h~24h,MMP-2 activity in conditioned media was measured by zymogrpahy.We observed that IL-1βstimulated MMP-2 activity through a time-dependent method and the effect of IL-1βon MMP-2 activity reached maximum after 24h incubation (P<0.01).
     (5)After cardiac fibroblasts were incubated with 4ng/ml IL-βfor 24h,the level of NO in conditioned media was measured by Griess method.The result showed that IL-1βincreased NO accumulation in supematant(P<0.01);however, inclusion of N~G-methyl L-Arginine(L-NMMA,10~(-3)M),a competitive inhibitor of NO synthase(NOS),significantly prevented the effect of IL-1βon cardiac fibroblasts including the increasing of NO(P<0.01)and the increasing of MMP-2 activity(P<0.01)and transcription(P<0.01).Western blot analysis showed that iNOS did not detected in human cardiac fibroblasts;however,IL-1βstimulated significantly the expression of iNOS protein in cardiac fibroblasts.
     (6)Using RT-PCR and zymography,we found that imidaprilat alone with experimental concentration had no effect on the activity(P>0.05)and transcription((P>0.05)of MMP-2 in cardiac fibroblasts.
     (7)After human cardiac fibroblasts were incubated with 4ng/ml IL-βand imidaprilat with different concentrations for 24h,It was demonstrated that imidaprilat(10~(-9)~10~(-6)M)significantly inhibited the increasing of MMP-2 activity induced by IL-1β(4ng/ml)in a dose-dependent manner.
     (8)After human cardiac fibroblasts were incubated with 4ng/ml IL-βand imidaprilat (10~(-7)M)for 24h,Griess method showed that imidaprilat inhibited the accumulation of supematant NO induced by IL-1β(P<0.01)and Western blot testified imidaprilat inhibited expression of iNOS protein in cardiac fibroblasts induced by IL-1β(P<0.01).Sodium nitroprusside(SNP,10~(-5)M),an exogenous NO donor,blunted the inhibition effect of imidaprilat on IL-1β-induced MMP-2 transcription(P<0.01)and activity(P<0.01).
     (9)RT-PCR analysis of TIMP-2 showed that after 12h incubation of IL-1β(4ng/ml) or imidaprilat(10~(-7)M),neither of them could significantly change expression of TIMP-2 mRNA in human cardiac fibroblasts(P>0.05).
     (10)We demonstrated that imidaprilat(10~(-7)M)didn't affect MMP-2 activity in vitro system due to forming chelating complexes(P>0.05),however EDTA chelated metal ion and resulting in inactivity of MMP-2(P<0.01).
     Conclusions
     1.IL-1βstimulated MMP-2 activity and transcription of human cardiac fibroblasts and iNOS-NO system was possibly involved with effects of IL-1β.
     2.Imidaprilat alone had no significant effects on MMP-2 transcription and activity of human cardiac fibroblasts without medications,but it significantly inhibited the increasing of MMP-2 mRNA expression and activity induced by IL-1β.Inhibition to iNOS-NOS system induced by IL-1βwas possibly related with effects of imidaprilat on MMP-2 induced by IL-1β.
     3.There were no significant effects of IL-1βor imidaprilat on TIMP-2 mRNA expression in human cardiac fibroblasts.
引文
1. Spinale FG. Myocardial matrix remodeling and the matrix metalloproteinases: influence on cardiac form and function. Physiol Rev 2007; 87(4): 1285-342.
    2. Lee RT, Lammerding J. Signaling pathways that influence extracellular remodeling. J Card Fail 2002; 8(6 Suppl):S339-43.
    3. Yamazaki T, Lee JD, Shimizu H, Uzui H, Ueda T. Circulating matrix metalloproteinase-2 is elevated in patients with congestive heart failure Eur J Heart Fail 2004; 6(1 ):41-5.
    4. Thomas CV, Coker ML, Zellner JL, Handy JR, Crumbley AJ 3rd, Spinale FG Increased matrix metalloproteinase activity and selective upregulation in LV myocardium from patients with end-stage dilated cardiomyopathy. Circulation 1998; 97(17):1708-15.
    5. Ducharme A, Frantz S, Aikawa M, Rabkin E, Lindsey M, Rohde LE, Schoen FJ, Kelly RA, Werb Z, Libby P, Lee RT. Targeted deletion of matrix metalloproteinase-9 attenuates left ventricular enlargement and collagen accumulation after experimental myocardial infarction. J Clin Invest 2000; 106(1):55-62.
    6. Matsusaka H, Ide T, Matsushima S, Ikeuchi M, Kubota T, Sunagawa K, Kinugawa S, Tsutsui H. Targeted deletion of matrix metalloproteinase 2 ameliorates myocardial remodeling in mice with chronic pressure overload 2006; 47(4):711-7.
    7. Bergman M, Teerlink JR, Mahimkar R, Li L, Zhu B, Nguyen A, Dahi S, Karliner JS, Lovett DH. Cardiac matrix metalloproteinase-2 expression independently induces marked ventricular remodeling and systolic dysfunction. Am J Physiol Heart Circ Physiol 2007; 292(4):H1847-60.
    8. Levine B, Kalman J, Mayer L, Fillit HM, Packer M.Elevated circulating levels of tumor necrosis factor in severe chronic heart failure. N Engl J Med 1990;323(4):236-41.
    9. N.G. Frangogiannis, C.W. Smith, M.L. Entman, The inflammatory response in myocardial infarction .Cardiovasc Res 2002; 53(1):31-47.
    10. MacEwan DJ. TNF ligands and receptors—a matter of life and death. Br J Pharmacol 2002; 135(4):855-75.
    11.Wollert KC, Chien KR. Cardiotrophin-1 and the role of gp130-dependent signaling pathways in cardiac growth and development. J Mol Med 1997;75(7):492-501.
    12. Feldman AM, Combes A, Wagner D, Kadakomi T, Kubota T, Li YY, McTiernan C. The role of tumor necrosis factor in the pathophysiology of heart failure. J Am Coll Cardiol 2000; 35(3):537-44.
    13.Eghbali M, Cardiac fibroblasts: function, regulation of gene expression, and phenotypic modulation. Basic Res Cardiol 1992; 87 Suppl 2:183-9.
    
    14. Leask A, Abraham DJ. TGF-beta signaling and the fibrotic response. FASEB J 2004; 18(7):816-27.
    
    15. Weber KT, Sun Y, Katwa LC. Wound healing following myocardial infarction Clin Cardiol 1996; 19(6):447-55.
    
    16. Brown RD, Jones GM, Laird RE, Hudson P, Long CS. Cytokines regulate matrix metalloproteinases and migration in cardiac fibroblasts. Biochem Biophys Res Commun 2007; 362(1):200-5.
    
    17. Cowling RT, Zhang X, Reese VC, Iwata M, Gurantz D, Dillmann WH, Greenberg BH. Effects of cytokine treatment on angiotensin II type 1A receptor transcription and splicing in rat cardiac fibroblasts. Am J Physiol Heart Circ Physiol 2005; 289(3):H1176-83.
    
    18. Xie Z, Singh M, Singh K. Differential regulation of matrix metalloproteinase-2 and -9 expression and activity in adult rat cardiac fibroblasts in response to interleukin-1beta. J Biol Chem 2004; 279(38):39513-9.
    
    19. Kim SJ, Kim YK, Takagi G, Huang CH, Geng YJ, Vatner SF.Enhanced iNOS function in myocytes one day after brief ischemic episode.Am J Physiol Heart Circ Physiol 2002; 282(2): H423-28
    
    20. Madonna R, Di Napoli P, Massaro M, Grilli A, Felaco M, De Caterina A, Tang D, De Caterina R, Geng YJ. Simvastatin attenuates expression of cytokine-inducible nitric-oxide synthase in embryonic cardiac myoblasts. J Biol Chem 2005; 280(14):13503-11.
    21. H Yue, H Uzui, H Shimizu, A Nakano, Y Mitsuke, T Ueda, and JD Lee. Different effects of calcium channel blockers on matrix metalloproteinase-2 expression in cultured rat cardiac fibroblasts. J Cardiovasc Pharmacol 2004; 44(2): 223-30.
    22. Gustafsson AB, Brunton LL. Attenuation of cAMP accumulation in adult rat cardiac fibroblasts by IL-1beta and NO: role of cGMP-stimulated PDE2. Am J Physiol Cell Physiol 2002;283(2):C463-71
    23.Tian B, Liu J, Bitterman P, Bache RJ. Angiotensin II modulates nitric oxide-induced cardiac fibroblast apoptosis by activation of AKT/PKB. Am J Physiol Heart Circ Physiol 2003; 285(3):H1105-12.
    24. Gustafsson AB, Brunton LL. beta-adrenergic stimulation of rat cardiac fibroblasts enhances induction of nitric-oxide synthase by interleukin-1beta via message stabilization. Mol Pharmacol 2000; 58(6): 1470-8.
    25. Greenberg B, Quinones MA, Koilpillai C, Limacher M, Shindler D, Benedict C, Shelton B. Effects of long-term enalapril therapy on cardiac structure and function in patients with left ventricular dysfunction: results of the SOLVD echocardiography substudy. Circulation. Circulation 1995; 91(10):2573-81.
    26. Kobayashi N, Higashi T, Hara K, Shirataki H, Matsuoka H. Effects of imidapril on NOS expression and myocardial remodelling in failing heart of Dahl salt-sensitive hypertensive rats. Cardiovasc Res 1999; 44(3):518-26.
    27. Li H, Simon H, Bocan TM, Peterson JT. MMP/TIMP expression in spontaneously hypertensive heart failure rats: the effect of ACE- and MMP-inhibition. Cardiovasc Res 2000; 46(2):298-306.
    28.Schieffer B, Drexler H. Role of 3-hydroxy-3-methylglutaryl coenzyme a reductase inhibitors, angiotensin-converting enzyme inhibitors, cyclooxygenase-2 inhibitors, and aspirin in anti-inflammatory and immunomodulatory treatment of cardiovascular diseases. Am J Cardiol 2003; 91(12A):12H-18H.
    29. Stanisavljevic S, Ignjatovic T, Deddish PA, Brovkovych V, Zhang K, Erd?s EG, Skidgel RA. Angiotensin I-converting enzyme inhibitors block protein kinase C epsilon by activating bradykinin B1 receptors in human endothelial cells. J Pharmacol Exp Ther 2006;316(3): 1153-8
    30. Uzui H, Lee JD, Shimizu H, Tsutani H, Ueda T. The role of protein-tyrosine phosphorylation and gelatinase production in the migration and proliferation of smooth muscle cells. Atherosclerosis 2000; 149(1):51-9.
    31. Green LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JS, Tannenbaum SR. Analysis of nitrate, nitrite, and (15N) nitrate in biological fluids. Anal Biochem. Anal Biochem 1982; 126(1):131-8.
    32.Zak R. Cell proliferation during cardiac growth. Am J Cardiol 1973; 31(2):211 - 9.
    33.Eghbali M, Czaja MJ, Zeydel M, Weiner FR, Zem MA, Seifter S, Blumenfeld OO. Collagen chain mRNAs in isolated heart cells from young and adult rats. J Mol Cell Cardiol 1988; 20(3):267- 76.
    
    34. Booz GW, Baker KM. Molecular signalling mechanisms controlling growth and function of cardiac fibroblasts. Cardiovasc Res 1995; 30(4):537-43.
    35. Pelouch V, Dixon IM, Golfman L, Beamish RE, Dhalla NS. Role of extracellular matrix proteins in heart function. Mol Cell Biochem 1993; 129(2): 101-20.
    36. Weber KT, Sun Y, Tyagi SC, Cleutjens JP. Collagen network of the myocardium: function, structural remodeling and regulatory mechanisms. J Mol Cell Cardiol 1994; 26(3):279-92.
    37.Manabe I, Shindo T, Nagai R. Gene expression in fibroblasts and fibrosis: involvement in cardiac hypertrophy. Circ Res 2002 ;91(12):1103-13
    38. WeberKT.Fibrosis in hypertensive heart disease: focus on cardiac fibroblasts. J Hypertens 2004; 22(1):47-50.
    39. Bouzegrhane F and Thibault G. Is angiotensin II a proliferative factor of cardiac fibroblasts? Cardiovasc Res 2002; 53(2):304-12.
    40. Mukherjee D and Sen S. Collagen phenotypes during development and regression of myocardial hypertrophy in spontaneously hypertensive rats. Circ Res 1990; 67(6): 1474-80.
    41. Morgan HE and Baker KM. Cardiac hypertrophy: mechanical, neural, and endocrine dependence. Circulation 1991; 83(1):13-25.
    42.Reddy DS, Singh M, Ghosh S, and Ganguly NK. Role of cardiac renin-angiotensin system in the development of pressure-overload left ventricular hypertrophy in rats with abdominal aortic constriction. Mol Cell Biochem 1996; 155(1):1-11.
    43.Deten A, Volz HC, Briest W, Zimmer HG Cardiac cytokine expression is upregulated in the acute phase after myocardial infarction. Experimental studiesin rats. Cardiovasc Res 2002;55(2):329-40
    44. Brown RD, Jones GM, Laird RE, Hudson P, Long CS. Cytokines regulate matrix metalloproteinases and migration in cardiac fibroblasts. Biochem Biophys Res Commun 2007; 362(1):200-5.
    45.Siwik DA, Chang DL, Colucci WS. Interleukin-1beta and tumor necrosis factor-alpha decrease collagen synthesis and increase matrix metalloproteinase activity in cardiac fibroblasts in vitro. Circ Res 2000; 86(12): 1259-65
    
    46. Imai C, Okamura A, Peng JF, Kitamura Y, Printz MP. Interleukin-1beta enhanced action of kinins on extracellular matrix of spontaneous hypertensive rat cardiac fibroblasts. Clin Exp Hypertens 2005; 27(1):59-69.
    
    47. Xie Z, Singh M, Siwik DA, Joyner WL, Singh K. Osteopontin inhibits interleukin-1beta-stimulated increases in matrix metalloproteinase activity in adult rat cardiac fibroblasts: role of protein kinase C-zeta . J Biol Chem 2003; 278(49):48546-52.
    
    48. Cowling RT, Gurantz D, Peng J, Dillmann WH, Greenberg BH. Transcription factor NF-kappa B is necessary for up-regulation of type 1 angiotensin II receptor mRNA in rat cardiac fibroblasts treated with tumor necrosis factor-alpha or interleukin-1 beta. J Biol Chem 2002; 277(8):5719-24.
    49. Gurantz D, Cowling RT, Varki N, Frikovsky E, Moore CD, Greenberg BH. IL-1beta and TNF-alpha upregulate angiotensin II type 1 (AT1) receptors on cardiac fibroblasts and are associated with increased AT1 density in the post-MI heart. J Mol Cell Cardiol 2005; 38(3):505-15.
    50. Jiang B, Xu S, Hou X, Pimentel DR, Cohen RA. Angiotensin II differentially regulates interleukin-1-beta-inducible NO synthase (iNOS) and vascular cell adhesion molecule-1 (VCAM-1) expression: role of p38 MAPK. J Biol Chem 2004; 279(19):20363-8.
    51. Rouet-Benzineb P, Gontero B, Dreyfus P, Lafuma C. Angiotensin II induces nuclear factor- kappa B activation in cultured neonatal rat cardiomyocytes through protein kinase C signaling pathway.J Mol Cell Cardiol 2000;32(10):1767-78
    52.Ogawa K,Chen F,Kuang C,Chen Y.Suppression of matrix metalloproteinase-9transcription by transforming growth factor-beta is mediated by a nuclear factor-kappaB site.Biochem J 2004;381(Pt 2):413-22.
    53.俞芸,施文健,杨凝非。磺胺-N-苯基 J 酸分光光度法测定亚硝酸盐研究。光谱学与光谱分析。2007;(27)3:573-576。
    54.Tatsumi T,Matoba S,Kawahara A,Keira N,Shiraishi J,Akashi K,Kobara M,Tanaka T,Katamura M,Nakagawa C,Ohta B,Shirayama T,Takeda K,Asayama J,Fliss H,Nakagawa M.Cytokine-induced nitric oxide production inhibits mitochondrial energy production and impairs contractile function in rat cardiac myocytes.J Am Coll Cardiol 2000;35(5):1338-46
    55.Moncada S,Palmer RM,Higgs EA.Nitric oxide:physiology,pathophysiology and pharmacology.Pharmacol Rev 1991;43(2):109-42.
    56.Beck KF,Eberhardt W,Frank S,Huwiler A,Messmer UK,Mǘhl H,Pfeilschifter J.Inducible NO synthase:role in cellular signalling.J Exp Biol 1999;202(Pt 6):645-53.
    57.Farivar RS,Chobanian AV,Brecher P.Salicylate or aspirin inhibits the induction of the inducible nitric oxide synthase in rat cardiac fibroblasts Circ Res.1996;78(5):759-68
    58.Tian B,Liu J,Bitterman PB,Bathe RJ.Mechanisms of cytokine induced NO-mediated cardiac fibroblast apoptosis.Am J Physiol Heart Circ Physiol 2002;283(5):H1958-67.
    59.Kim NN,Villegas S,Summerour SR,Villarreal FJ.Regulation of cardiac fibroblast extracellular matrix production by bradykinin and nitric oxide.J Mol Cell Cardiol 1999;31(2):457-66.
    60.Janssen-Heininger YM,Poynter ME,Baeuerle PA.Recent advances towards understanding redox mechanisms in the activation of nuclear factor kappaB.Free Radic Biol Med 2000;28(9):1317-27
    61.Connelly L,Palacios-Callender M,Ameixa C,Moncada S,Hobbs AJ.Biphasic regulation of NF-kappa B activity underlies the pro- and anti-inflammatory actions of nitric oxide. J Immunol 2001; 166(6):3873-81.
    62.Zaragoza C, Balbin M, Lopez-Otin C, Lamas S. Nitric oxide regulates matrix metalloprotease-13 expression and activity in endothelium. Kidney Int 2002; 61(3):804-8.
    63. Sasaki, K., Hattori, T., Fujisawa, T., Takahashi, K., Inoue, H., Takigawa, M. Nitric oxide mediates interleukin-1-induced gene expression of matrix metalloproteinases and basic fibroblast growth factor in cultured rabbit articular chondrocytes. J Biochem 1998; 123(3):431-9.
    64. Shihab F.S., Yi H., Bennett W.M., Andoh T.F.Effect of nitric oxide modulation on TGF-b1 and matrix proteins in chronic cyclosporine nephrotoxicity. Kidney Int 2000; 58(3): 1174-1185.
    65.Trachtman H, Futterweit S, Singhal P. Nitric oxide modulates the synthesis of extracellular matrix proteins in cultured rat mesangial cells. Biochem Biophys Res Commun 1995;207(1):120-5.
    66. Huhtala P, Chow LT, Tryggvason K. Structure of the human type IV collagenase gene. J Biol Chem 1990; 265(19):11077-82.
    67. Mukherjee S, Tessema M, Wandinger-Ness A. Vesicular trafficking of tyrosine kinase receptors and associated proteins in the regulation of signaling and vascular function. Circ Res 2006;98(6):743-56
    68. Fischmeister R, Castro L, Abi-Gerges A, Rochais F, Vandecasteele G. Species-and tissue-dependent effects of NO and cyclic GMP on cardiac ion channels. Comp Biochem Physiol A Mol Integr Physiol 2005; 142(2): 136-43.
    69. Carvajal JA, Germain AM, Huidobro-Toro JP, Weiner CP. Molecular mechanism of cGMP-mediated smooth muscle relaxation. J Cell Physiol 2000; 184(3):409-20.
    70. Stanisavljevic S, Ignjatovic T, Deddish PA, Brovkovych V, Zhang K, Erd?s EG, Skidgel RA. Activation of matrix metalloproteinases precedes left ventricular remodeling in hypertensive heart failure rats: its inhibition as a primary effect of Angiotensin-converting enzyme inhibitor. Circulation 2004; 109(17):2143-9.
    71. Seeland U, Kouchi I, Zolk O, Itter G, Linz W, B?hm M. Effect of ramipril and furosemide treatment on interstitial remodeling in post-infarction heart failure rat hearts. J Mol Cell Cardiol 2002, 34(2): 151-163.
    72. McElmurray JH 3rd, Mukherjee R, New RB, Sampson AC, King MK, Hendrick JW, Goldberg A, Peterson TJ, Hallak H, Zile MR, Spinale FG. .Angiotensin-Converting Enzyme and Matrix Metalloproteinase Inhibition with Developing Heart Failure: Comparative Effects on Left Ventricular Function and Geometry. J Pharmacol Exp Ther 1999;291 (2):799-811
    73.Sakata Y, Yamamoto K, Mano T, Nishikawa N, Yoshida J, Hori M, Miwa T, Masuyama T. Activation of matrix metalloproteinases precedes left ventricular remodeling in hypertensive heart failure rats: its inhibition as a primary effect of Angiotensin-converting enzyme inhibitor. Circulation 2004; 109(17):2143-9.
    74. Lee HY, Noh HJ, Gang JG, Xu ZG, Jeong HJ, Kang SW, Choi KH, Han DS. Inducible nitric oxide synthase (iNOS) expression is increased in lipopolysaccharide (LPS)-stimulated diabetic rat glomeruli: effect of ACE inhibitor and angiotensin II receptor blocker. Yonsei Med J 2002;43(2):1 83-92.
    75. Sadoshima J, Xu Y, Slayter HS, Izumo S. Autocrine release of angiotensin II mediates stretch-induced hypertrophy of cardiac myocytes in vitro. Cell 1993; 75(5):977-84.
    76. Fiordaliso F, De Angelis N, Bai A, Cuccovillo I, Salio M, Serra DM, Bianchi R, Razzetti R, Latini R, Masson S. Effect of beta-adrenergic and renin-angiotensin system blockade on myocyte apoptosis and oxidative stress in diabetic hypertensive rats. Life Sci 2007; 81(12):951-9.
    77. Hattori Y, Akimoto K, Nishikimi T, Matsuoka H, Kasai K. Activation of AMP-activated protein kinase enhances angiotensin ii-induced proliferation in cardiac fibroblasts. Hypertension 2006; 47(2):265-70.
    78.Lijnen P, Papparella I, Petrov V, Semplicini A, Fagard R. Angiotensin II-stimulated collagen production in cardiac fibroblasts is mediated by reactive oxygen species. J Hypertens 2006; 24(4):757-66.
    79.Wiemer G, Scho¨lkens BA, Becker RHA, Busse R. Ramiprilat enhances endothelial autacoid formation by inhibiting breakdown of endothelium-derived bradykinin. Hypertension 1991; 18(4):558-63.
    80. Leeb-Lundberg LM, Marceau F, Muller-Esterl W, Pettibone DJ, Zuraw BL. International union of pharmacology. XLV. Classification of the kinin receptor family: from molecular mechanisms to pathophysiological consequences. Pharmacol Rev 2005; 57(1):27-77.
    81. Aida Y, Maeno M, Suzuki N, Shiratsuchi H, Motohashi M, Matsumura H. The effect of IL-1beta on the expression of matrix metalloproteinases and tissue inhibitors of matrix metalloproteinases in human chondrocytes. Life Sci 2005; 77(25):3210-21.
    82.Lods N, Ferrari P, Frey FJ, Kappeler A, Berthier C, Vogt B, Marti HP. Angiotensin-converting enzyme inhibition but not angiotensin II receptor blockade regulates matrix metalloproteinase activity in patients with glomerulonephritis J Am Soc Nephrol 2003; 14(11):2861-72.
    83. Sorbi D, Fadly M, Hicks R, Alexander S, Arbeit L.Captopril inhibits the 72 kDa and 92 kDa matrix metalloprotemases.Kidney Int 1993; 44(6): 1266-1272.
    84. Harder S, Thurmann PA, Ungethum W. Single dose and steady state pharmacokinetics and pharmacodynamics of the ACE-inhibitor imidapril in hypertensive patients. Br J Clin Pharmacol 1998; 45(4):377-80.
    1.Franklin KM,Aurigemma GP.Prognosis in diastolic heart failure.Prog Cardiovasc Dis 2005;47(5):333-339.
    2.Hunt SA.ACC/AHA 2005 guideline update for the diagnosis and management of chronic heart failure in the adult:a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Update the 2001 Guidelines for the Evaluation and Management of Heart Failure).J Am Coll Cardiol Circulation 2005;112(12):e154-235.
    3.Nieminen MS,Bthrn M,Cowie MR,Drexler H,Filippatos GS,Jondeau G,Hasin Y,Lopez-Sendon J,Mebazaa A,Metra M,Rhodes A,Swedberg K,Priori SG,Garcia MA,Blanc JJ,Budaj A,Cowie MR,Dean V,Deckers J,Burgos EF,Lekakis J,Lindahl B,Mazzotta G,Morais J,Oto A,Smiseth OA,Garcia MA,Dickstein K,Albuquerque A,Conthe P,Crespo-Leiro M,Ferrari R,Follath F,Gavazzi A,Janssens U,Komajda M,Morais J,Moreno R,Singer M,Singh S,Tendera M,Thygesen K;ESC Committe for Practice Guideline(CPG).Executive summary of the guidelines on the diagnosis and treatment of acute heart failure:the Task Force on Acute Heart Failure of the European Society of Cardiology.Eur Heart J 2005;26(4):384-416
    4.顾东风,黄广勇,何江,吴锡桂,段秀芳,MacMahm S,Paul K.Wheltin。中国心力衰竭流行病学调查及其患病率。中华心血管病杂志。2003;31(1):3-6。
    5.中华医学会心血管病学分会.中国部分地区1980、1990、2000年慢性心力衰竭住院病例回顾性分析.中华心血管病杂志。2002;30(8):450-54。
    6.Cohn JN,Ferrari R,Sharpe N.Cardiac remodeling--concepts and clinical implications:a consensus paper from an international forum on cardiac remodeling.Behalf of an Intemational Forum on Cardiac Remodeling.J Am Coll Cardiol 2000;35(3):569-82.
    7.Fedak PW,Verma S,Weisel RD,Li RK.Cardiac remodeling and failure:from molecules to man(Part Ⅰ).Cardiovasc Pathol 2005;14(1):1-11
    8. Swynghedauw B. Molecular mechanisms of myocardial remodeling. Physiol Rev 1999;79(1):215-62.
    9. Manabe I, Shindo T, Nagai R. Gene expression in fibroblasts and fibrosis: involvement in cardiac hypertrophy. Circ Res 200; 91(12):1103-13.
    10. Frangogiannis NG, Entman ML. Chemokines in myocardial ischemia.Trends Cardiovasc Med 15(5): 163-9.
    11. Gonzalez A, Lopez B, Diez J. Fibrosis in hypertensive heart disease: role of the renin-angiotensin-aldosterone system. Med Clin North Am 2004; 88(1):83-97.
    12. Miner EC, Miller WL. A look between the cardiomyocytes: the extracellular matrix in heart failure. Mayo Clin Proc 2006; 81(1): 71-76.
    13.Nian M, Lee P, Khaper N, Liu P. Inflammatory cytokines and postmyocardial infarction remodeling. Circ Res 2004; 94(12): 1543-53.
    14. Davis DR, Erlich JH. Cardiac tissue factor: roles in physiology and fibrosis. Clin Exp Pharmacol Physiol 2008; 35(3):342-8.
    15. Krieg T, LeRoy EC. Diseases of the extracellular matrix. J Mol Med 1998; 76(3-4):224-5.
    16. TK Borg and JB Caulfield. The collagen matrix of the heart.Fed Proc 1981; 40(7): 2037-41.
    17. Weber KT.Cardiac interstitium in health and disease: the fibrillar collagen network J. Am. Coll. Cardiol 1989; 13: 1637-1652.
    18. Weber KT, Brilla CG, Janicki JS.Myocardial fibrosis: functional significance and regulatory factors.Cardiovasc Res 1993; 27(3): 341-8.
    19. Weber KT. Cardioreparation in Hypertensive Heart Disease.Hypertension 2001; 38:588-91.
    20. Weber KT .Fibrosis and hypertensive heart disease. Curr Opin Cardiol 2000; 15(4): 264-72.
    21. Robinson TF, Cohen-Gould L, Factor SM. Skeletal framework of mammalian heart muscle Arrangement of inter- and pericellular connective tissue structures. Lab Invest 1983; 49(4):482-98.
    22. Spinale FG. Myocardial matrix remodeling and the matrix metalloproteinases: influence on cardiac form and function. Physiol Rev 2007; 87(4): 1285-342.
    23. Sun Y, Zhang JQ, Zhang J, Lamparter S. Cardiac remodeling by fibrous tissue after infarction in rats. J Lab Clin Med. Lab Clin Med 2000; 135(4):316-23.
    24. Villarreal F, Omens J, Dillmann W, Risteli J, Nguyen J, Covell J. Early degradation and serum appearance of type I collagen fragments after myocardial infarction. J Mol Cell Cardiol 2004; 36(4):597-601.
    25. Zannad F, Dousset B, Alia F. Treatment of congestive heart failure: interfering the aldosterone-cardiac extracellular matrix relationship. Hypertension 2001; 38(5): 1227-32.
    26. Zhao MJ, Zhang H, Robinson TF, Factor SM, Sonnenblick EH,Eng C. Profound structural alterations of the extracellular collagen matrix in postischemic dysfunctional ("stunned") but viable myocardium.J Am Coll Cardiol 1987; 10(6): 1322-34.
    27. Chareonthaitawee P, Christian TF, Hirose K, Gibbons RJ, Rumberger JA. Relation of initial infarct size to extent of left ventricular remodeling in the year after acute myocardial infarction. J Am Coll Cardiol 1995; 25(3):567-73.
    28. Erlebacher JA, Weiss JL, Weisfeldt ML, Bulkley BH. Early dilation of the infarcted segment in acute transmural myocardial infarction: role of infarct expansion in acute left ventricular enlargement. J Am Coll Cardiol 1984; 4(2):201-8.
    29. McCormick RJ, Musch TI, Bergman BC, Thomas DP. Regional differences in LV collagen accumulation and mature cross-linking after myocardial infarction in rats. Am J Physiol Heart Circ Physiol 1994; 266(1 Pt 2):H354-9.
    30. Zimmerman SD, Criscione J, Covell JW. Remodeling in myocardium adjacent to an infarction in the pig left ventricle. Am J Physiol Heart Circ Physiol 2004; 287(6):H2697-704.
    31. Weber KT, Janicki JS, Shroff SG, Pick R, Chen RM, Bashey RI. Collagen remodeling of the pressure-overloaded, hypertrophied nonhuman primate myocardium. Circ Res 1988; 62(4):757-65.
    32. Spiers JP, Kelso EJ, Siah WF, Edge G, Song G, McDermott BJ, Hennessy M. Alterations in vascular matrix metalloproteinase due to ageing and chronic hypertension: effects of endothelin receptor blockade. J Hypertens 2005; 23(9): 1717-24.
    33. Ruwhof C, van der Laarse A. Mechanical stress-induced cardiac hypertrophy: mechanisms and signal transduction pathways. Cardiovasc Res 2000; 47: 23-37.
    34. Perry GJ, Wei CC, Hankes GH, Dillon SR, Rynders P, Mukherjee R, Spinale FG, Dell'Italia LJ. Angiotensin II receptor blockade does not improve left ventricular function and remodeling in subacute mitral regurgitation in the dog. J Am Coll Cardiol 2002; 39:1374-1379.
    35. Dell'Italia LJ, Balcells E, Meng QC, Su X, Schultz D, Bishop SP, Machida N, Straeter-Knowlen IM, Hankes GH, Dillon R, Cartee RE, Oparil S. Volume-overload cardiac hypertrophy is unaffected by ACE inhibitor treatment in dogs. Am J Physiol Heart Circ Physiol 1997; 273(2 Pt 2):H961-70.
    36. Spinale FG, Ishihra K, Zile M, DeFryte G, Crawford FA, Carabello BA. Structural basis for changes in left ventricular function and geometry because of chronic mitral regurgitation and after correction of volume overload. J Thorac Cardiovasc Surg 1993; 106(6): 1147-57.
    37. Tsutsui H, Spinale FG, Nagatsu M, Schmid PG, Ishihara K, DeFreyte G, Cooper Gt, Carabello BA. Effects of chronic beta adrenergic blockade on the left ventricular and cardiocyte abnormalities of chronic canine mitral regurgitation. J Clin Invest 1994; 93(6):2639-48.
    38. Klotz S, Foronjy RF, Dickstein ML, Gu A, Garrelds IM, Danser AH, Oz MC, D'Armiento J, Burkhoff D. Mechanical unloading during left ventricular assist device support increases left ventricular collagen cross-linking and myocardial stiffness. Circulation 2005; 112(3):364-74.
    39. Gunja-Smith Z, Morales AR, Romanelli R, Woessner JF Jr. Remodeling of human myocardial collagen in idiopathic dilated cardiomyopathy. Role of metalloproteinases and pyridinoline cross-links. Am J Pathol 1996; 148(5): 1639-48.
    40. Komamura K, Shannon RP, Ihara T, Shen YT, Mirsky I, Bishop SP, Vatner SF. Exhaustion of Frank-Starling mechanism in conscious dogs with heart failure. Am J Physiol Heart Circ Physiol 1993; 265(4 Pt 2):H1119-31.
    41. Spinale FG, Tomita M, Zellner JL, Cook JC, Crawford FA, Zile MR. Collagen remodeling and changes in LV function during development and recovery from supraventricular tachycardia. Am J Physiol Heart Circ Physiol 1991; 261(2 Pt 2):H308-18.
    42. Weber KT, Pick R, Silver MA, Moe GW, Janicki JS, Zucker IH, Armstrong PW. Fibrillar collagen and remodeling of dilated canine left ventricle. Circulation 1990; 82(4): 1387-401.
    43. Zellner JL, Spinale FG, Eble DM, Hewett KW, Crawford FA Jr. Alterations in myocyte shape and basement membrane attachment with tachycardia-induced heart failure. Circ Res 1991; 69(3):590-600.
    44. Page-McCaw A, Ewald AJ, Werb Z. Matrix metalloproteinases and the regulation of tissue remodelling. Nat Rev Mol Cell Biol 2007;8(3):221-33
    45. Bode, W., Gomis-Ruth, F. X. & Stockier, W. Astacins, serralysins, snake venom and matrix metalloproteinases exhibit identical zinc-binding environments (HEXXHXXGXXH and Met-turn) and topologies and should be grouped into a common family, the 'metzincins'. FEBS Lett 1993; 331(1-2):134-40.
    46. Stocker W, Grams F, Baumann U, Reinemer P, Gomis-Ruth FX, McKay DB, Bode W.The metzincins—topological and sequential relations between the astacins, adamalysins, serralysins, and matrixins (collagenases) define a superfamily of zinc-peptidases. Protein Science 1995; 4(5):823-40.
    47. Clark IM, Swingler TE, Sampieri CL, Edwards DR. The regulation of matrix metalloproteinases and their inhibitors. Int J Biochem Cell Biol 2007 Dec 24(in press).
    48. Fu X, Parks WC, Heinecke JW. Activation and silencing of matrix metalloproteinases. Semin Cell Dev Biol 2008; 19(1):2-13.
    49. Jordan A, Roldan V, Garcia M, Monmeneu J, de Burgos FG, Lip GY, Marin F. Matrix metalloproteinase-1 and its inhibitor, TIMP-1, in systolic heart failure: relation to functional data and prognosis.J Intern Med 2007;262(3):385-92.
    50. Linask KK, Han M, Cai DH, Brauer PR, Maisastry SM. Cardiac morphogenesis: matrix metalloproteinase coordination of cellular mechanisms underlying heart tube formation and directionality of looping. Dev Dyn 2005; 233(3):739-53.
    51. Tian H, Cimini M, Fedak PW, Altamentova S, Fazel S, Huang ML, Weisel RD, Li RK. TIMP-3 deficiency accelerates cardiac remodeling after myocardial infarction. J Mol Cell Cardiol 2007;43(6):733-43
    52. Fedak PW, Moravec CS, McCarthy PM, Altamentova SM, Wong AP, Static M, Verma S, Weisel RD, Li RK. Altered expression of disintegrin metalloproteinases and their inhibitor in human dilated cardiomyopathy. Circulation 2006; 113(2):238-45.
    53. Fedak PW, Altamentova SM, Weisel RD, Nili N, Ohno N, Verma S, Lee TY, Kiani C, Mickle DA, Strauss BH, Li RK.Matrix remodeling in experimental and human heart failure: a possible regulatory role for TIMP-3 .Am J Physiol Heart Circ Physiol 2003;284(2):H626-34.
    54. Gilbert SJ, Wotton PR, Tarlton JF, Duance VC, Bailey AJ. Increased expression of promatrix metalloproteinase-9 and neutrophil elastase in canine dilated cardiomyopathy. Cardiovasc Res 1997; 34(2):377-83.
    55. Yarbrough WM, Mukherjee R, Escobar GP, Mingoia JT, Sample JA, Hendrick JW, Dowdy KB, McLean JE, Lowry AS, O'Neill TP, Spinale FG Selective targeting and timing of matrix metalloproteinase inhibition in post-myocardial infarction remodeling. Circulation 2003; 108(14):1753-9.
    56. Wilson EM, Moainie SL, Baskin JM, Lowry AS, Deschamps AM, Mukherjee R, Guy TS, St John-Sutton MG, Gorman JH III, Edmunds LH, Jr, Gorman RC, Spinale FG. Region- and type-specific induction of matrix metalloproteinases in post-myocardial infarction remodeling. Circulation 2003; 107(22):2857-63.
    57. Villarreal FJ, Griffin M, Omens J, Dillmann W, Nguyen J, Covell J. Early short-term treatment with doxycycline modulates postinfarction left ventricular remodeling. Circulation 2003; 108(12): 1487-92.
    58. Sun M, Dawood F, Wen WH, Chen M, Dixon I, Kirshenbaum LA, Liu PP. Excessive tumor necrosis factor activation after infarction contributes to susceptibility of myocardial rupture and left ventricular dysfunction. Circulation 2004; 110(20):3221-8.
    59. Su H, Spinale FG, Dobrucki LW, Song J, Hua J, Sweterlitsch S, Dione DP, Cavaliere P, Chow C, Bourke BN, Hu XY, Azure M, Yalamanchili P, Liu R, Cheesman EH, Robinson S, Edwards DS, Sinusas AJ. Noninvasive targeted imaging of matrix metalloproteinase activation in a murine model of postinfarction remodeling. Circulation 2005; 112(20):3157-67.
    60. Creemers EE, Davis JN, Parkhurst AM, Leenders P, Dowdy KB, Hapke E, Hauet AM, Escobar PG, Cleutjens JP, Smits JF, Daemen MJ, Zile MR, Spinale FGDeficiency of TIMP-1 exacerbates LV remodeling after myocardial infarction in mice.Am J Physiol Heart Circ Physiol 2003;284(1):H364-71.
    61. Romanic AM, Harrison SM, Bao W, Burns-Kurtis CL, Pickering S, Gu J, Grau E, Mao J, Sathe GM, Ohlstein EH, Yue TL.Myocardial protection from ischemia/reperfusion injury by targeted deletion of matrix metalloproteinase-9.Cardiovasc Res 2002;54(3):549-58
    62. Kaden JJ, Dempfle CE, Sueselbeck T, Brueckmann M, Poerner TC, Haghi D, Haase KK, Borggrefe M. Time-dependent changes in the plasma concentration of matrix metalloproteinase 9 after acute myocardial infarction.Cardiology 2003 ;99(3): 140-4
    63. Tao ZY, Cavasin MA, Yang F, Liu YH, Yang XP.Temporal changes in matrix metalloproteinase expression and inflammatory response associated with cardiac rupture after myocardial infarction in mice.Life Sci 2004;74(12):1561-72.
    64. Spruill LS, Lowry AS, Stroud RE, Squires CE, Mains IM, Flack EC, Beck C, Ikonomidis JS, Crumbley AJ, McDermott PJ, Spinale FG.Membrane-type-1 matrix metalloproteinase transcription and translation in myocardial fibroblasts from patients with normal left ventricular function and from patients with cardiomyopathy.Am J Physiol Cell Physiol 2007;293(4):C1362-73
    65. Walker CA, Ergul A, Grubbs A, Zile MR, Zellner JL, Crumbley AJ, Spinale FGbeta-Adrenergic and endothelin receptor interaction in dilated human cardiomyopathic myocardium. J Card Fail 2001;7(2):129-37
    66. Spinale FG, Holzgrefe HH, Mukherjee R, Arthur SR, Child MJ, Powell JR, Koster WH.LV and myocyte structure and function after early recovery from tachycardia-induced cardiomyopathy.Am J Physiol 1995;268(2 Pt 2):H836-47.
    67. Meng XH, Wang Y, Zhuang JX, Chen Y, Jin YP, Han XZ, Wang YL.[Myocardial matrix metalloproteinases activities in mice with viral myocarditis and their relationship with cardiac function and myocardial collagen amount].Zhonghua Er Ke Za Zhi 2004; 42(8):605-8.
    68. Li J, Schwimmbeck PL, Tschope C, Leschka S, Husmann L, Rutschow S, Reichenbach F, Noutsias M, Kobalz U, Poller W, Spillmann F, Zeichhardt H, Schultheiss HP, Pauschinger M. Collagen degradation in a murine myocarditis model: relevance of matrix metalloproteinase in association with inflammatory induction. Cardiovasc Res 2002;56(2):235-47
    69. Ducharme A, Frantz S, Aikawa M, Rabkin E, Lindsey M, Rohde LE, Schoen FJ, Kelly RA, Werb Z, Libby P, Lee RT. Targeted deletion of matrix metalloproteinase-9 attenuates left ventricular enlargement and collagen accumulation after experimental myocardial infarction. J Clin Invest. 2000; 106(1):55-62.
    70. Heymans S, Lupu F, Terclavers S, Vanwetswinkel B, Herbert JM, Baker A, Collen D, Carmeliet P, Moons L. Loss or inhibition of uPA or MMP-9 attenuates LV remodeling and dysfunction after acute pressure overload in mice. Am J Pathol 2005; 166(1):15-25.
    71.Matsusaka H, Ide T, Matsushima S, Ikeuchi M, Kubota T, Sunagawa K, Kinugawa S, Tsutsui H. Targeted deletion of matrix metalloproteinase 2 ameliorates myocardial remodeling in mice with chronic pressure overload 2006; 47(4):711-7.
    72. Matsui Y, Jia N, Okamoto H, Kon S, Onozuka H, Akino M, Liu L, Morimoto J, Rittling SR, Denhardt D, Kitabatake A, Uede T. Role of osteopontin in cardiac fibrosis and remodeling in angiotensin II-induced cardiac hypertrophy 2004; 43(6):1195-201.
    73. Matsunaga T, Abe N, Kameda K, Hagii J, Fujita N, Onodera H, Kamata T, Ishizaka H, Hanada H, Osanai T, Okumura K.Circulating level of gelatinase activity predicts ventricular remodeling in patients with acute myocardial infarction. Int J Cardiol 2005; 105(2):203-8.
    74. Morita H, Khanal S, Rastogi S, Suzuki G, Imai M, Todor A, Sharov VG, Goldstein S, O'Neill TP, Sabbah HN. Selective matrix metalloproteinase inhibition attenuates progression of left ventricular dysfunction and remodeling in dogs with chronic heart failure. Am J Physiol Heart Circ Physiol 2006; 290(6):H2522-7.
    75. Toy LW. Matrix metalloproteinases: their function in tissue repair. J Wound Care 2005; 14(1):20-2.
    76. Lindsey ML, Escobar GP, Dobrucki LW, Goshorn DK, Bouges S, Mingoia JT, McClister DM Jr, Su H, Gannon J, MacGillivray C, Lee RT, Sinusas AJ, Spinale FG. Matrix metalloproteinase-9 gene deletion facilitates angiogenesis after myocardial infarction. Am J Physiol Heart Circ Physiol 2006; 290(1): H232-H239.
    77. Hirohata S, Kusachi S, Murakami M, Murakami T, Sano I, Watanabe T, Komatsubara I, Kondo J, Tsuji T. Time dependent alterations of serum matrix metalloproteinase-1 and metalloproteinase-1 tissue inhibitor after successful reperfusion of acute myocardial infarction. Heart 1997; 78(3):278-84.
    78. Beertsen W, Holmbeck K, Niehof A, Bianco P, Chrysovergis K, Birkedal-Hansen H, Everts V. On the role of MT1-MMP, a matrix metalloproteinase essential to collagen remodeling, in murine molar eruption and root growth. Eur J Oral Sci 2002; 110(6): 445-451.
    79. Ikejiri M, Bernardo MM, Meroueh SO, Brown S, Chang M, Fridman R, Mobashery S. Design, synthesis, evaluation of a mechanism-based inhibitor for gelatinase A. J Org Chem 2005;70 (14): 5709-5712.
    80. Ross RS, Borg TK. Integrins and the myocardium. Circ Res 2001; 88(11): 1112-9.
    81. Engel CK, Pirard B, Schimanski S, Kirsch R, Habermann J, Klingler O, Schlotte V, Weithmann KU, Wendt KU. Structural basis for the highly selective inhibition of MMP-13. Chem Biol 2005; 12(2): 181-9.
    82. Fatkin D, Graham RM. Molecular mechanisms of inherited cardiomyopathies. Physiol Rev 2002; 82(4):945-80.
    83. Kim HE, Dalai SS, Young E, Legato MJ, Weisfeldt ML, D'Armiento J. Disruption of the myocardial extracellular matrix leads to cardiac dysfunction. J Clin Invest 2000; 106(7):857-66.
    84. Bergman M, Teerlink JR, Mahimkar R, Li L, Zhu B, Nguyen A, Dahi S, Karliner JS, Lovett DH. Cardiac matrix metalloproteinase-2 expression independently induces marked ventricular remodeling and systolic dysfunction. Am J Physiol Heart Circ Physiol 2007; 292(4):H1847-60.
    85. Rosemurgy A, Harris J, Langleben A, Casper E, Goode S, Rasmussen H. Marimastat in patients with advanced pancreatic cancer: a dose-finding study. Am J Clin Oncol 1999; 22(3):247-52.
    86. Tierney GM, Griffin NR, Stuart RC, Kasem H, Lynch KP, Lury JT, Brown PD, Millar AW, Steele RJ, Parsons SL. A pilot study of the safety and effects of the matrix metalloproteinase inhibitor marimastat in gastric cancer. Eur J Cancer 1999; 35(4):563-8.
    87. Spinale FG, Coker ML, Krombach SR, Mukherjee R, Hallak H, Houck WV, Clair MJ, Kribbs SB, Johnson LL, Peterson JT, Zile MR. Matrix metalloproteinase inhibition during the development of congestive heart failure: effects on left ventricular dimensions and function. Circ Res 1999; 85(4):364-76.
    88. Apple KA, Yarbrough WM, Mukherjee R, Deschamps AM, Escobar PG, Mingoia JT, Sample JA, Hendrick JW, Dowdy KB, McLean JE, Stroud RE, O'Neill TP, Spinale FG Selective targeting of matrix metalloproteinase inhibition in post-infarction myocardial remodeling. J Cardiovasc Pharmacol 2006 ;47(2):228-35
    89. Hudson MP, Armstrong PW, Ruzyllo W, Brum J, Cusmano L, Krzeski P, Lyon R, Quinones M, Theroux P, Sydlowski D, Kim HE, Garcia MJ, Jaber WA, Weaver WD. Effects of selective matrix metalloproteinase inhibitor (PG-116800) to prevent ventricular remodeling after myocardial infarction: results of the PREMIER (Prevention of Myocardial Infarction Early Remodeling) trial. J Am Coll Cardiol 2006; 48(1): 15-20.
    1. Jessup M, Brozena S. Heart failure. N Engl J Med. 2003; 348:2007-18.
    
    2. Levine B, Kalman J, Mayer L, Fillit HM, Packer M.Elevated circulating levels of tumor necrosis factor in severe chronic heart failure. N Engl J Med 1990; 323 (20):236-41.
    3. Aukrust P, Ueland T, Lien E, Bendtzen K, Muller F, Andreassen AK, Nordφy I, Aass H, Espevik T, Simonsen S, Frφland SS, Gullestad L. Cytokine network in congestive heart failure secondary to ischemic or idiopathic dilated cardiomyopathy. Am J Cardiol. 1999; 83(3):376-82.
    4. Aukrust P, Ueland T, Muller F, Andreassen AK, Nordφy I, Aas H, Kjekshus J, Simonsen S, Frφland SS, Gullestad L. Elevated circulating levels of C-C chemokines in patients with congestive heart failure. Circulation 1998; 97(12):1136-43.
    5. Damas JK, Gullestad L, Ueland T, Solum NO, Simonsen S, Fraland SS, Aukrust P.CXC-chemokines, a new group of cytokines in congestive heart failure-possible role of platelets and monocytes. Cardiovasc Res 2000; 45(2):428-36.
    6. Testa M, Yeh M, Lee P, Fanelli R, Loperfido F, Berman JW, LeJemtel TH. Circulating levels of cytokines and their endogenous modulators in patients with mild to severe congestive heart failure due to coronary artery disease or hypertension. J Am Coll Cardiol 1996; 28(4):964-71.
    7. Torre-Amione G, Kapadia S, Benedict C, Oral H, Young JB, Mann DL. Proinflammatory cytokine levels in patients with depressed left ventricular ejection fraction: a report from the Studies of Left Ventricular Dysfunction (SOLVD). J Am Coll Cardiol 1996; 27(5):1201-6.
    8. Torre-Amione G, Kapadia S, Lee J, Durand JB, Bies RD, Young JB, Mann DL. Tumor necrosis factor-alpha and tumor necrosis factor receptors in the failing human heart. Circulation 1996; 93(4):704-11.
    9. Eiken HG, Φie E, Damas JK, Yndestad A, Bjerkeli V, Aass H, Simonsen S, Geiran OR, Tonnessen T, Christensen G, Frφland SS, Gullestad L, Attramadal H, Aukrust P. Myocardial gene expression of leukaemia inhibitory factor, interleukin-6 and glycoprotein 130 in endstage human heart failure. Eur J Clin Invest 2001; 31(5):389-97.
    10. Mann DL. Inflammatory mediators and the failing heart: past, present, and the foreseeable future. Circ Res 2002; 91(11):988-98.
    11.Deswal A, Petersen NJ, Feldman AM, Young JB, White BG, Mann DL. Cytokines and cytokine receptors in advanced heart failure: an analysis of the cytokine database from the Vesnarinone trial (VEST). Circulation 2001; 103(16):2055-9.
    
    12. Mann DL.Stress-activated cytokines and the heart: from adaptation to maladaptation. Annu Rev Physiol 2003; 65:81-101.
    13. Meldrum DR, Dinarello CA, Cleveland JC Jr, Cain BS, Shames BD, Meng X, Harken AH. Hydrogen peroxide induces tumor necrosis factor alpha- mediated Cardiac injury by a p38 mitogen activated protein kinase—dependent mechanisms. Surgery 1998; 124(2):291-296.
    14. Kakio T, Matsumori A, Ono K, Ito H, Matsushima K, Sasayama S. Roles and relationship of macrophages and monocyte chemotactic and activating factor/monocyte chemoattmctant protein-1 in the ischemic and reperfused rat heart. Lab Invest 2000; 80(7): 127-36
    15. Meldrum DR. Tumor necrosis factor in the heart. Am J Physiol 1998; 274(3 Pt 2):R577-95.
    16. Feldman AM, Combes A, Wagner D, Kadakomi T, Kubota T, Li YY, et al. The role of tumor necrosis factor in the pathophysiology of heart failure. J Am Coll Cardiol 2000; 35(3):537-44.
    17. Nian M, Lee P, Khaper N, Liu P. Inflammatory cytokines and postmyocardial infarction remodeling. Circ Res 2004; 94 (12): 1543-53
    18. Chandrasekar B, Mummidi S, Claycomb WC, Mestril R, Nemer M. Interleukin-18 is a pro-hypertrophic cytokine that acts through a phosphatidylinositol 3-kinase-phosphoinositide-dependent kinase-1 -Akt-GATA4 signaling pathway in cardiomyocytes. J Biol Chem 2005; 280(6):4553-67.
    19. Woldbaek PR, Sande JB, Strφmme TA, Lunde PK, Djurovic S, Lyberg T, Christensen G, Tonnessen T. Daily administration of interleukin-18 causes myocardial dysfunction in healthy mice. Am J Physiol Heart Circ Physiol 2005; 289(2):H708-14.
    20. Bryant D, Becker L, Richardson J, Shelton J, Franco F, Peshock R, Thompson M, Giroir B. Cardiac failure in transgenic mice with myocardial expression of tumor necrosis factor-alpha. Circulation 1998; 97(14): 1375-81.
    21. Sivasubramanian N, Coker ML, Kurrelmeyer KM, MacLellan WR, DeMayo FJ, Spinale FG, Mann DL. Left ventricular remodeling in transgenic mice with cardiac restricted overexpression of tumor necrosis factor. Circulation. 2001; 104(7):826-31.
    22. Wollert KC, Chien KR. Cardiotrophin-1 and the role of gp130-dependent signaling pathways in cardiac growth and development. J Mol Med. 1997; 75(7):492-501.
    23. MacEwan DJ. TNF ligands and receptors—a matter of life and death. Br J Pharmacol 2002; 135(4):855-75.
    24. Birks EJ, Latif N, Owen V, Bowles C, Felkin LE, Mullen AJ, Khaghani A, Barton PJ, Polak JM, Pepper JR, Banner NR, Yacoub MH. Quantitative myocardial cytokine expression and activation of the apoptotic pathway in patients who require left ventricular assist devices. Circulation 2001; 104(12 Suppl 1):I233-40.
    25. Dbaibo GS, El-Assaad W, Krikorian A, Liu B, Diab K, Idriss NZ, El-Sabban M, Driscoll TA, Perry DK, Hannun YA. Ceramide generation by two distinct pathways in tumor necrosis factor alpha-induced cell death. FEBS Lett 2001;503(1):7-12
    26. Gullestad L, Aukrust P. Review of trials in chronic heart failure showing broad-spectrum anti-inflammatory approaches. Am J Cardiol 2005; 95(11A):17C-23C.
    27. Deten A, Volz HC, Briest W, Zimmer HG Cardiac cytokine expression is upregulated in the acute phase after myocardial infarction. Experimental studies in rats. Cardiovasc Res 2002; 55(2):329-40.
    28. Irwin M, Mak S, Mann D, et al. Tissue expression and immunolocalization of tumour necrosis factor-alpha in post infarction-dysfunctional myocardium.Circulation. 1999; 99(11): 1492-98.
    29. Xie Z,Singh M,Singh K. Differential regulation of matrix metalloproteinase-2 and -9 expression and activity in adult rat cardiac fibroblasts in response to interleukin-1beta.J Biol Chem.2004;279(38):39513-519.
    30. Spinale FG. Myocardial matrix remodeling and the matrix metalloproteinases: influence on cardiac form and function. Physiol Rev. 2007; 87(4): 1285-342.
    31. Li YY, Feng YQ, Kadokami T, McTiernan CF, Draviam R, Watkins SC, Feldman AM. Myocardial extracellular matrix remodeling in transgenic mice overexpressing tumor necrosis factor alpha can be modulated by anti-rumor necrosis factor alpha therapy. Proc Natl Acad Sci U S A. 2000; 97(23): 12746-51.
    32. Rohde LE, Ducharme A, Arroyo LH, Aikawa M, Sukhova GH, Lopez-Anaya A, McClure KF, Mitchell PG, Libby P, Lee RT. Matrix metalloproteinase inhibition attenuates early left ventricular enlargement after experimental myocardial infarction in mice. Circulation 1999; 99(23):3063-70.
    33. Lindsey ML, Gannon J, Aikawa M, Schoen FJ, Rabkin E, Lopresti-Morrow L, Crawford J, Black S, Libby P, Mitchell PG, Lee RT. Selective matrix metalloproteinase inhibition reduces left ventricular remodeling but does not inhibit angiogenesis after myocardial infarction. Circulation 2002 ;105(6):753-8.
    34. Bozkurt B, Torre-Amione G, Warren MS, Whitmore J, Soran OZ, Feldman AM, Mann DL. Results of Targeted Anti-Tumor Necrosis Factor Therapy With Etanercept (ENBREL) in Patients With Advanced Heart Failure. Circulation 2001; 103(8): 1044-7.
    35. Lin J, Ziring D, Desai S, Kim S, Wong M, Korin Y, Braun J, Reed E, Gjertson D, Singh RR. TNFalpha blockade in human diseases: an overview of efficacy and safety. Clin Immunol 2008; 26(1):13-30.
    36. Matsumori A. Anti-TNF-alpha therapy for heart failure: etanercept, infliximab Nippon Rinsho. 2007; 65 (Suppl5): 176-81.
    37. Mann DL, McMurray JJ, Packer M, Swedberg K, Borer JS, Colucci WS, Djian J, Drexler H, Feldman A, Kober L, Krum H, Liu P, Nieminen M, Tavazzi L, van Veldhuisen DJ, Waldenstrom A, Warren M, Westheim A, Zannad F, Fleming T.. Targeted Anticytokine Therapy in Patients With Chronic Heart Failure: Results of the Randomized Etanercept Worldwide Evaluation (RENEWAL). Circulation 2004; 109(13): 1594-602.
    38. Chung ES, Packer M, Lo KH, Fasanmade AA, Willerson JT; Anti-TNF Therapy Against Congestive Heart Failure Investigators. Randomized, Double-Blind, Placebo-Controlled, Pilot Trial of Infliximab, a Chimeric Monoclonal Antibody to Tumor Necrosis Factor-alpha, in Patients With Moderate-to-Severe Heart Failure: Results of the Anti-TNF Therapy Against Congestive Heart failure (ATTACH) Trial. Circulation 2003; 107(25):3133-40.
    39. Anker SD, Coats AJ. How to RECOVER from RENAISSANCE? The significance of the results of RECOVER, RENAISSANCE, RENEWAL and ATTACH. Int J Cardiol 2002; 86(2-3): 123-30.
    40. Kadokami T, McTiernan CF, Kubota T, Frye CS, Bounoutas GS, Robbins PD, Watkins SC, Feldman AM. Effects of soluble TNF receptor treatment on lipopolysaccharide-induced myocardial cytokine expression. Am J Physiol Heart Circ Physiol 2001; 280(5):H2281-91.
    41. Lugering A, Schmidt M, Lugering N, Pauels HG, Domschke W, Kucharzik T. Infliximab induces apoptosis in monocytes from patients with chronic active Crohn's disease by using a caspase-dependent pathway. Gastroenterology. 2001; 121(5):1145-57.
    42. Li YY, Kadokami T, Wang P, McTiernan CF, FeldmanAM. MMP inhibition modulates TNF-alpha transgenic mouse phenotype early in the development of heart failure. Am J Physiol Heart Circ Physiol. 2002; 282(3):H983-9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700